

Homework Problems
Problem 5.4 (a). Plot the expression on a 4 -variable K-map. (10 points)
Problem 5.4 (b). Simplify the K-map from 5.4 (a) into SOP form. Begin with a fresh map. (10 points)
Problem 5.4 (c). Simplify the K-map from 5.4 (a) into POS form. Begin with a fresh map. (10 points)
Problem 5.6 (a). To work, use guideline summary from class; ignore "essential prime implicants." (20 points)
Problem 5.8 (a). (Note that the problem asks for both SOP and POS simplifications.) (20 points)
Problem 5.12 (c). (POS simplification.) (10 points)
Problem 5.21 (b). (Note that POS form is requested even though the problem statement is given in min-terms.) Plot the min-term map, then redraw with 0's, and group the 0's. (20 points)

Ex, on p. 121 top. Find a unininwm soun -of produt expression for $f(a, b, c)=\sum m(0,1,35,6,7)$

$$
\begin{align*}
F & =a^{\prime} b^{\prime} c^{\prime}+a^{\prime} b^{\prime} c+a^{\prime} b c^{\prime}+a b^{\prime} c+a b c^{\prime}+a b c \\
& =a^{\prime} b^{\prime}+b^{\prime}+c^{\prime}+a b \tag{204}\\
f & =a^{\prime} b^{\prime} c^{\prime}+a^{\prime} b^{\prime} c+a^{\prime} b c^{\prime}+a b^{\prime} c+a b c^{\prime}+a b c \\
& =a^{\prime} b^{\prime}+1+a c \tag{*}
\end{align*}
$$

$a b c$	$a b+b^{\prime} c$	$a c$
000	0	0
00	0	0
0	1	0
0	0	0
$i 0$		0
i	1	
i	1	
i	1	

Unfortomataly, there is no (easy?) wren of without achioving (1) from without brecktrecticing, vorhy the biows 8 theorems of p.52?

Chapter 5
A:-
for two variables (A and B)

Section 5.2, p. 121

(a) | | A | B | F |
| :--- | :--- | :--- | :--- |
| | 0 | 0 | 1 |
| | 0 | 1 | 1 |
| | 1 | 0 | 0 |
| | 1 | 1 | 0 |

(b)

(d)

Figure 5-1a, b, c, and d

(a)

Figure 5-2: Karnaugh Map for
Three-Variable Function

Figure 5-3: Location of Minterms on a Three-Variable Karnaugh Map

$b c$	0	1
00	0	O_{4}
01	1	1
11	1	O_{7}
10	O_{2}	0

Figure 5-4: Karnaugh Map of $F(a, b, c)=$ $\Sigma m(1,3,5)=\Pi M(0,2,4,6,7)$

Figure 5-5: Karnaugh Maps for Product Terms

$$
\mathrm{f}(\mathrm{a}, \mathrm{~b}, \mathrm{c})=\mathrm{abc}+\mathrm{b}^{\prime} \mathrm{c}+\mathrm{a}^{\prime}
$$

1. The term $a b c$ ' is 1 when $a=1$ and $b c=10$, so we place a 1 in the square which corresponds to the $\mathrm{a}=1$ column and the $\mathrm{bc}=10$ row of the map.
2. The term b 'c is 1 when $b c=01$, so we place 1 's in both squares of the $\mathrm{bc}=01$ row of the map.
3. The term a' is 1 when $a=0$, so we place 1 's in all the squares of the $a=0$ column of the map. (Note: Since there already is a 1 in the abc = 001 square, we do not have to place a second 1 there because $x+x=x$.)

Section 5.2, p. 124

Figure 5-6: Simplification of a
Three-Variable Function

Figure 5-7: Complement of Map in Figure 5-6a

Figure 5-8: Karnaugh Maps Which Illustrate the Consensus Theorem

Figure 5-9: Function with Two Minimal Forms
section 5.3 Four-variable Karneugg Maps

Figure 5-10: Locatión of Minterms on Four-Variable Karnaugh Map

Figure 5-11: Plot of acd $+a^{\prime} b+d^{\prime}$

Figure 5-12: Simplification of $b^{\prime} d^{\prime}\left(c^{\prime}+c\right)$ Four-Variable Functions

Figure 5-13: Simplification of an Incompletely Specified Function

Finsl the mininum product of sums realizeatien for

Figure 5-14

$$
f=x^{\prime} z^{\prime}+w y z+w^{\prime} y^{\prime} z^{\prime} x
$$

Use the Karwargh mop to ree lobe f^{\prime} and abterb $f^{\prime}=y^{\prime} z+w^{\prime} x z^{\prime}+w^{\prime} x y$
$f^{\prime \prime}=\left(y+z^{\prime}\right) \cdot\left(w^{\prime}+x^{\prime}+z\right)$. ($\left.u \cdot x^{\prime}+y^{\prime}\right)$ la produ of of foms)

