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Abstract. We examine the philosophical disputes among computer scientists 
concerning methodological, ontological, and epistemological questions: Is com-
puter science a branch of mathematics, an engineering discipline, or a natural sci-
ence? Should knowledge about the behaviour of programs proceed deductively or 
empirically?  Are computer programs on a par with mathematical objects, with 
mere data, or with mental processes? We conclude that distinct positions taken in 
regard to these questions emanate from distinct sets of received beliefs or para-
digms within the discipline: 
— The rationalist paradigm, which was common among theoretical computer 

scientists, defines computer science as a branch of mathematics, treats pro-
grams on a par with mathematical objects, and seeks certain, a priori knowl-
edge about their ‘correctness’ by means of deductive reasoning.  

— The technocratic paradigm, promulgated mainly by software engineers, 
defines computer science as an engineering discipline, treats programs as 
mere data, and seeks probable, a posteriori knowledge about their reliability 
empirically using testing suites.  

— The scientific paradigm, prevalent in the branches of artificial intelligence, 
defines computer science as a natural (empirical) science, takes programs to 
be entities on a par with mental processes, and seeks a priori and a posteriori 
knowledge about them by combining formal deduction and scientific experi-
mentation. 

We demonstrate evidence corroborating the tenets of the scientific paradigm, in 
particular the claim that program-processes are on a par with mental processes. 
We conclude with a discussion in the influence that the technocratic paradigm 
has been having over computer science. 
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1 Introduction 
In his seminal work on scientific revolutions, Thomas Kuhn (1962) defines scien-
tific paradigms as “some accepted examples of actual scientific practice… [that] 
provide models from which spring particular coherent traditions of scientific re-
search.” The purpose of this paper is to investigate the paradigms of computer 
science and to expose their philosophical origins. 
Peter Wegner (1976) examines three definitions of computer science: as a branch 
of mathematics (e.g. Knuth 1968), as an engineering (‘technological’) discipline, 
and as a natural (‘empirical’) science. He concludes that the practices of computer 
scientists are effectively committed not to one but to either one of three ‘research 
paradigms’ (1). Taking a historical perspective, Wegner argues that each para-
digm dominated a different decade during the 20th century: the scientific para-
digm dominated the 1950s, the mathematical paradigm dominated the 1960s, 
and the technocratic paradigm dominated the 1970s—the decade in which 
Wegner wrote his paper. (2) We take Wegner’s historical account to hold and pos-
tulate (§5) that to this day computer science is largely dominated by the tenets of 
the technocratic paradigm. We shall also go beyond Wegner and explore the phi-
losophical roots of the dispute on the definition of the discipline.  
Timothy Colburn (2000, p. 154) suggests that the different definitions of the dis-
cipline merely emanate from complementary interpretations (or ‘views’) of the ac-
tivity of writing computer programs, and therefore they can be reconciled as 
such.  
Jim Fetzer (1993) however argues that the dispute is not restricted to definitions, 
methods, or reconcilable views of the same activities. Rather, Fetzer contends 
that disagreements extend to philosophical positions concerning a broad range of 
issues which go beyond the traditional confines of the discipline: “The ramifica-
tions of this dispute extend beyond the boundaries of the discipline itself. The 
deeper question that lies beneath this controversy concerns the paradigm most 
appropriate to computer science.” Not unlike Kuhn, Fetzer takes ‘paradigm’ to be 
that set of coherent research practices that a community of computer scientists 
share amongst them. By calling the disagreements ‘paradigmatic’ he means that 

Some of the most important philosophical issues that arise within this 
context concern questions of a philosophical character. These involve 
“ontic” (or ontological) questions about the kind of things computers 
and programs are, as well as “epistemic” (or epistemological) questions 
about the kind of knowledge we can possess about things of this kind. 
(Fetzer 1993) 

Like Fetzer and Wegner, we contend that computer scientists generally subscribe 
to distinct paradigms, which emanate from distinct, inconsistent, and mutually 
exclusive methodological positions concerning the methods for investigating pro-
grams (MET, §1.1) ontic positions concerning their nature (ONT, §1.2), and epis-
temic positions concerning the nature of knowledge about them (EPI, §1.3). 
In the remainder of this section we examine the philosophical disputes among 
computer scientists. Seeking to spell out the philosophical position underlying 
each paradigm of computer science, we proceed to examine the following sections 
the tenets of each, contending that— 
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(§2) The rationalist paradigm, which was common among theoretical com-
puter scientists, defines the discipline as a branch of mathematics (MET-
RAT), treats programs on a par with mathematical objects (ONT-RAT), and 
seeks certain, a priori knowledge about their ‘correctness’ by means of de-
ductive reasoning (EPI-RAT). 

(§3) The technocratic paradigm, promulgated mainly by software engineers, 
defines computer science as an engineering discipline (MET-TEC), treats 
programs as mere data (ONT-TEC), and seeks probable, a posteriori knowl-
edge about their reliability empirically using testing suites (EPI-TEC). 

(§4) The scientific paradigm, prevalent in artificial intelligence, defines com-
puter science as a natural (empirical) science (MET-SCI), takes programs to 
be on a par with mental processes (ONT-SCI), and seeks a priori and a poste-
riori knowledge about them by combining formal deduction and scientific 
experimentation (EPI-SCI). 

Since arguments supporting the tenets of the rationalist and technocratic epis-
temological positions have already been examined elsewhere (e.g. Colburn’s 
(2000) detailed account of the ‘verification wars’), their treatment in §2 and §3 is 
brief. Instead, we expand on the arguments of complexity, non-linearity, and self-
modifiability for the unpredictability of programs and conclude that knowledge 
concerning certain properties of all but the most trivial programs can only be es-
tablished by conducting scientific experiments.  
In §4 we proceed to examine seven properties of program-processes (temporal, 
non-physical, causal, metabolic, contingent upon a physical manifestation, and 
nonlinear) and conclude that program-processes are, in terms of category of exis-
tence, on a par with mental processes. This discussion shall lead us to concur 
with Colburn and conclude that the tenets of the scientific paradigm are the most 
appropriate for computer science. Nonetheless, in §5 we demonstrate evidence for 
the dominance of the technocratic paradigm which has prevailed since Wegner 
(1976) described the 1970s as the decade of the ‘technological paradigm’ and ex-
amine its consequences. Our discussion will lead us to conclude that this domina-
tion has not benefited software engineering, and that for the discipline to become 
as effective as its sister, established engineering disciplines it must abandon the 
technocratic paradigm. 

1.1 The methodological dispute 
Computer science textbooks, classics, research articles, conferences, and curric-
ula of undergraduate programs are dominated by radically different methods of 
conducting research and teaching about computer programs. Mathematical 
methods of investigation guide the research in computability, automata theory, 
computational complexity, and the semantics of programming languages; design 
rules of thumb, extensive testing suites, and regimented development methods 
dominate the branches of software engineering, design, architecture, evolution, 
and testing; and the methods of natural sciences, which combine mathematical 
theories with scientific experiments, govern the research in artificial intelligence, 
machine learning, evolutionary programming, artificial neural networks, artifi-
cial life, robotics, and modern formal methods. This methodological incongruity 
manifests itself in many ways. For example, in some research institutes com-
puter science is a department in the school of mathematics, in others it is a part 
of the engineering faculty, while other computer science departments are grouped 
with the natural sciences. 
The dispute concerning the definition of the discipline and its most appropriate 
methods of investigation can thus be paraphrased as follows: 
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MET Is computer science a branch of mathematics, on a par with logic, geometry, 
and algebra; is it an engineering discipline, on a par with chemical or aero-
nautical engineering; or is it indeed a natural, experimental (empirical) sci-
ence, on a par with astronomy and geology? Should computer scientists rely 
primarily on deductive reasoning, on test suites and regimented software 
development process, or should they employ scientific practices which com-
bine theoretical analysis with empirical investigation? How is the notion of 
a scientific experiment different from a test suite, if at all? How does theo-
retical computer science relate to computer science? 

We shall demonstrate that the methods employed by each paradigm of computer 
science emanate from the stance that each paradigm takes in the ontological 
(ONT, §1.2) and the epistemological disputes (EPI, §1.3), examined below. 

1.2 The ontological dispute 
We take the notion of a computer program to be central to computer science. In 
this paper we focus our discussion in the ontological dispute concerning the na-
ture of programs. 
In his discussion in questions that arise from Artificial Life (‘A-Life’), Eric Olson 
poses the following ontological question: 

What ontological category would computer [programs] belong to? Are 
they supposed to be material objects? ... If so, what matter; and if not, 
what are they made of? ... Events or processes? Platonic complexes of 
pure information? ... If not, where are they? … Are they located in 
space and time at all? ... Or are the traditional ontological categories 
of the philosophers adequate to account for this new phenomenon? (Ol-
son 1997) 

We take into consideration all sorts of entities that computer scientists conven-
tionally take to be ‘computer programs’, such as numerical analysis programs, 
database and World Wide Web applications, operating systems, compil-
ers/interpreters, device drivers, computer viruses, genetic algorithms, network 
routers, and Internet search engines. We shall thus restrict most of our discus-
sion to such conventional notions of computer programs and generally assume 
that each is encoded for and executed by silicon-based von-Neumann computers. 
We therefore refrain from extending our discussion to the kind of programs that 
DNA computing and quantum computing are concerned with.  
The ontological dispute in computer science may be recast in the terminology we 
shall introduce below as follows: 
ONT Are program-scripts mathematical expressions? Are programs mathemati-

cal objects? Alternatively, should program-scripts be taken to be just ‘a 
bunch of data’ and the existence of program-processes dismissed? Or should 
program-scripts be taken to be on a par with DNA sequences (such as the 
genomic information representing a human), the interpretation of which is 
on a par with mental processes? 

