Note Titl	HWY QUE Filey Jog 209/03/12009
	• Show all your stepsanswers alone are not sufficient.
	Homework must be done neatly.
	• Use straight-edged paper (no notebook tear-outs with ragged edges).
	Please STAPLE papers to a signed cover sheet.
	Homework Problems
	Problem 5.4 (a). Plot the expression on a 4-variable K-map. (10 points)
	Problem 5.4 (b). Simplify the K-map from 5.4 (a) into SOP form. Begin with a fresh map. (10 points)
	Problem 5.4 (c). Simplify the K-map from 5.4 (a) into POS form. Begin with a fresh map. (10 points)
	Problem 5.6 (a). To work, use guideline summary from class; ignore "essential prime implicants." (20 points)
	Problem 5.8 (a). (Note that the problem asks for both SOP and POS simplifications.) (20 points)
	Problem 5.12 (c). (POS simplification.) (10 points)
	Problem 5.21 (b). (Note that POS form is requested even though the problem statement is given in min-terms.) Plot the min-term map, then redraw with 0's, and group the 0's, (20 points)

Ex. on p. 12/ top. Find a minimum som - of-product expression for $f(a, b, c) = \sum m(0, 1, 25, 6, 7)$ F= abc+ abc+ abc+ abc+ abc'+ abc -ab' + bc + bc' + abF= a'b'c't abct abc't abc't abc't abc a(b) + ---- ce (bci ~ b c abtoc Onfortunatory, there is a < no (easy?) way of ochievely & from the bows & breck the dring, using the bows & theorems of p. 52 ! 10001 000 001 010 0 1 1 100 $\langle \phi |$ 6 6 0

Figure 5-1a, b, c, and d

Figure 5-4: Karnaugh Map of $F(a, b, c) = \sum m(1, 3, 5) = \prod M(0, 2, 4, 6, 7)$

f(a,b,c) = abc' + b'c + a' The term abc' is 1 when a = 1 and bc = 10, so we place a 1 in the square which corresponds to the a = 1 column and the bc = 10 row of the map.

- The term b'c is 1 when bc = 01, so we place 1's in both squares of the bc = 01 row of the map.
- 3. The term a' is 1 when a = 0, so we place 1's in all the squares of the a = 0 column of the map. (Note: Since there already is a 1 in the abc = 001 square, we do not have to place a second 1 there because x + x = x.)

Section 5.2, p. 124

Figure 5-7: Complement of Map in Figure 5-6a

Figure 5-8: Karnaugh Maps Which Illustrate the Consensus Theorem

Sec	tion	5.3	Ŷ	Guv-	- vorieble	Kornova Maps		
AE		A		-	0			
CD	00	01	11	10	-			
00	0	4	12	8	-			
01	1	5	13	9	ZD			
_	3	7	15	11				
/ 10	2	6	14	10	-			
Figure 5-10: Location of Minterms on Four-Variable Karnaugh Map								

Figure 5-13: Simplification of an Incompletely Specified Function

linportant for Circuit 2

