Nelson, ch. 1 pp staten 19-35, esp.

Case	Carry	Sign Bit	Condition	Overflow ?
$\mathbf{B}+\mathbf{C}$	0	0	$\mathbf{B}+\mathbf{C} \leq 2^{n-I}-1$	No
	0	1	$B+\mathbf{C}>2^{n-I}-1$	Yes
$\mathbf{B}-\mathbf{C}$	1	0	$\mathbf{B} \leq \mathbf{C}$	No
	0	1	$\mathbf{B}>\mathbf{C}$	No
$-\mathbf{B}-\mathbf{C}$	1	1	$-(B+C) \geq-2^{n-I}$	No
	1	0	$-(B+C)<-2^{n-I}$	Yes

- When numbers are represented using two's complement number system:
- Addition: Add two numbers.
- Subtraction: Add two's complement of the subtrahend to the minuend.
- Carry bit is discarded, and overflow is detected as shown above.

For one-bigit bleamal numbers,

$$
\begin{aligned}
& A-B=A+(10-B)-10, i \cdot e, \\
& A-B=A+(10 \text { 's complement bf } B)-10=A+B^{*}-1 D=\left(A+B^{*}\right)_{\text {igignorp }}^{\text {ain bit }}
\end{aligned}
$$

$$
\begin{array}{cc}
12 \\
-7 & +93 \\
\hline 5 & \frac{12}{105} \text { igmorethe cory bit, get } 5 J \\
\frac{-3}{-6} & \frac{+97}{191}
\end{array}
$$ which is the 100's complement of -9 .

This works for any best, end in perticuher for base? Your text only describes bess 2.
"The design of logric cirwits to blo erithmetac with sign anbl megrituble bjuary mumbers is ewkwavol; thevefore othir mpvesentections are ased. " (Roth, p. ist) The other representactions ore 2 's complement ond I's complement.
Forth 2^{7} 's compl. muwher syotem, a pesituve \# is representad by Af followed by the megmitude of the nowder, jost as for sugn \&megnatude; dut e negative nuruber, $-N$, is representad on its 2 s couglement, N^{*}.. If the woubl hength is a bits, \therefore e, you have n bits to represent nombers, $N=2^{n}-\mathbb{N}$

is there a foster way to comprity N How be the eabtrection

$$
2^{n}-M \text { ? Yes! }
$$

There ore two wrens: (1) complement N bit by brit, then ended 1
(2) Tate N, start from the right and couybement all bits to the left of the first L.

$$
\frac{a_{n} a_{n-1} a_{n-2} a_{n-3}-a_{i}-Q_{2} a_{1} Q_{0}}{\bar{a}_{n} \bar{a}_{n-1} \bar{a}_{m+2} \bar{Q}_{n-3} \bar{a}_{1}-\bar{Q}_{2} \bar{a}_{1} \bar{a}_{0}}
$$

Atdition of 2^{\prime} scaupl. As (schiniar to lo's compl)) Errors moy accur owly if addends kove the same sign. Errors occur iff sign of resolt is blifferent from/oigen of adhende. overflons