Below we clarify some of the technical terms mentioned in ONT and in the re-
mainder of this paper. 

Terminology 
We seek to distinguish between two fundamentally distinct senses of the term 
‘program’ in conventional usage: The first is that of a static script, namely a well-
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formed sequence of symbols in a programming language, to which we shall refer 
as a program-script. The second sense is that of a process of computation gen-
erated by ‘executing’ a particular program-script, to which we shall refer as a 
program-process. Any mention of the term ‘program’ shall henceforth apply to 
both senses (3). 
Rather than attempting to define these terms formally we shall illustrate them 
with an example. Each program-script is associated with a programming lan-
guage. What distinguishes a program-script from a mere sequence of symbols is 
the requirement that program-scripts are expressions that are well formed ac-
cording to the syntactical and semantic rules of a specific programming language.  
The programming languages we are concerned are generally divided into ma-
chine and high order programming languages. By machine programming lan-
guage we shall refer to programming languages which restrict themselves to 
primitive machine instructions for a given von-Neumann, silicon-based, mass 
produced class of microprocessors. For example, the Intel 8086 class of micro-
processors effectively defines a specific machine programming language, such 
that a program-script encoded therein (4) is decipherable by any computer based 
on the 808x microprocessor family. In such machines, each program-script is rep-
resented as a configuration of electrical charges of the machine’s memory, nor-
mally transcribed in binary or hexadecimal code, as demonstrated in Table 1. 

Table 1. Program-script encoded in a machine programming language (5) 

75 E0 73 75 E1 73 FA D3 75 52 D5 75 74 F9 A2 21 F0 73  
58 71 F9 A2 21 F0 73 30 73 E4 73 31 73 E5 73 32 73 E6  
73 33 73 E7 44 70 34 F6 43 73 E6 43 73 E7 44 70 35 F6  
73 34 73 E0 73 35 73 E1 75 60 5E D5 75 31 D3 75 30 F6 

 

Not surprisingly, programs in machine programming languages proved to be ex-
ceptionally difficult for humans to understand, reason about, and adapt (6). 
Worse still, rapid developments in computing and microprocessor technology 
make programs encoded for older generation microprocessors obsolete along with 
the class of machines for which they were specifically tailored.  
Improvements in the processing power of computers during the 1950s have en-
abled the introduction of high-order programming languages (IEEE 1990), 
also compiled or interpreted programming languages. High-order programming 
languages allow programmers to harness the power of other powerful programs, 
such as compilers (interpreters) and operating systems, which interpret and exe-
cute program-scripts encoded in these languages. As a result from their preva-
lence, claims about the ‘text of the program’ (e.g. Hoare’s §2) most commonly re-
fer to programs encoded in high-order programming languages, such as the pro-
gram-script depicted in Table 2. 

Table 2. Program-script encoded in Lisp (7) 

(define example 
 (lambda (x y)  
  (+ (* x y) 3))) 

 

The second sense of the word ‘program’ is that of a process (also thread, task, or 
bot). The term program-process is thus reserved to that entity which is generated 
from executing a program-script in the appropriate operational environment. 
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Once generated, a copy of the program-script is loaded into the computer’s mem-
ory (the program’s ‘image’), followed by executing the first instruction copied to 
the image. For example, executing the program-script in Table 2 with the num-
bers 4 and 5 as input using Intel Pentium IV Personal Computer equipped with 
the Linux operating system and the COMLISP compiler (Georick, Hoffmann, & 
Langmaack 1997) shall generate to a program-process which calculates the value 
of the expression 3+(4×5), the proceedings of which are depicted in Table 3. 

Table 3. Steps in a sample program-process generated from executing the program in Table 2 

>(example 4 5) 
(+ (* 4 5) 3) 
(+ 20 3) 
23 

 

Confusion concerning the notion of a computer program can often be traced to the 
two senses of the term. But program-scripts must not be confused with program-
processes: The first is an inert sequence of symbols; the second is a causal and a 
temporal entity. Any number of program-processes can be potentially be gener-
ated from each program-script. Furthermore, certain operating systems allow the 
simultaneous generation of a large number of program-processes from a single 
program-script executed concurrently by a single microprocessor. For example, 
my Personal Computer can generate and concurrently execute large numbers of 
program-processes from the program-script in Table 2.  

1.3 The epistemological dispute 
Program specifications are statements that assert our expectations from a 
program. If specifications are defined before the program-script is encoded they 
can be used to articulate the objectives of the encoding enterprise and drive the 
software development process, which is often complex and arduous. For example, 
a specification asserting that the program-script in Table 2 indeed calculates the 
sum of the product of two numbers and the number 3 can be formally specified as 
a lambda expression: 

λx y . x ×y+3 (1) 

In more conventional notation, (1) can also be represented as a two-place func-
tion: 

example(x,y) = x ×y+3 (2) 

Having formally articulated the specification, the correctness of the program can 
be taken to mean the extent to which it meets its specifications. The question of 
correctness can thus be recast as the question whether any or all of the program-
processes that can, shall, and have been generated from program-script pss meet or ‘satisfy’ specification s. The hypothesis ‘program pss is correct with relation to 
s’ therefore asserts that pss satisfies s. For example, the correctness of example (Table 2) can be defined by the extent to which it satisfies specification (2). If the 
specification is articulated in a mathematical language, as in (2), it is referred to 
as a formal specification, in which case the question of ‘correctness’ is well de-
fined. 
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Most specifications however are not quite as simple as (2). Specifications may as-
sert not only the outcome of executing a particular program-script (e.g. adding a 
record to a database of moving a robotic arm) but also how efficient are the pro-
gram-processes generated therefrom (e.g. how long it takes to carry out a particu-
lar calculation) and how reliable they are (e.g. do they terminate unexpectedly?). 
In conclusions, fully formulated specifications are not always feasible, as demon-
strated by the specifications in Table 4. 

Table 4. Sample informal specifications 

♦ Program x does not cause the space shuttle to explode 
♦ Program x translates French into English 
♦ Program x is a computer virus  
♦ Program x never lets unauthorized persons to access sensitive data 
♦ Program x never terminates unexpectedly 
♦ Program x takes a regular expression (a string of text) and returns a list of 

World Wide Web documents sorted by their ‘relevance’ to this expression 
♦ Program x detects whether the face of person y appear in any given picture 
♦ Program x executes with visibly identical outcome regardless of the operat-

ing system used 

 

Indeed, although the correctness of a program can be a source of considerable 
damage, or even a matter of life and death, it may be very difficult—or, as Fetzer 
and Cohn claimed, altogether impossible—to establish formally. And while exe-
cuting a program-script in various circumstances (‘program testing’) can discover 
certain errors, no number of tests can establish their absence. (8) For these rea-
sons, the problem of program correctness has become central to computer 
science. If correctness cannot be formally specified and the problem of establish-
ing it is not even well-defined then is it at all meaningful to ask whether a pro-
gram is correct, and if so then what should ‘correctness’ be taken to mean and 
how can it be established effectively? These questions are at the heart of the epis-
temological dispute: 
EPI Is warranted knowledge about programs a priori or a posteriori? (9) In other 

words, does knowledge about programs emanate from empirical evidence or 
from pure reason? What does it mean for a program to be correct, and how 
can this property be effectively established? Must we consider correctness to 
be a well-defined property—should we insist on formal specifications under 
all circumstances and seek to prove it deductively—or should we adopt a 
probabilistic notion of correctness (‘probably correct’) and seek to establish 
it a posteriori by statistical means?  

