

Homework Problems
Problem 5.4 (a). Plot the expression on a 4 -variable K-map. (10 points)
Problem 5.4 (b). Simplify the K-map from 5.4 (a) into SOP form. Begin with a fresh map. (10 points)
Problem 5.4 (c). Simplify the K-map from 5.4 (a) into POS form. Begin with a fresh map. (10 points)
Problem 5.6 (a). To work, use guideline summary typ class nonessential prime implicants." (20 points)
Problem 5.8 (a). (Note that the problem asks for both SOP and P
Problem 5.12 (c). (POS simplification.) (10 points)
Problem 5.21 (b). (Note that POS form is requested even though the problem statement is given in min-terms.) Plot the min-term map, then redraw with 0 's, and group the 0 's. (20 points)

Ex, on p. 121 top. Find a unininwm soun -of produt expression for $f(a, b, c)=\sum m(0,1,35,6,7)$

$$
\begin{align*}
F & =a^{\prime} b^{\prime} c^{\prime}+a^{\prime} b^{\prime} c+a^{\prime} b c^{\prime}+a b^{\prime} c+a b c^{\prime}+a b c \\
& =a^{\prime} b^{\prime}+b^{\prime}+c^{\prime}+a b \tag{204}\\
f & =a^{\prime} b^{\prime} c^{\prime}+a^{\prime} b^{\prime} c+a^{\prime} b c^{\prime}+a b^{\prime} c+a b c^{\prime}+a b c \\
& =a^{\prime} b^{\prime}+1+a c \tag{*}
\end{align*}
$$

$a b c$	$a b+b^{\prime} c$	$a c$
000	0	0
00	0	0
0	1	0
0	0	0
$i 0$		0
i	1	
i	1	
i	1	

Unfortomataly, there is no (easy?) wren of without achioving (1) from without brecktrecticing, vorhy the biows 8 theorems of p.52?

Chapter 5
A:-
for two variables (A and B)

Section 5.2, p. 121

(a) | | A | B | F |
| :--- | :--- | :--- | :--- |
| | 0 | 0 | 1 |
| | 0 | 1 | 1 |
| | 1 | 0 | 0 |
| | 1 | 1 | 0 |

(b)

(d)

Figure 5-1a, b, c, and d

(a)

Figure 5-2: Karnaugh Map for
Three-Variable Function

Figure 5-3: Location of Minterms on a Three-Variable Karnaugh Map

$b c$	0	1
00	0	O_{4}
01	1	1
11	1	O_{7}
10	O_{2}	0

Figure 5-4: Karnaugh Map of $F(a, b, c)=$ $\Sigma m(1,3,5)=\Pi M(0,2,4,6,7)$

Figure 5-5: Karnaugh Maps for Product Terms

$$
\mathrm{f}(\mathrm{a}, \mathrm{~b}, \mathrm{c})=\mathrm{abc}+\mathrm{b}^{\prime} \mathrm{c}+\mathrm{a}^{\prime}
$$

1. The term $a b c$ ' is 1 when $a=1$ and $b c=10$, so we place a 1 in the square which corresponds to the $\mathrm{a}=1$ column and the $\mathrm{bc}=10$ row of the map.
2. The term b 'c is 1 when $b c=01$, so we place 1 's in both squares of the $\mathrm{bc}=01$ row of the map.
3. The term a' is 1 when $a=0$, so we place 1 's in all the squares of the $a=0$ column of the map. (Note: Since there already is a 1 in the abc = 001 square, we do not have to place a second 1 there because $x+x=x$.)

Section 5.2, p. 124

Figure 5-6: Simplification of a
Three-Variable Function

Figure 5-7: Complement of Map in Figure 5-6a

Figure 5-8: Karnaugh Maps Which Illustrate the Consensus Theorem

Figure 5-9: Function with Two Minimal Forms
section 5.3 Four-variable Karneugg Maps

Figure 5-10: Locatión of Minterms on Four-Variable Karnaugh Map

Figure 5-11: Plot of acd $+a^{\prime} b+d^{\prime}$

Figure 5-12: Simplification of $b^{\prime} d^{\prime}\left(c^{\prime}+c\right)$ Four-Variable Functions

