HW3 care action

1. Text problem 2.1 (a). Use first distributive law and simplify. (10 pts)
2. Text problem 2.1 (d). Use second distributive law and simplify. (10 pts)
3. Text problem 2.3. (d) Use second distributive law (or The rem $12-14 \mathrm{D})$. (10 pts) $10-140$
4. Text problem 2.3. (e) Let $\mathrm{X}=\left\{\mathrm{A}^{\prime} \cdot \mathrm{B}+\mathrm{D}\right\}$ and use second distributive law. (10 pts)
5. Text problem 2.5 (b). Let $\mathrm{X}=\left\{\mathrm{A}^{\prime}+\mathrm{C}^{\prime}\right\}$ and use second distributive law. (10 pts)
6. Text problem $2.6(\mathrm{a})$. First rewrite $[\mathrm{A} \cdot \mathrm{B}]+\left(\mathrm{C}^{\prime} \cdot \mathrm{D}^{\prime}\right)=\left([\mathrm{A} \cdot \mathrm{B}]+\mathrm{C}^{\prime}\right) \cdot\left([\mathrm{A} \cdot \mathrm{B}]+\mathrm{D}^{\prime}\right)$. Apply second distributive law to each new term. $(10 \mathrm{pts})$
7. Text problem 2.9 (a) (10 pts)
8. Text problem $2.13(\mathrm{~d})$, top of page 50 . (10 pts)
9. Text Problem 4.21 (a). Multiply out the expression (first distributive law) and create a truth table. Express the truth table in $\mathbf{\Sigma m}()$ notation (rows numbers where the expression $=1$). See pages 86 to 88). (10 pts)
10. Express the truth table for Problem 9 above in $\boldsymbol{\Pi} \mathbf{M}()$ notation (rows where expression $=0) .(10 \mathrm{pts})$

* Test 1 on Mondey! See web site for
- Revien 2's complement orithmetic
- De Morgon's Laus
- Converrion of curaits to Boden exprespions
- Gouversion to sumiof-product form How on 8-bit 2 'scebelfichind
- Lows and theorm on p. 52

$$
=\left(2^{8}-A\right)=A^{*} \Rightarrow A=2^{8}-A^{*}
$$

$A^{*}=\left(\begin{array}{lllll}1 & 0 & 10 & 0 & 10\end{array}\right)_{2 C}$

$$
=\left(2^{8}-1-A\right)+1
$$

$$
A=(01011011)_{2}=1+2+8+16+64=9110 \quad(010010)_{2}=1+4+32=37
$$

Theoriginal number is -91 io So, the origichal wounde Se, the original wounder is -91 wo

theorems (p.52)

Operations with 0 and 1 :

1. $X+0=X$

1D. $x \cdot 1=x$

- Commutative laws:

6. $X+Y=Y+X$

6D. $X Y=Y X$
2. $x+1=1$

2D. $x \cdot 0=0$
Idempotent laws:
3. $X+X=X$

3D. $x \cdot x=x$
Involution law:
4. $\left(X^{\prime}\right)^{\prime}=X$

Distributive laws:
\qquad 8. $X(Y+Z)=X Y+X Z$ 8D. $X+Y Z=(X+Y)(X+Z)$

Simplification theorems:
9. $X Y+X Y^{\prime}=X$

9D. $(X+Y)\left(X+Y^{\prime}\right)=X$
10. $X+X Y=X$

10D. $X(X+Y)=X$
11. $\left(X+Y^{\prime}\right) Y=X Y$

11D. $X Y^{\prime}+Y=X+Y$

DeMorgan's laws:
12. $(X+Y+Z+\ldots)^{\prime}=X^{\prime} Y^{\prime} Z^{\prime} \ldots \quad$ 12D. $(X Y Z \ldots)^{\prime}=X^{\prime}+Y^{\prime}+Z^{\prime}+\ldots$

Duality:
13. $(X+Y+Z+\ldots)^{D}=X Y Z \ldots \quad$ 13D. $(X Y Z \ldots)^{D}=X+Y+Z+\ldots$

Theorem for multiplying out and factoring:
14. $(X+Y)\left(X^{\prime}+Z\right)=X Z+X^{\prime} Y$ 14D. $X Y+X^{\prime} Z=(X+Z)\left(X^{\prime}+Y\right)$

Consensus theorem:
15. $X Y+Y Z+X^{\prime} Z=X Y+X^{\prime} Z \quad$ 15D. $(X+Y)(Y+Z)\left(X^{\prime}+Z\right)=(X+Y)\left(X^{\prime}+Z\right)$

12 oud 12D are very impontant
13 and 130 blefine dua ality
14 and 14D are rerg useful for foctoring 4 multiply ing out, when converting to/from sumn-of-products ourm

$$
\begin{aligned}
& \text { Hw3 correction distr.low } \\
& \text { 1. } \left.(2,1(6)) x\left(x^{\prime}+y\right)=([8])\right)=x x^{\prime}+x y=([5 D])=0+x y=[1]=x y \\
& \text { 2. }(2.1(d))=(A+B)\left(A+B^{\prime}\right)=([8 D])=A\left(A+B^{\prime}\right)+B\left(A+B^{\prime}\right)=([8], \text { twice })= \\
& =A A+A B^{\prime}+A B+B B^{\prime}=([3 D],[5 D])=A+A B^{\prime}+A B=([8)= \\
& =A+A\left(B+B^{\prime}\right)=([5])=A+A \cdot 1=([1 D])=A+A=([B])=A
\end{aligned}
$$

3. $(2.3(d))=$ bome incless usily prepared slibles,

$$
\begin{aligned}
& 8(2.13(A)) \\
& (A+B) \\
& \text { Note: botfom-up } \\
& \text { (left-to-right) } \\
& \text { conversion of } \\
& \text { drcuit to expression. } \\
& \begin{array}{c}
((A+B) \cdot C)^{\prime}+[(A+B) \cdot C] \cdot D=\varnothing[U D]=D+((A+B) \cdot C)^{y}=D_{\text {Rongn }}= \\
C X y^{\prime}=x+y
\end{array} \\
& =D+A^{\prime} B^{\prime}+C^{\prime}=A^{\prime} B^{\prime}+C^{\prime}+D
\end{aligned}
$$

Q. $\psi, \notin 1(a) f(a, b, c)=a^{\prime}\left(b+c^{\prime}\right)$: express fos minterm expension.

$$
\begin{aligned}
f(a, b, c) & =a\left(b+a^{\prime} c^{\prime}\right. \\
& =\sum m(0,33) \\
& =\sum m(0)
\end{aligned}
$$

Or, keep expouding:

$$
\begin{array}{lll|l|l|l}
f(a, b, c)=a^{\prime} b+a^{\prime} c^{\prime}= & 6 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 \\
=a^{\prime} b\left(c+c^{\prime}\right)+a^{\prime} c^{\prime}\left(b+b^{\prime}\right)= & 7 & 11 & 0 & 0 & 0 \\
=a^{\prime} b c+a^{\prime} b c^{\prime}+a^{\prime} b c^{\prime}+a^{\prime} b^{\prime} c^{\prime}=a & b c+a^{\prime} b c^{\prime}+a^{\prime} b^{\prime} c^{\prime}=\sum m(3,2,0)=\sum m(0,33)
\end{array}
$$

$10 . f(a, b, c)=T M(1,4,5, b, 7)$