Of all the philosophical questions we shall examine, computer scientists have 
been most explicit in the position they take concerning the epistemological dis-
pute. 
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2 The rationalist paradigm 
By the rationalist paradigm we refer to that paradigm of computer science which 
takes the discipline to be a branch of mathematics. Tony Hoare summarized the 
tenets of the rationalist paradigm as follows: 

(1) Computers are mathematical machines. Every aspect of their beha-
vior can be defined with mathematical precision, and every detail can 
be deduced from this definition with mathematical certainty by the 
laws of pure logic. (2) Computer programs are mathematical expres-
sions. They describe with unprecedented precision and in every minut-
est detail the behavior, intended or unintended, of the computer on 
which they are executed. … (4) Programming is a mathematical activi-
ty… its successful practice requires determined and meticulous appli-
cation of traditional methods of mathematical understanding, calcula-
tion and proof. (Hoare 1986) 

2.1 The rationalist methods 
Concerned primarily with what is today taken to be the foundations of the disci-
pline, theoretical computer science is the oldest and the most rigorously estab-
lished branch of computer science. In the first decades following the work of Tur-
ing (1936;  Turing & Copeland 2004), who is widely considered to be the father of 
the discipline, computer science has largely been identified with what von-
Neumann described as the mathematical investigation of “the extent and limita-
tions of mechanistic explanation”. During the 1930s, influential mathematicians 
such as Turing, Church, and Kleene developed mathematically potent theories 
which sought (and succeeded) to lend precision to intuitive notions of mechanistic 
computation (also effective computation). One of the earliest triumphs of theoreti-
cal computer science has been the mathematical proof according to which all the 
different mathematical notions  of mechanistic computation on offer—turing ma-
chines, lambda expressions, and recursive functions (10)—are computationally 
equivalent. This important result lent considerable support to what came to be 
known as Turing’s Thesis (also Church-Turing Thesis, Copeland 2002), according 
to which any ‘mechanistic’ process of computation can indeed be represented as 
the process of computation by a turing machine, and by extension, as an algo-
rithm, a recursive function, etc. 
During the 1940s the first electronic computers appeared, and with them 
emerged the contemporary notions of computer programs (§1.2). A mathematical 
proof demonstrating that programs encoded in machine programming languages 
are computationally equivalent to the mathematical notions of mechanistic com-
putation on offer has established the relevance of deductive reasoning to modern 
computer science. In particular, computational equivalence implied that any 
problem which can be solved (or efficiently solved) by a turing machine can be 
solved by executing a program-script encoded in a machine programming lan-
guage (§1.2), and vice versa, namely that any problem which cannot be (effi-
ciently) solved by a turing machine also cannot be (effectively) solved by execut-
ing a program-script encoded in a machine programming language. For this rea-
son machine programming languages are described as ‘turing-complete’ lan-
guages. High-order programming languages have thus appeared in a rich 
mathematical context, the design of which was heavily influenced by the mathe-
matical notions of mechanistic computation. For example, the striking resem-
blance between the Lisp program in Table 2 and the lambda expression specify-
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ing it (1) emanates directly from the commitment of the designer of the Lisp pro-
gramming language (McCarthy 1960) to lambda calculus.  
The fundamental theorems of the theories of computation have remained rele-
vant notwithstanding generations of exponential growth in computing power. 
Time has thus secured the primacy of deductive methods of investigation as a 
source of certain knowledge about programs and led many to concur with Hoare. 
For example, Knuth justifies his definition of computer science as a branch of 
mathematics (Knuth 1968) as follows: 

Like mathematics, computer science will be somewhat different from 
other sciences in that it deals with man-made laws which can be [de-
ductively] proved, instead of natural laws which are never known with 
certainty. (Knuth 1974) 

The rationalist stance in the methodological dispute can thus be summarized as 
follows: 
MET-RAT Computer science is a branch of mathematics, writing programs is a 

mathematical activity, and deductive reasoning is the only accepted method 
of the investigating programs. 

MET-RAT is justified by the rationalist ontological and epistemological positions 
examined below. 

2.2 The rationalist ontology 
Proving Turing-completeness of programming languages has established that 
every program-process can be adequately represented by some turing machine, 
and by extension, by an algorithm, a recursive function, and by any other compu-
tationally equivalent mathematical notion of mechanistic computation. The pow-
erful insights that these mathematical notions of programs offer have led Hoare 
(1986), Dijkstra (1988), and Lamport (1977)  to claim that program-scripts are 
mathematical expressions. (11) This premise motivates the rationalist position in 
the ontological dispute (ONT), which can be recast and justified as follows: 
ONT-RAT Program-scripts are mathematical expressions. Mathematical expres-

sions represent mathematical objects. A program p is that which is fully 
and precisely represented by sp. Therefore program p is a mathematical ob-ject. 

Functional and logic programming languages lend considerable support to ONT-
RAT. Indeed, the striking similarity between the Lisp program in Table 2 and the 
recursive function defined in expression (1) can be taken to demonstrate that 
what is (fully and precisely) represented by a lisp program is indeed an recursive 
function, a position which can be argued as follows: 
ONT-RATfunction A program-script sp encoded in any turing-complete programming language (e.g. Lisp) is a mathematical expression representing a recursive 

function fp. A program p is that which is fully and precisely represented by 
sp. Hence, program p is the mathematical function fp. 

A possible objection to the rationalist ontology stems from the proliferation of the 
kinds of mathematical objects on offer. Why, indeed, should programs be taken to 
be recursive functions or turing machines rather than algorithm or any other 
(computationally equivalent) class of mathematical objects? But the proliferation 
of mathematical explanation can be taken to corroborate rather than weaken 
ONT-RAT. Indeed, computational equivalence precisely means that any deduction 
that can be made from choosing one mathematical explanations of mechanistic 
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computation can be made from the other. Stronger objections to ONT-RAT are ex-
amined in §4.3. 
ONT-RAT raises metaphysical questions concerning the nature of mathematical 
objects. Prima facie, ONT-RAT may be taken to commit the rationalist to a plato-
nist position (e.g. Balaguer 2004). Plato’s sphere of perfect existence consists of 
ideal universals (or Forms), such as mathematical objects, which are abstract (in-
tangible, non-physical), eternal, observer-independent, non-mental, and immuta-
ble entities that can only be perceived though our intellects (which Plato takes to 
be a yet another sensory organ). Universals are taken to exist regardless whether 
humans are aware of their existence are unaffected by the creation or destruction 
of any number of particulars. A platonist justification to ONT-RATfunction can be re-cast in these terms as follows: 
ONT-RATplatonism A program-script sp is a mathematical expression. A program p is that which is fully and precisely represented by sp. Hence, p is a mathemati-cal object. Mathematical objects are platonic universals. Therefore, pro-

grams are universals. 
ONT-RATplatonism has some interesting consequences. It implies that the lambda cal-culus, abstract automata, as well as every build and every version of Windows XP 
(and of every operating system) were discovered rather than invented (Turner 
2007). It also implies that every program that has ever been written, will ever be 
written, or can be written, exists eternally in the sphere of perfect existence, re-
gardless whether it is ‘discovered’, encoded, or executed. (12) 
However, most theoretical computer scientists have refrained explicitly commit-
ting computer programs to any particular category of existence. Despite its ap-
peal, we found no reference to ONT-RATplatonism or to any particular branch of meta-physics. Indeed, ONT-RAT is also in line with other positions in metaphysics, such 
as conventionalism and intuitionism. The objections to ONT-RAT we examine in 
§4.3 shall therefore focus on the inadequacy of mathematical objects as an ac-
count for the apparent properties of programs, thereby avoiding the debate in the 
philosophy of mathematics concerning the categorial account for mathematical 
objects. 

2.3 The rationalist epistemology 
Hoare (1986) is explicit in his commitment to the primacy of a priori, certain 
knowledge about programs and to the role of mathematical deduction in estab-
lishing it. This position was shared by those who like Hoare sought to establish 
mathematically the (formal) semantics of programming languages, most notably 
Dana Scott and Christopher Strachey (1973). Hoare (1969) himself offers an 
axiomatic theory formulated in the classical mathematical logic. By Hoare’ Logic, 
each stage in the computation process is represented by a state that can be cap-
tured by a set of axioms in mathematical logic {P} . The consequences of execut-
ing a particular statement s is represented as that state {Q}  which results from 
applying that rule of inference s’ which is associated with the statement s to 
{P} . The Hoare triple {P}s{Q}  can therefore be taken to represent the seman-
tics of statement s. For example, the intended behaviour of program example 
(Table 2) can be represented by the following Hoare triple: 

{x, y∈N} (example x y) {output =x ×y+3} (3) 

The proof of correctness of the script in Table 2 shall proceed with the attempt to 
prove (3) by employing the rules of inference of Hoare Logic. Once established, 



 – 11 – 

such a mathematical proof shall thus secure the correctness of the program-script 
in Table 2 with certainty otherwise reserved to mathematical theorems. 
Other efforts in delivering formal semantics have followed Hoare’s example in 
the attempt to prove program correctness using other axiomatic theories. In par-
ticular, Scott’s denotational semantics (Stoy 1977) harnessed the axioms of Zer-
melo-Fraenkel to prove program correctness. 
The mathematical investigation of semantics of programming languages has 
been at least partially successful. If certain simplifying assumptions on the pro-
gramming language are taken then some of the properties of the program-script 
and some of the consequences of executing it can indeed, at least in principle, be 
formally deduced. However, such a notion of program correctness required not 
only that specifications (§1.3) are fully and formally defined—a potentially unfea-
sible task (Table 4), and that programs-scripts can be fully and precisely repre-
sented in the same formal language, but also that these mathematical expres-
sions lend themselves to the deductive process of formal verification. In 1962 
John McCarthy even suggested that, not only that program correctness can be 
deductively proven, but also that it should be possible to mechanize the process of 
checking such proofs: 

It should be possible to eliminate debugging. … Instead of debugging a 
program one should prove that it meets its specifications, and this 
proof should be checked by a computer program. (McCarthy 1962) 

Indeed for the rationalist correctness is a well-defined, a priori notion which 
must be proven mathematically. Hoare dismisses whatever pragmatic arguments 
against this epistemological position and claims that a posteriori knowledge 
emanating from experience (e.g. ‘debugging’) must be dismissed as ineffective, 
anecdotal and unscientific: 

I find digital computers of the present day to be very complicated and 
rather poorly defined. As a result, it is usually impractical to reason 
logically about their behavior. Sometimes, the only way of finding out 
what they will do is by experiment. Such experiments are certainly not 
mathematics. Unfortunately, they are not even science, because it is 
impossible to generalize from their results or to publish them for the 
benefit of other scientists. (Hoare, in Fetzer 1993) 

The rationalist epistemological position can thus be recast as follows: 
EPI-RAT Programs can be fully and formally specified, and their ‘correctness’ is a 

well-defined problem. Certain, a priori knowledge about programs ema-
nates from pure reason, proceeding from self-evident axioms to the demon-
stration of theorems by means of formal deduction. A posteriori knowledge 
is to be dismissed as anecdotal and unreliable. 

