1. (20 points). Calculate (a) $\mathrm{X}+\mathrm{Y}$ and (b) $\mathrm{X}-\mathrm{Y}$ for each of the following pair of binary numbers. Simply align the numbers on the radix point and proceed normally. Show carries and borrows clearly. $Z=1011.0101 \mathrm{Y}=110.11$
2. (20 points). Calculate (a) $\mathrm{X}+\mathrm{Y}$ and (b) $\mathrm{X}-\mathrm{Y}$ for the following pair of hexadecimal numbers.

$X=2 C F 3 Y=2 B$
3. (10 points). Convert 10101.11_{2} (binary) to decimal using positional notation.
4.) (10 points). Convert ABC. 04_{16} (hexadecimal) to decimal using positional notation.
(5. 15 points). Convert 110_{10} (decimal) to binary and hexadecimal by repeated dividing by 2 and 16 . Check your work by duping the base 2 result four bits (to base 16).
4. (15 points). Convert 0.65_{10} (decimal) to binary and hexadecimal by repeated multiplying by 2 and 16 ompute to 9 binary bits and round to 8 bits.
5. (10 points). Convert 10101.11_{2} (binary) to hex by grouping.

Q3. Conversion to dithery by repereted division

$$
H 0011.0 \|_{2}=0011 \underbrace{0011} \cdot \underbrace{0110_{2}}=33.6=3 \cdot 16+3 \cdot 16^{\circ} \cdot \frac{6}{16}=51 \frac{3}{8} 10=51.370_{10}
$$ hex (16) binary (2) becuma/(10) ootel (8)

0	0	0	0
1	1	1	1
2	10	2	1
3	100	3	2
4	101	4	3
5	110	6	4
6	1000	7	6
7	1001	8	7
8	1010	9	10
9	1011	10	11
A	1100	11	12
B	1101	12	13
C	1111	13	14
D	15	15	
E	15	16	
F	12	17	

$$
\begin{aligned}
& \left.\Gamma 1101101 \cdot 10\right|_{2}=2110 \underbrace{1101} \cdot 1010_{2}=6 D \cdot A_{16}=6 \cdot 16+13 \cdot \frac{10}{16}=109 \frac{5}{810}=109.625 \\
& =[\underbrace{001} \underbrace{101} \cdot \underbrace{101}_{2}=155 \cdot 5_{8}=64+5.8+5 \cdot \frac{5}{8}=1095 \cdot 10=109.62 J_{10}
\end{aligned}
$$

$$
\begin{aligned}
& a_{n} 2^{n}+a_{n-1} 2^{n-1}+a_{n-2} 2^{n-2}+\cdots+a_{5} 2^{2}+a_{4} 2^{4}+a_{3} 2^{3}+a_{2} 2^{2}+a_{1} 2^{1}+a_{0} \cdot 2^{0} \\
& {\left.\left[Q_{5} \cdot 2^{2}+a_{4} 2^{1}+a_{3}\right]^{\circ}\right] 2^{3}=8 \quad b \cdot 8^{0} \text {, where bis } } \\
& a_{2} 2^{2}+a_{1} 2^{+a_{1}}
\end{aligned}
$$

Convert from decimel to hexadecimel:

$$
10 \|_{10}=q^{65} 16
$$

16 LO1
$16 \begin{array}{r}6 \\ 0 \\ \operatorname{rem} \\ \operatorname{rem} 6\end{array}=Q_{0} 0_{1} 9$
Subtipectan of bilary nuwbers

$$
\begin{array}{cc}
101.01 & 1111 \\
-111.1 & +100.11 \\
\hline 100.11 & \frac{1100.01}{1100}
\end{array}
$$

$$
\begin{aligned}
& 1.2^{3}+1.2^{2}+0.2^{1}+0.2^{0} \\
&=\quad 1.2^{3}+0.2^{2}+(10)_{2} \cdot 2^{1}+0.2^{0}= \\
&=\quad 1.2^{2}+1.2^{1}+1.2^{0} \\
& \frac{1.2^{3}+0.2^{2}+1.2^{1}+1.2^{0}}{-\quad 1.2^{2}+1.2^{1}+1.2^{0}} 00=0.2^{3}+2.2^{2}+1.2^{1}+1.2^{0} \\
& 0 1.2^{2}+1.2^{1}+1.2^{0} \\
& 0(1))_{2}
\end{aligned}
$$

