CSCE211, Homework Assignment No. 5

Show all your steps-answers alone are not sufficient.
Homework must be done neatly

- Use straight-edged paper (no notebook tear-outs with ragged edges)

STAPLE papers to a signed cover sheet.
Please print the following for reference and for this assignment: MUX-Decoder instructions. Also, please print for reference and inclusion in your Homework paper MSI diagrams 74LS151 (8-to-1 MUX) and
74LS138 (3-to 8 Decoder/De-MUX)

1. Use a $74 x 151$ (8-to-1 MUX) to implement $f(W, X, Y, Z)=\operatorname{Sm}(2,4,7,8,9,13,14)$. Use the "rowpairs"
method shown in class. Show all enable and address connections. (20pts) (See instructions
above.)
2. Use a 74×138 decoder and an external AND gate to implement $f(X, Y, Z)=S m(1,2,4,5,6)$.

Show all enable and address connections. (HINT: AND the MAX terms) (20pts) (See instructions
above)
3. Use a 74×138 decoder and an external NAND gate to implement $f(p, q, r)=\operatorname{Sm}(1,3,7)$. Show all enable and address connections. (20 pts) (See instructions above)
4. Design an 8-to-1 MUX from three 4-to-1 MUXs. Label the inputs on each 4-to1 MUX as I0 to I3.

In the "first stage," place one MUX on "top" of another and connect their select lines S1 (most
significant) and S0 together. Let IO on the "top" MUX correspond to D0 of 8 inputs and let IO on the
"bottom" MUX be D4. Use the third MUX to select between the two "first-stage" MUX outputs. You can configure a 4-to-1 MUX to be a 2-to-1 MUX by setting its MS select line to logic " 0 ." When you
finish, label the three 8 -to- 1 select lines as S2 (most significant) to S0 (least significant). (20 pts)
5. Design an 8 -input to 8 -output MUX-DEMUX system using a 74×151 for the MUX part and a
74×138 for the DEMUX. Leave the outputs of the 74×138 as active-low signals (leave the output
bubbles as-is). Configure ("hard wire") the select-lines values on the MUX and address-lines values on
the DEMUX so that input D4 is routed to output Y6_L. Wire so that there is only one active low
ENABLE signal that controls both chips. You can do this because there are 3 enable lines (one active
high, two active low) on the DECODER (20pts).
file:///C/Courses/csce211sp09/hw5Files/homework5.htm4/5/2009 11:48:12 AM

EN-L : enable Low: emubles when 0 disubleswhen 1
52 is thu most sigmefient (MS) control but so is the least sigmifucunt (LS) control but
Do- D7 are the data inputs
Y is the output
$Y-L$ is the negated output
Check: what is Y when

$$
\begin{aligned}
& -E N-L=0 \\
& -S \theta=S 1=S 2=1 ?
\end{aligned}
$$

See the Motorola dote sheet, which is linked to the course web site. Note that it provides a truth table an uses different no mus for the variable,
5. Design an 8 -input to 8-output MUX-DEMUX system using a 74×151 for the MUX part and a 74×138 for the DEMUX. Leave the outputs of the 74×138 as active-low signals (leave the output bubbles as-is). Configure ("hard wire") the select-lines values on the MUX and address-lines values on the DEMUX so that input D4 is routed to output Y6_L. Wire so that there is only one active low ENABLE signal that controls both chips. You can do this because there are 3 enable lines (one active high, two active low) on the DECODER (20pts).
file:///C//Courses/csce211sp09/hw5Files/homework5.htm4/5/2009 11:48:12 AM

The 74×138 Decoder can be used as a demultipler (DEMVX),
as explained on the Motorola ar sheet (linted to course web site): use the high Enable lime for in.

CSCE211, Homework Assignment No. 5

Show all your steps-answers alone are not sufficient.

- Homework must be done neatly

Use straight-edged paper (no notebook tear-outs with ragged edges)

- STAPLE papers to a signed cover sheet.

Please print the following for reference and for this assignment: MUX-Decoder instructions. Also, please print for reference and inclusion in your Homework paper MSI diagrams 74LS151 (8-to-1 MUX) and
74LS138 (3-to 8 Decoder/De-MUX)

1. Use a 74×151 (8 -to-1 MUX) to implement $f(W, X, Y, Z)=\operatorname{Sm}(2,4,7,8,9,13,14)$. Use the "rowpairs"
method shown in class. Show all enable and address connections. (20pts) (See instructions
above.)
2. Use a 74×138 decoder and an external AND gate to implement $f(X, Y, Z)=\operatorname{Sm}(1,2,4,5,6)$.

Show all enable and address connections. (HINT: AND the MAX terms) (20pts) (See instructions above)
3. Use a 74×138 decoder and an external NAND gate to implement $f(p, q, r)=\operatorname{Sm}(1,3,7)$. Show all enable and address connections. (20 pts) (See instructions above)
4. Design an 8-to-1 MUX from three 4-to-1 MUXs. Label the inputs on each 4-to1 MUX as 10 to I3. In the "first stage," place one MUX on "top" of another and connect their select lines S1 (most significant) and S0 together. Let I0 on the "top" MUX correspond to D0 of 8 inputs and let I0 on the "bottom" MUX be D4. Use the third MUX to select between the two "first-stage" MUX outputs. You can configure a 4-to-1 MUX to be a 2 -to-1 MUX by setting its MS select line to logic "0." When you finish, label the three 8 -to-1 select lines as S2 (most significant) to S0 (least significant). (20 pts)
5. Design an 8 -input to 8 -output MUX-DEMUX system using a 74×151 for the MUX part and a
74×138 for the DEMUX. Leave the outputs of the 74×138 as active-low signals (leave the output bubbles as-is). Configure ("hard wire") the select-lines values on the MUX and address-lines values on the DEMUX so that input D4 is routed to output Y6_L. Wire so that there is only one active low ENABLE signal that controls both chips. You can do this because there are 3 enable lines (one active high, two active low) on the DECODER (20pts).
file:///C|/Courses/csce211sp09/hw5Files/homework5.htm4/5/2009 11:48:12 AM

For exercise 5 (Quiz)

selected

$$
Y 7 . L=00^{\prime}
$$

input DO and routed to output Y7-L
for ho mewortr:
select input by end route it to entpot Yb-L

See instructions linked to HWN 5 page for execrates 3, 4, ont 5 .