EPI-RAT is in line with rationalism in traditional epistemology (Markie 2004) 
which holds that pure reason alone, as opposed to sense experience, play a role in 
our attempt to gain knowledge, and that a priori knowledge is superior to a pos-
teriori knowledge. This motivated our choice to refer to the rationalist paradigm 
of computer science as such. Objections to EPI-RAT are examined in the following 
sections. 
EPI-RAT is intimately tied with the rationalist’s ontological commitment to 
mathematical objects (ONT-RAT). While empirical evidence can give us some in-
tuition about the nature of mathematical objects such as numbers, triangles, and 
(set-theoretic), e.g. by adding up apples or by drawing triangles on paper, such 
evidence only offer anecdotal knowledge. If programs are taken to be mathemati-
cal objects (ONT-RAT) and the methods of computer science are the methods of 
mathematical disciplines, then knowledge about programs can only proceed de-
ductively. Indeed, a rationalist position towards knowledge in branches of pure 
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mathematics such as geometry, logic, arithmetic, topology, and set theory largely 
dismiss a posteriori knowledge as unreliable and anecdotal.  

3 The technocratic paradigm 
By the ‘technocratic paradigm’ (13) we refer to that paradigm of computer science 
which defines the discipline as a branch of engineering, proponents of which 
dominate the various branches of software engineering, including software de-
sign, software architecture, software maintenance and evolution, and software 
testing. In line with the empiricist position in traditional philosophy, the techno-
cratic paradigm holds that reliable, a posteriori knowledge about programs ema-
nates only from experience, whereas certain, a priori ‘knowledge’ emanating from 
the deductive methods of theoretical computer science is either impractical or 
impossible in principle.  

3.1 The technocratic methods 
Wegner describes the background to the emergence of the technocratic paradigm, 
echoing what we shall refer to as the argument of complexity (§3.2): 

During the 1970s emphasis shifted away from “pure research” towards 
practical management of the environment, not only in computer sci-
ence but also in other scientific areas. Decreasing hardware costs and 
increasingly complex software projects created a "complexity barrier" 
in software development which caused the management of software-
hardware complexity to become the primary practical problem in com-
puter science. Research was directed away from the development of 
powerful new programming languages and general theories of pro-
gramming language structure towards the development of tools and 
methodologies for controlling the complexity, cost and reliability of 
large programs. (Wegner 1976) (14) 

The technocratic turn away from the methods of theoretical computer science, in-
deed away from all scientific practices, is most explicitly manifest in the words of 
a keynote speech given in 1967 by John Pierce, an executive director in Bell Labs: 

I don't really understand the title, Computer Science. I guess I don't 
understand science very well; I'm an engineer. ... Computers are worth 
thinking about and talking about and doing about only because they 
are useful devices, which do something for somebody. If you are just in-
terested in contemplating the abstract, I would strongly recommend 
the belly button. (Pierce 1968) 

Indeed the technocratic doctrine contends that there is no room for theory nor for 
science in computer science. During the 1970 this position, promoted primarily by 
software engineers and programming practitioners, came to dominate the various 
branches of software engineering. Today, the principles of scientific experimenta-
tion are rarely employed in software engineering research. An analysis of all 
5,453 papers published during 1993-2002 in nine major software engineering 
journals and proceedings of three leading conferences revealed that less than 2% 
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of the papers (!) report the results of controlled experiments. Even when con-
ducted, the statistical power of such experiments falls substantially below ac-
cepted norms as well as the levels found in the related disciplines (Dybå et. al 
2006). Instead, software engineers conduct testing suites, the purpose of which is 
to establish statistically the reliability of specific products of the process of manu-
facturing software.  
For example, to establish the reliability of a program designed for operating a 
microwave oven, software engineering educators speak of a regimented process of 
software design (although a precise specification of which is hardly ever offered), 
followed by an ‘implementation’ phase during which the program-script is en-
coded (about which little can be said), concluding with the construction of a test-
ing suite and executing (say) ten thousand program-processes generated from the 
given program-script. If executed in a range of actual (rather than hypothetical) 
microwave ovens, such a comprehensive test suite furnishes the programmer 
with statistical data which can be used to quantitatively establish the reliability 
of the computing system in question, e.g. using metrics such as probability of 
failure on demand and mean time to failure (Sommerville 2006). 
Evidence to the decline of scientific methods is found in textbooks on software 
engineering (e.g. Sommerville 2006). Rarely dedicating any space to deductive 
reasoning (15) and never to the principles of scientific experimentation in empiri-
cal sciences, such textbooks cover the subjects of software design, software evolu-
tion, and software testing, greatly expanding on methods of manufacturing, 
methods of designing testing suites, reliability metrics, and statistical modelling 
borrowed from traditional engineering trades.  
The position of the technocratic paradigm concerning the methodological dispute 
can thus be recast as follows: 
MET-TEC Computer science is a branch of engineering which is concerned primar-

ily with manufacturing reliable computing systems, a quality determined by 
methods of established engineering such as reliability testing and obtained 
by means of a regimented development and testing process. For all practical 
purposes, the methods of theoretical computer science are dismissed as ‘na-
val gazing’. 

The technocratic methods of investigation are primarily motivated by the techno-
cratic epistemological position. 

3.2 The technocratic epistemology  
So far, there has been little philosophical discussion of making software reliable rather than verifi-
able. … If another view of software could arise …, the interests of real-life programming and theo-

retical computer science might both be better served. (DeMillo et. al 1979) 
The technocratic rejection of the premises of the rationalist epistemology (EPI-
RAT) rely on the argument of complexity for the inadequacy of deductive rea-
soning, articulated by Richard DeMillo, Richard Lipton, and Alan Perlis as 
follows: 

Back in the real world … the specifications for any reasonable com-
piler or operating system fill volumes—and no one believes that they 
are complete. … The input assertions for these algorithms are not even 
formulable, let alone formalizable. (DeMillo et. al 1979) 

Indeed, whether a particular program-process meets our expectations depends on 
the idiosyncrasies of the compiler, the operating system, and the particular com-
puter executing it. These are determined by the commercial concerns of their re-
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spective vendors. These factors place specifications such as those listed in Table 
4, as well as programs implementing them, at a level of complexity which does 
not lend itself to formal deduction. By this argument, the inevitable conclusion is 
that formal deduction is ineffective in establishing the correctness of all but the 
most trivial computer programs. 
The argument of complexity receives further corroboration from the technological 
progress during the past three decades since it was first articulated. Since 1979, 
the average size of programs and operating systems grew in at least four orders 
of magnitude. More importantly, the complexity of compilers, operating systems, 
microprocessors, and input is today compounded by component-based software 
engineering technologies (Szyperski 2002), such as JavaBeans, .NET, and 
CORBA. These technologies gave rise to gigantic programs such as Internet 
search engines and electronic commerce applications which consist of hundreds of 
software components (e.g. dynamically-linked libraries, server-side and client-
side threads), whose construction is often ‘outsourced’ or otherwise delegated to a 
range of independent commercial bodies or individual volunteers (16) and which 
execute on any one of a wide range of microprocessors (i.e., in a ‘heterogeneous 
environment’). The notion ‘input’ with regard to these programs has also been 
much further complicated as signals and data arrive to these programs from in-
numerable other interacting programs, many of which can be as complex as 
autonomous software agents (Fasli 2007), and which communicate via vast and 
very complex communication networks. Any form of deductive reasoning about 
such programs requires the representation of petabytes (17) of instructions and 
data in every one of the components of the program and of every computer, oper-
ating system, and network router that is involved (directly or indirectly) in their 
execution. Since these often change during the lifespan of a program-process, the 
very notion of a program-script is therefore not well-defined, specifications are 
not well-defined, and deductive reasoning about their de facto representations is 
an idealization that is as unrealistic and ineffective as, say, deductive reasoning 
about the individual atomic particles of airplanes and power stations.  
From the analogy to airplanes and power stations, DeMillo et. al conclude that 
only probabilistic methods such as those employed by statistic mechanics and 
thermodynamics can effectively establish any knowledge about such gargantuan 
engineering feats: 

How then do engineers manage to create reliable structures? … They 
have a mature and realistic view of what "reliable" means; in particu-
lar, the one thing it never means is "perfect." There is no way to deduce 
logically that bridges stand, or that airplanes fly, or that power sta-
tions deliver electricity. (DeMillo et. al 1979) 

According to DeMillo et. al, the argument of complexity is so compelling that any 
resistance thereto amount to ‘symbol chauvinism’: 

It is nothing but symbol chauvinism that makes computer scientists 
think that our structures are so much more important than material 
structures that (a) they should be perfect, and (b) the energy necessary 
to make them perfect should be expended. We argue rather that (a) they 
cannot be perfect, and (b) energy should not be wasted in the futile at-
tempt to make them perfect. (DeMillo et. al 1979) 

Rather than taking 'correctness' to be a certain, formally defined property, com-
puter scientists must learn from the established branches of engineering that 
more realistic notions of correctness are in place, meaning probabilistic notions of 
reliability: 

It is no accident that the probabilistic view of mathematical truth is 
closely allied to the engineering notion of reliability. Perhaps we 
should make a sharp distinction between program reliability and pro-
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gram perfection—and concentrate our efforts on reliability. (DeMillo 
et. al 1979) 

The technocratic position concerning the epistemological dispute may be recast in 
terms of the argument of complexity as follows: 
EPI-TEC It is impractical to specify formally or to prove deductively the ‘correct-

ness’ of a complete program. A priori, certain knowledge about the behav-
iour of actual programs is therefore unattainable. If at all meaningful, ‘cor-
rectness’ must be taken to mean tested and proven ‘reliability’, a posteriori 
knowledge about which is measured in probabilistic terms and established 
using extensive testing suites.  