Figure 5-13: Simplification of an Incompletely Specified Function

Final the minimum product of sums realization for

Figure 5-14

$$
\begin{aligned}
\\
\left.=x^{\prime} z^{\prime}+w y z+w^{\prime}\right)^{\prime} z^{\prime} t \\
x^{\prime} y
\end{aligned}
$$

Use the Karwargh mop to res lobe f^{\prime} and ottars $f^{\prime}=y^{\prime} z+w x z^{\prime}+w^{\prime} x y$

$$
f=f^{\prime \prime}=(y+z)^{\prime} \cdot\left(w^{\prime}+x^{\prime}+z\right) \text { Las }
$$

($\left.u \cdot x^{\prime}+y^{\prime \prime}\right)$
(aproduat of sows)

Figure 5-15
p. 129

Defun umplicent

- a 1jor a groupof Is thet con becombined together
E afine prinae umplicant
- oun umplicent /protu ot form) that cemnot be sumbind with onsther inplicant
to eliminotr a vorable. Ikomples;
a $b^{\prime} c^{\prime} b^{\prime}$, ar $b c^{\prime}, a b^{\prime} c^{\prime}$, $a c^{\prime}$ are all implicants; of them, awhy ac'is a prime implicant

Figure 5-16: Determination of All Prime Implicants

(a)

Here, CD is chosen first

Defintion: essentiat prim
implicont.
A prime implicant is essentiol if it is the ouly onlyprime cmplicent that avers som minterm.
Ex.:-BD isessential, becorx no other paime inplicant covers m_{5}

- $A C$ and $B^{\prime} C$ are allo essentionl
- CD is not essential prime implicents is chosen first

Theoreper $(p .131 ; p .621)$

Figure 5-18

If a given minterm and all the 1's adjacent to it ore covered by u single form, then that term s an essential prime impheont
Ex ample (cf. Figure 5,18):

- A 'C' is on essential primo imp Docent, because mintarm $00012(=110)$ and all the ones abjücent to it $(0,4,5)$ are covered by $A^{\prime} C^{\prime}$.
- $A C D$ is an essential/ pome implicant,
because minterm $\mathrm{LO} \|_{2}\left(=\| \|_{10}\right)$ and all the ones adjacent to it (15)
are covered by $A C D$
- AlB' D^{\prime} is an essential prime implicant, be ave minterm $1011_{2}\left(=2_{10}\right)$ and ell the ones adjacent to it (d) are covered by it.
"There ore no other esscutial prime implicents

Figure 5-19:
Flowchart for Determining a Minimum Sum of Products Using a Karnaugh Map

There are five important points to keep in mind when simplifying functions on K-maps:

1. Each square (minterm) on a K-map of two variables has two squares (minterms) that are logically adjacent, each square on a Kmap of three variables has three adjacent squares, and so on. In general, each square on a K-map of n variables has n logically adjacent squares, with each pair of adjacent squares differing in exactly one variable.
2. When combining terms (squares) on a K-map we always group squares in powers of 2 , that is, two squares, four squares, eight squares, and so on. Grouping two squares eliminates one variable, grouping four squares eliminates two variables, and so on. In general, grouping $2 n$ squares eliminates n variables.
3. Group as many squares together as possible; the larger the group is, the fewer the number of literals in the resulting product term. 4. Make as few groups as possible to cover all the squares (minterms) of the function. A rninterm is covered if it is included in at least one group. The fewer the groups, the fewer the number of product terms in the minimized function. Each minterm may be used as many times as it is needed in steps 4 and 5; however, it must be used at least once. As soon as all minterms are used once, stop. A minterm that has been used in at least one group is said to have been covered.
4. In combining squares on the map, always begin with those squares for which there are the fewest number of adjacent squares (the "loneliest" squares on the map). Minterms with multiple adjacent minterms (called adjacencies) offer more possible combinations and

Figure 5-20
essential prime implicant. Choose 1_{10}. Its neightor is 1_{8}. $A B^{\prime} D^{\prime}$ is en essecotiol puicue impliant.
The ouly oues lefft one 1_{13} and I_{9} which orecovered by bhe prime impherant $A C^{\prime} D$