Fetzer (1993) and Avra Cohn (1989) offer what is essentially an ontological ar-
gument for an even stronger epistemological position, to which we shall refer as 
the argument of category mistake. According to this argument, a priori 
knowledge about the behaviour of machines is impossible in principle: 

A proof that one specification implements another—despite being com-
pletely rigorous, expressed in an explicit and well understood logic, 
and even checked by another system—should still be viewed in context 
of many extra-logical factors which affect the correct functioning of 
hardware systems. (Cohn 1989) 

The technocratic position concerning the nature of knowledge can be justified by 
the argument of category mistake as follows: 
EPI-TECOnt It is impossible to prove deductively the correctness of any physical ob-

ject. A priori, certain knowledge about the behaviour of actual programs is 
unachievable. If at all meaningful, ‘correctness’ must be taken to mean 
tested and proven ‘reliability’, a posteriori knowledge about which is meas-
ured in probabilistic terms and established using extensive testing suites. 

Peter Markie (2004) defines empiricism as that school of thought which holds 
that sense experience is the ultimate source of all our concepts and knowledge. 
Empiricism rejects pure reason as a source of knowledge, indeed any notion of a 
priori, certain knowledge, claiming that warranted beliefs are gained from ex-
perience. Thus, EPI-TEC and EPI-TECOnt are in line with the empiricist philosophi-cal position. 
The argument of complexity won the hearts of many computer scientists. As a re-
sult, the technocratic doctrine has come to dominate software engineering jour-
nals (IEEE TSE) and conferences (ICSE), contributions to which are traditionally 
judged by experience gained from actual implementations—“concrete, practical 
applications”—which must be employed to demonstrate any thesis put forth, may 
it be theoretical or practical. Software engineering classics such as the 1969 
NATO report (Naur & Randell 1969) and the grand “Software Engineering Body 
of Knowledge” project (Abran & Moore 2004) hold a posteriori knowledge to be 
superior on all other knowledge about programs and dismiss or neglect the role of 
formal deduction. Same position is widely embraced in all branches of software 
design. For example, the merits of design patterns (Gamma et. al 1995) and ar-
chitectural styles (Perry & Wolf 1992) are measured almost exclusively in terms 
of the number of successful applications thereof. 
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3.3 The technocratic ontology 
The records of the NATO conference on software engineering (Naur & Randell 
1969) quote van der Pohl in suggesting that program-scripts are themselves just 
“bunches of data”: 

A program [script] is a piece of information only when it is executed. 
Before it’s really executed as a program in the machine it is handled, 
carried to the machine in the form of a stack of punch cards, or it is 
transcribed, whatever is the case, and in all these stages, it is handled 
not as a program but just as a bunch of data. (Van der Poel, in Naur 
& Randell 1969) 

If mere ‘bunches of data’, representing a configuration of the electronic charge of 
a particular printed circuit, program-scripts are on a par with (the manuscript of) 
Shakespeare’s Hamlet and (the pixelized representation of) Botticelli’s The Birth 
of Venus. Therefore ‘that which can be represented by data’ can be just about 
anything, including non-existent entities such as Hamlet and Venus. The exis-
tence of those putative abstract (intangible, non-physical) entities must therefore 
be rejected.  
This objection can be attributed to a nominalist position in traditional metaphys-
ics. Nominalism (Loux 1998) seeks to show that discourse about abstract entities 
is analysable in terms of discourse about familiar concrete particulars. Motivated 
by an underlying concern for ontological parsimony, and in particular the prolif-
eration of universals in the platonist’s putative sphere of abstract existence, the 
nominalist principle commonly referred to as Occam’s Razor (“don't multiply en-
tities beyond necessity”) denies the existence of abstract entities. By this onto-
logical principle, nothing exists outside of concrete particulars, including not en-
tities that are ‘that which is fully and precisely defined by the program script’ 
(ONT-RAT). The existence of a program is therefore unnecessary. 
The technocratic ontology can thus be summarized as follows: 
ONT-TEC ‘That which is fully and precisely represented by a script sp’ is a puta-tive abstract (intangible, non-physical) entity whose existence is not sup-

ported by direct sensory evidence. The existence of such entities must be re-
jected. Therefore, ‘programs’ do not exist. 

Indeed, the recurring analogies to airplanes, power stations, chemical analyzers, 
and other engineered artefacts for which no ontologically independent notion of a 
program is meaningful seems to support ONT-TEC. But while ONT-TEC is corrobo-
rated by a nominalist position, it is not committed thereto. In absence of an ex-
plicit commitment to any particular school of thought in metaphysics, it is impos-
sible to determine whether ONT-TEC is indeed motivated by nominalism. 

4 The scientific paradigm 
The scientific paradigm contends that computer science is a branch of natural 
(empirical) sciences, on a par with “astronomy, economics, and geology” (Newell 
& Simon 1976), the tenets of which are prevalent in various branches of Artificial 
Intelligence (AI), evolutionary programming, artificial neural networks, artificial 
life (Bedau 2004), robotics (Nemzow 2006), and modern formal methods (Hall 
1990). Since many programs are unpredictable, or even ‘chaotic’, the scientific 
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paradigm holds that a priori knowledge emanating from deductive reasoning 
must be supplanted with a posteriori knowledge emanating from the empirical 
evidence by conducting scientific experiments. Since program-processes are tem-
poral, non-physical, causal, metabolic, contingent upon a physical manifestation, 
and nonlinear entities, the scientific paradigm holds them to be on a par with 
mental processes. 

4.1 The scientific methods 
Allen Newel and Herbert Simon, prominent pioneers of AI, define computer sci-
ence as follows: 

Computer science is the study of the phenomena surrounding com-
puters … an empirical discipline … an experimental science … like as-
tronomy, economics, and geology (Newell & Simon 1976) 

Scientific experiments are traditionally concerned with ‘natural’ objects, such as 
chemical compounds, DNA sequences, stellar bodies (e.g. Eddington’s 1919 solar 
eclipse experiment), atomic particles, or human subjects (e.g. experiments con-
cerning cognitive phenomena.) It can be argued that the notion of scientific ex-
periment is only meaningful when applied to ‘natural’ entities but not to ‘artifi-
cial’ objects such as programs and computers; namely, that programs and com-
puters cannot be the subject of scientific experiments: 

There is nothing natural about software or any science of software. 
Programs exist only because we write them, we write them only be-
cause we have built computers on which to run them, and the pro-
grams we write ultimately reflect the structures of those computers. 
Computers are artifacts, programs are artifacts, and models of the 
world created by programs are artifacts. Hence, any science about any 
of these must be a science of a world of our own making rather than of 
a world presented to us by nature. (Mahoney 2002) 

As a reply, Newell and Simon contend that, even if they are indeed contingent ar-
tefacts, programs are nonetheless appropriate subjects for scientific experiments, 
albeit of a novel sort (“nonetheless, they are experiments.” Newell & Simon 1976) 
Their justification for this position is simple: If programs and computers are 
taken to be some part of reality, in particular if the scientific ontology (ONT-SCI) 
is accepted, then we see no particular difficulty in employing scientific methods 
for investigating them. Even Turing acknowledged the role of experiments in in-
vestigating the behaviour of artificial objects: 

We also wish to allow the possibility than an engineer or team of engi-
neers may construct a machine which works, but whose manner of op-
eration cannot be satisfactorily described by its constructors because 
they have applied a method which is largely experimental. (Turing 
1950) 

Additional arguments in support of the relevance of scientific experimentation 
concern the limits of analytical methods. In §4.2 we shall examine the argument 
of non-linearity and the argument of self-modifiability and conclude that, indeed, 
knowledge about even some of the simplest programs can only be gained empiri-
cally. 
The scientific notion of experiment must be clearly distinguished from the tech-
nocratic notion of a reliability test (§3.1). The purpose of a reliability test is to es-
tablish the extent to which a program meets the needs of its users, whereas a sci-
entific experiment is designed to corroborate (or refute) a particular hypothesis. 
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If a test suite fails, the subject of experiment (the program) must be revised (or 
discarded); if an experiment ‘fails’, the theory must be revised (or discarded), 
unless the integrity of the experiment is in doubt. For example, an appropriate 
test suite may have prevented that programming error (in the conversion a 64-bit 
floating-point number to a 16-bit signed integer) which caused the Ariane 5 
Flight 501 to disintegrate forty seconds after launch. The purpose of such a test 
suite is to prevent the space shuttle from exploding; had a test suite discovered 
this error, the program would have been revised. In contrast, Eddington’s ex-
periment of measuring the bending of light at a total solar eclipse in 1919 was 
specifically tailored to test Einstein’s 1915 general theory of relativity. Had this 
experiment failed to corroborate this theory, General Relativity or the integrity of 
Eddington’s experiment would have been questioned.  
For this reason, experiments with programs go beyond establishing the usability 
of a particular manufactured artefact, even beyond and the ‘extent and limita-
tions of mechanistic explanation’. Computer programs can also be used as tools in 
discovering and empirically establishing the laws of nature. In particular, pro-
gram simulations can be used to examine the veracity of models of non-linear 
phenomena (such as the ones we shall examine in §4.2) in other natural sciences. 
For example, in cognitive psychology, an artificial intelligence programs can be 
taken to be a tool for empirical examinations of models of memory and learning; 
in bioinformatics, genetic algorithms are used to test the extent to which models 
of the reproduction of DNA molecules are corroborated by the laws of Darwinian 
natural selection; and in astronomy, the predictions of models for the creation of 
the universe can be tested by means of computer simulations. If computer science 
is concerned with the ‘phenomena surrounding computers’—such as the behav-
iour of computer simulations—then its subject matter is distinct from any given 
class of natural phenomena at most in the extent to which our simulations devi-
ate from reality. In other words, our programs are only ‘incorrect’ to the extent to 
which the scientific theories they implement deviate from the phenomena they 
seek to explain. In Popper’s (1963) terms, the difference between programs and 
the (naturalistic view of) reality is at most limited by the verisimilitude (or truth-
fulness) of our most advanced scientific theory. The progress of science is mani-
fest in the increase in this verisimilitude. Since any distinction between the sub-
ject matter of computer science and natural sciences is taken to be at most the 
product of the (diminishing) inaccuracy of scientific theories, the methods of com-
puter science are the methods of natural sciences.  
But the methods of the scientific paradigm are not limited to empirical valida-
tion, as mandated by the technocratic paradigm. Notwithstanding the techno-
cratic arguments to the unpredictability of programs (as well as the additional 
arguments we examine in §4.2), the deductive methods of theoretical computer 
science have been effective in modelling, theorizing, reasoning about, construct-
ing, and even in predicting—albeit only to a limited extent—innumerable actual 
programs in countless many practical domains. For example, context-free lan-
guages has been successfully used to build compilers (Aho, Sethi & Ullman 1986); 
computable notions of formal specifications (Turner 2005) offer deductive meth-
ods of reasoning on program-scripts without requiring the complete representa-
tion of petabytes of program and data; and classical logic can be used to distin-
guish effectively between abstraction classes in software design statements 
(Eden, Hirshfeld & Kazman 2006). If computer science is indeed a branch of 
natural sciences then its methods must also include deductive and analytical 
methods of investigation. 
From this Wegner (1976) concludes that theoretical computer science stands to 
computer science as theoretical physics stands to physical sciences: deductive 
analysis therefore plays the same role in computer science as it play in other 
branches of natural sciences. Analytical investigation is used to formulate hy-
potheses concerning the properties of specific programs, and if this proves to be a 
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highly complex task (e.g. Table 4) it nonetheless an indispensable step in any sci-
entific line of enquiry.  
Tim Colburn concludes that in reality the tenets of the scientific paradigm offer 
the most complete description of the methods of computer science: 

Computer science “in the large” can be viewed as an experimental dis-
cipline that holds plenty of room for mathematical methods, including 
formal verification, within theoretical limits of the sort emphasized by 
Fetzer (Colburn 2000, p. 154) 

The scientific position concerning the methodological question (MET) can there-
fore be distinguished from the rationalist (MET-RAT) and the technocratic (MET-
TEC) positions as follows: 
MET-SCI Computer science is a natural science on a par with astronomy, geology, 

and economics, any distinction between their respective subject matters is 
no greater than the (diminishing) limitations of scientific theories. Seeking 
to explain, model, understand, and predict the behaviour of computer pro-
grams, the methods of computer science include both deduction and empiri-
cal validation. Therefore theoretical computer science stands to computer 
science as theoretical physics stands to physics. 

4.2 The scientific epistemology 
The argument of complexity (§3.2) demonstrates that deductive reasoning is im-
practical for large programs. The following arguments however demonstrate that 
the outcome of executing even very small and programs cannot be determined 
analytically. 
The argument of self-modifiability for the unpredictability of programs con-
cerns the fact that certain program-processes modify the very set of their instruc-
tions (the program-script) during the process of computation. For example, in ge-
netic and evolutionary programming the program-script is treated as a chromo-
some, namely as a sequence of symbols that is subjected to mutation and cross-
over during the process of computation. Therefore a genetic program-process, 
even if entirely deterministic, does not follow a fixed set of instructions. Simi-
larly, the instructions encoded in the program-script for computer viruses are 
modified by infected program-processes. For example, in the attempt to defeat 
anti-virus scanners, polymorphic viruses randomly change their effect—indeed 
their very program script (the virus’ ‘signature’)—arbitrarily with each ‘infection’; 
thus, any instruction can change arbitrarily to any other instruction. As a result, 
the behaviour of ‘infected’ programs is veritably impossible to predict analyti-
cally, not even when government secrets or large fortunes are at stake. The be-
haviour of self-modifying programs of other kinds is almost equally volatile. Once 
one program is contaminated by a virus, any other program-process sharing the 
same resources is likely to be affected. Since computer viruses and other forms of 
malware are likely to infect (at one point of another) almost every networked 
computer, almost any program in the Internet era carries the risk of becoming 
self-modifiable. 
The argument of nonlinearity to the unpredictability of programs maintains 
that the behaviour of computer programs is nonlinear, namely that it belongs to 
the deterministically chaotic class of phenomena. Dynamic systems theory (also 
complexity theory), which accounts for a very large class of ‘natural’ phenomena 
(including weather systems, traffic jams, ecosystems, and stock markets), states 
that the outcome of chaotic and deterministically-chaotic systems cannot be de-
termined analytically because “tiny deviations of initial data lead to exponen-
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tially increasing computational efforts to analyze future data, limiting long-term 
predictions, although the dynamics is in principle uniquely determined.” 
(Mainzer 2004)  
A phenomenon is classified as ‘deterministic chaos’ if the following conditions 
hold: 
 (1) Arbitrarily close to every state s1 of the system, there is a state s2 whose fu-ture eventually is significantly different from that of s1. That is, the tiniest changes can cause arbitrarily large changes in the future course of events. 
 (2) Arbitrarily close to every state s1 of the system, there is a state s2 whose fu-ture behaviour eventually returns exactly to s2.  (3)  Given any two states s1 and s2, the futures of some states near s1 eventually become near s2 (Devaney 1989). 
For example, the future state of a program calculating the n-th value of formula 
(4) for some r >  3 satisfies the conditions of deterministically chaotic phenome-
non, and therefore cannot be determined analytically: 

State(n+1) = r ×State(n) × (1 − State(n)) (4) 

Already in 1946, before the principles of chaos theory have been developed and 
evidence to its widespread applicability has been presented, von Neumann ob-
served that the outcome of programs computing nonlinear mathematical func-
tions cannot be analytically determined: 

Our present analytical methods seem unsuitable for the solution of the 
important problems arising in connection with nonlinear partial dif-
ferential equations and, in fact, with virtually all types of nonlinear 
problems in pure mathematics. (von Neumann, in Mahoney 2002)  

In 1979, DeMillo et. al illustrated how ‘chaotic’ computer programs are using the 
example of weather systems, for which an event as minute as the flap of a butter-
fly’s wings may potentially have a disproportionate effect, indeed a result as 
catastrophic as causing a hurricane: 

Every programmer knows that altering a line or sometimes even a bit 
can utterly destroy a program or mutilate it in ways that we do not 
understand and cannot predict. … Until we know more about pro-
gramming, we had better for all practical purposes think of systems as 
composed, not of sturdy structures like algorithms and smaller pro-
grams, but of butterflies' wings. (DeMillo et. al 1979) 

In other words, even if a program was not specifically encoded to calculate a non-
linear function, in effect its behaviour amounts to such a program. The reason is 
that one part or another of it is non-linear. DeMillo et al. specifically mention op-
erating systems and compliers, which in effect take part in the behaviour or al-
most any program). Therefore, it is very unlikely that any knowledge about all 
but the most trivial programs can be established without conducting experi-
ments. 
Knuth conceded the weight of the argument of non-linearity, in particular with 
relation to the class of programs that are the concern of artificial life: 

It is abundantly clear that a programmer can create something and be 
totally aware of the laws that are obeyed by the program, and yet be 
almost totally unaware of the consequences of those laws; [for exam-
ple,] running a program from a slightly different configuration often 
leads to really surprising new behaviour. (Knuth Undated) 

Berry et. all corroborate the argument of nonlinearity by showing that the very 
behaviour of microprocessors is chaotic when executing certain program-
processes: 
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As a consequence, the performance of these microprocessors during the 
execution of certain programs displays complex non-repetitive varia-
tions that challenge traditional analysis. … Our results show that … 
for several [programs], the complex dynamics observed result from de-
terministic chaos. This suggests that a detailed prediction of micro-
processor performance at long execution times is unlikely with these 
programs. (Berry et. al 2005) 

Without specifically referring to non-linearity, Turing, in a remark which can be 
taken to be an (anticipatory) rebuttal to Hoare (EPI-RAT), acknowledged already 
in 1950 that the behaviour of some programs is inevitably a source of surprises: 

The view that machines cannot give rise to surprises is due, I believe, 
to a fallacy to which philosophers and mathematicians are particu-
larly subject. This is the assumption that as soon as a fact is presented 
to a mind all consequences of that fact spring into the mind simulta-
neously with it. It is a very useful assumption under many circum-
stances, but one too easily forgets that it is false. (Turing 1950) 

In conclusion from the compelling arguments of complexity (§2.3), self-
modifiability, and nonlinearity for the unpredictability of programs, the behav-
iour of some programs is inevitably a source of a surprise, and a priori knowledge 
about them is severely limited. Therefore, while it may be possible in principle to 
deduce some of the properties of the program and all the consequences of execut-
ing it (EPI-RAT), in practice it is very often impossible. 
The tenets of the scientific epistemology can therefore be summarized as follows: 
EPI-SCI While it may be possible in principle to deduce some of the properties of 

the program and all the consequences of executing it, in practice it is very 
often impossible. Therefore, while some knowledge about programs can be 
established a priori, much of what we know about programs must necessar-
ily be limited to some probabilistic, a posteriori notion of knowledge. 

4.3 The scientific ontology 
 To him who is a discoverer … the products of his imagination appear so necessary and natural that 
he regards them, and would like them regarded by others, not as creations of thought but as given 

realities.  
-- Albert Einstein (1934) 

We postulate that an adequate ontological explanation for program-processes 
must offer an account for the following unique set of their apparent properties: 
 1. Temporal: The existence of program-processes extends in time in the inter-

val between being created and being destroyed (18); 
 2. Non-physical: Program-processes are non-physical, intangible entities; 
 3. Causal: Program-processes can interact with and move physical devices; 
 4. Metabolic: Program-process ‘consume’ energy (19); 
 5. Contingent upon a physical manifestation: The existence of program-

processes depends on the existence of that physical computer which is said 
to be ‘executing’ it; 

 7. Nonlinear: The outcome of a program-process, in the general case, cannot 
be analytically determined. 

Let us examine briefly the weaknesses of the rationalist and of the technocratic 
ontological explanations with relation to the apparent properties of program-
processes. Rationalism (ONT-RAT) asserts that programs are mathematical ob-
jects. But mathematical objects, such as turing machines, recursive functions, 
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triangles, and numbers cannot be meaningfully said to metabolize nor have a 
causal effect on the physical reality in any immediate sense. It would be particu-
lar difficult to justify also a claim that mathematical objects have a specific life-
span or that they are contingent upon any specific physical manifestation (except 
possibly as mental artefacts). In this respect, ONT-RAT is inadequate. 
Alternatively, the technocratic paradigm (ONT-TEC) reduces program-scripts to 
mere “bunches of data”. It is hostile towards assertions of existence of any ab-
stract, ontologically independent manifestations of whatever the data is taken to 
represent. But program-processes do have causal effect on physical reality: They 
control robotic arms, artificial limbs, machine guns (BBC 8-Apr-2006), ‘smart 
bombs’, the navigation of automated and semi-automated vehicles, the sale and 
purchase of stocks in stock exchanges, and to some degree almost every single 
home appliance. Programs also treat depression (Medical News Today 22-Feb-
2006), determine whether your child shall receive her vaccination (Observer 26-
Feb-2006), shortlist job applications (Int’l Herald Tribune 26-Sep-2006), count 
votes in national elections, and spread copies of themselves over the Internet. 
Program-processes came to have a tangible effect on concrete,  physical reality, 
an effect which  ONT-TEC fails to account for. 
The inadequacy of both the rationalist and the technocratic ontological accounts 
has led Dijkstra to conclude that program-processes are a ‘radical novelty’: 

It is the most common way of trying to cope with novelty: by means of 
metaphors and analogies we try to link the new to the old, the novel to 
the familiar. Under sufficiently slow and gradual change, it works 
reasonably well; in the case of a sharp discontinuity, however, the 
method breaks down: though we may glorify it with the name "com-
mon sense", our past experience is no longer relevant, the analogies be-
come too shallow, and the metaphors become more misleading than il-
luminating. This is the situation that is characteristic for the “radical” 
novelty. (Dijkstra 1988) 

According to Dijkstra, the ontological question (ONT) remains open.  
Others contend that the misleading similarities to mathematical objects and to 
engineered artefacts arise because program-processes are on a par with mental 
processes. For example, Alan Bundy calls them ‘mental machines’: 

The reason that it is possible to have this analogy both with applied 
mathematics and pure engineering is that computer programs are 
strange beasts; they are both mathematical entities and artifacts. They 
are formal abstract objects which can be investigated symbolically as if 
they were statements in some branch of mathematics. But they are also 
artifacts, in that they can do things, e.g. run a chemical plant. They 
are machines, but they are not physical machines, they are mental ma-
chines. (Bundy 2005, p. 218)  

Indeed, cognitive and other mental processes are non-physical, causal, metabolic, 
contingent upon a physical manifestation (e.g. the human brain), and nonlinear 
processes too. Bundy’s metaphor is therefore adequate at least according to the 
criteria of their apparent properties listed above. 
A symmetrical contention is made by computational theories of mind (McLaugh-
lin 2004), which suggest that the brain is a (programmable) computer and that 
the computation of cognitive functions—that is, the exercise of mental abilities, 
or simply ‘thinking’—is in effect a program-process. For example, Hilary Putnam 
(1975) and more recently Eric Steinhart (2003) argued that the human mind is in 
effect a finite-state automaton. Strong AI, which holds that intelligent mental 
processes—artificial “thinking” processes—can be effectively reproduced by exe-
cuting programs using existing technology. Strong AI was upheld by the pioneers 
of AI and to this day it the working assumption of those computer scientists who 
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investigate machine learning, evolutionary algorithms, and artificial life (Bedau 
2004). The same stance was in effect taken by Turing as early as in 1950 (20): 

May not machines carry out something which ought to be described as 
thinking but which is very different from what a man does? This objec-
tion is a very strong one, but at least we can say that if, nevertheless, a 
machine can be constructed to play the imitation game satisfactorily, 
we need not be troubled by this objection. … I believe that at the end of 
the century the use of words and general educated opinion will have 
altered so much that one will be able to speak of machines thinking 
without expecting to be contradicted. (Turing 1950) 

The analogy to mental processes receives considerable support from recent re-
sults in computational theories of the DNA. Brent and Brucker suggest that the 
DNA molecule can be taken to be a program-script encoded in a turing-complete 
(‘procedural’) programming language, and the mechanisms of interpreting it to be 
on a par with (turing-complete) digital computing machines: 

It seems reasonable to view the DNA script in the genome as executable 
code that could have been specified by a set of commands in a proce-
dural imperative [programming] language. (Brent & Bruck 2006) 

If a monist, materialist (Stack 1998) position is taken, then the human mind is 
indeed largely the product of the interpretation of the human genome. If the DNA 
representing the human brain is taken to be a program-script then program 
processes are indeed on a par with mental processes. 
The scientific ontology and the arguments in its favour can thus be summarized 
as follows: 
ONT-SCI Program-scripts are on a par with DNA sequences, in particular with the 

genetic representation of human organs such as the brain, the product of 
whose execution—program-processes—are on a par with mental processes: 
temporal, non-physical, causal, metabolic, contingent upon a physical mani-
festation, and nonlinear entities. 

5 Discussion 
We examined the basic tenets of three paradigms of computer science, each of 
which holds different positions concerning the definition of the discipline, war-
ranted notions of program correctness, and whether programs are mathematical 
objects. We concluded that the disputes among computer scientists go beyond the 
boundaries of the discipline and extend to philosophical positions concerning the 
nature of computer programs and the nature of knowledge about them. We ex-
panded on the arguments that corroborate the scientific position concerning these 
questions and concluded that, since almost all programs are non-linear or self-
modifiable, a priori knowledge about them is unattainable. Therefore, the meth-
ods of computer science must combine deductive reasoning with scientific ex-
perimentation. Our analysis of the apparent properties of program-processes has 
also demonstrated that the category of mental process offer the most compelling 
account for their existence. 
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Almost anything in software can be implemented, sold, and even used given enough determination. 
There is nothing a mere scientist can say that will stand against the flood of a hundred million dol-

lars. 
-- C.A.R. Hoare (1981) 

The significant increase in the complexity of software systems has lent much 
support to the argument of complexity, leading almost all who upheld the ration-
alist paradigm to abandon it. (21) But while most computer scientists pledge alle-
giance to the scientific position, at least in principle, mainstream computer sci-
ence is yet to concede the ontological commitments of the scientific paradigm. 
Rather, since Wegner observer the prevalence of the technocratic paradigm in 
1976, the failure of the methods of theoretical computer science to deliver effec-
tive solutions to this crisis and the vested interests of the multi-billion dollar 
software industry (Ophir 2006) have contributed to the dominance of the techno-
cratic doctrine in all but some branches of artificial intelligence. 
As a result of the increasing influence that the technocratic paradigm has been 
having on undergraduate curricula, ‘computer science’ academic programmes are 
seldom true to their name. Courses teaching computability, complexity, automata 
theory, algorithmic theory, and even logic in undergraduate programmes have 
been dropped in favour of courses focusing on technological trends teaching soft-
ware design methodologies, software modelling notations (e.g. the Unified Model-
ling Language (22)), programming platforms, and component-based software en-
gineering technologies. As a result, a growing proportion of academic programs 
churn increasing numbers of graduates in ‘computer science’ with no background 
in the theory of computing and no understanding of the theoretical foundations of 
the discipline.  
In 1988, Dijkstra scathingly attacked the decline of mathematical, conceptual, 
and scientific principles, a trend which has turned computer science programmes 
into semi-professional schools which train students in commercially driven, 
short-lived technology: 

So, if I look into my foggy crystal ball at the future of computing sci-
ence education, I overwhelmingly see the depressing picture of "Busi-
ness as usual". The universities will continue to lack the courage to 
teach hard science, they will continue to misguide the students, and 
each next stage of infantilization of the curriculum will be hailed as 
educational progress. (Dijkstra 1988) 

It is difficult to determine precisely the outcome of the domination of the techno-
cratic doctrine on computer science education, but the anti-scientific attitude has 
evidently taken its toll on the software industry. Since it was declared in the 
1968 NATO conference (Naur & Randell 1969), the never-ending state of ‘soft-
ware crisis’ has been renamed to ‘software’s chronic crisis’ (Gibbs 1994) and in 
2005 it was pronounced ‘software hell’ (Carr 2004). The majority of multimillion-
dollar software development projects, government and commercial, largely con-
tinues to end with huge losses and no gains (Carr 2004). As a standard, software 
manufacturers sign their clients on an End-User Licence Agreements (EULA) 
which offer less of a guarantee for their merchandise than any other commodity 
with the possible exception of casinos and used cars. Much of the professional lit-
erature refers to software in a jargon borrowed from mathematics, melodrama, 
and witchcraft in almost equal measures (e.g. Raymond 1996). Crimes involving 
bypassing security bots guarding the most heavily protected electronically stored 
secrets and spreading a wide spectrum of software malware have become part of 
daily life. The correct operation of the majority of computing devices has become 
largely dependent on daily—even hourly—updates to a host of defence mecha-
nisms: firewalls, anti-virus, anti-spyware, anti-trojans, anti-worms, anti-dialers, 
anti-rootkits, etc. Even with the widespread use of these defence mechanisms, 
virtually no computer is invulnerable to malicious programs that disable and 
overtake global networks of millions of zombie computers (‘botnets’) through the 
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Internet. Indeed, during the last three decades the domination of the technocratic 
doctrine has led software to become ever less reliable. Paradoxically, the doctrine 
preached primarily by software engineers and practitioners has done little but 
deepen the disparity between the state of practice in ‘software engineering’ and 
established engineering disciplines.  
David Parnas, who became known for his contributions to software design (e.g. 
Parnas 1972) pointed out that even in software engineering the technocratic 
stance is untenable, upholding instead the basic tenets of the scientific paradigm: 

There is no engineering profession in which testing and mathematical 
validation are viewed as alternatives. It is universally accepted that 
they are complementary and that both are required. (David Parnas, in 
Denning 1989) 

Parnas’ argument is upheld by the analogy between software engineering and es-
tablished and more successful branches of engineering such civil engineering, 
chemical engineering, and even genetic engineering. These branches of engineer-
ing would not exist if not for the rigour their scientific and theoretical counter-
parts, e.g. material sciences, chemistry, and molecular biology. Robin Milner 
(2007) concurs and concludes that indeed, the failures of software engineering 
emanate from the decline in the role of theoretical computer science and its 
methods. Therefore, before software engineering matures to that level of estab-
lished engineering disciplines and stand to computer science as chemical engi-
neering stands to chemistry, computer scientists must abandon the technocratic 
paradigm. 

Epilogue 
If the scientific paradigm comes to dominate, and mainstream computer science 
is recognized as a branch of natural sciences, the question is how computer sci-
ence can mature as such. Quine offers the following criterion of maturity for a 
scientific discipline: 

A branch of science would qualify for recognition and classification at 
all … only when it had matured to the point of clearing up its similar-
ity standards [between natural kinds]. … In general we can take it as 
a very special mark of the maturity of a branch of science that it no 
longer needs an irreducible notion of similarity and kind. It is that fi-
nal stage where the animal vestige is wholly absorbed into the theory. 
(Quine 1969) 

An interesting open question is therefore whether computer programs are natu-
ral kinds (Copeland 2006) and if not then what mature scientific theory of com-
puter programs can lead us to better understanding of the technology that civili-
zation has come to depend upon. 
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Notes 
                                                
 (1) To which Wegner also refers as ‘cultures’ or ‘disciplines’ interchangeably. 
 (2 ) The “Denning report” (Denning et. al 1989) authored by the task force which was commis-

sioned to investigate “the core of computer science” also lists three “paradigms” of the disci-
pline: theory/mathematics, abstraction/science, and design/engineering. According to this re-
port, these paradigms are “cultural styles by which we approach our work”. They conclude 
however that “in computing the three processes are so intricately intertwined that it is irra-
tional to say that any one is fundamental.” 

 (3) For example, the statement ‘programs are abstract’ shall be taken to assert that ‘program-
scripts and program-processes are abstract’. 

 (4) Also known as machine code or object code. 
 (5) The program adds 3 to the product of two numbers, encoded in the 8086 microprocessor as-

sembly (Adapted from Georick et. al 1997). 
 (6) For example, consider the difficulty of spotting and correcting errors in the program in Table 

1. 
 (7) The program adds 3 to the product of two numbers, encoded here in the syntax of Scheme 

(Abelson & Sussman 1996), a dialect of Lisp. 
 (8) A statement most widely attributed to Dijkstra. 
 (9) We follow Colburn (2000) in taking a priori knowledge about a program to be knowledge that 

is prior to experience with it, namely knowledge emanating from analyzing the program-
script, and a posteriori knowledge to be knowledge following from experience with observed 
phenomena, namely knowledge concerning a given set of specific program-processes gener-
ated from a given script. 

 (10) Which were later accompanied by algorithms and abstract state machines. 
 (11) Dijkstra (1988) offered an explanation to how this ‘fact’ escaped mathematicians and pro-

grammers alike: “Programs were so much longer formulae than [mathematics] was used to 
that [many] did not even recognize them as such.” 

 (12) Bill Rapaport (2007) notes that such a position has interesting consequences on the question 
whether programs can be copyrighted or patented. 

 (13 ) tech·noc·ra·cy n. A government or social system controlled by technicians, especially scien-
tists and technical experts. (The American Heritage® Dictionary of the English Language: 
Fourth Ed., 2000.) 

 (14) These events have led to the seminal NATO conference held in the fall of 1968 (Naur & 
Randell 1969) concerning the trouble that the software industry had been experiencing in 
producing reliable computing systems. In the introduction to the conference’s report, Robert 
McClure (2001) argues that although the term ‘software engineering’ was not in general use 
at that time, its adoption for the titles of these conferences was deliberately provocative and 
played a major role in gaining general acceptance for the term. 

 (15) At most, lip-service is paid to the role of verification in ‘safety-critical software systems’. 
 (16) For example, the Debian GNU/Linux 3.1 version of the Linux operating system (Debian 

2007) is the product of contributions made by thousands of individuals that are entirely un-
related except in their attempt to improve it. 

 (17) One petabyte (1PB) is 1,024 terabytes or 250 bytes. 
 (18) We ignore, for the moment, difficulties arising from concurrency and the possibility of sus-

pending the execution of program-processes. 
 (19) That is, the computational process by the central processing unit depends on the consump-

tion of energy; if suspended, program-processes cease to exist. 
 (20) Turing forecast named the year 2000 as a target. During that year, Jim Moor conducted an 

experiment which refuted Turing’s prediction, but he hastens to add: “Of course, eventually, 
fifty years from now or five hundred years from now, an unrestricted Turing test might be 
passed routinely by some computers. If so, our jobs as philosophers would just be beginning.” 
(Moor 2000) 

 (21) Hoare (2006) has recently conceded that “Because of its effective combination of pure knowl-
edge and applied invention, Computer Science can reasonably be classified as a branch of 
Engineering Science.” 

 (22) To which Bertrand Meyer (1997) satirical critique offers valuable insights. 


