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Abstract

With the help of two experts in gastrointestinal oncology from The Netherlands Cancer Institute,

Antoni van Leeuwenhoekhuis, a decision-support system is being developed for patient-specific

therapy selection for oesophageal cancer. The kernel of the system is a probabilistic network that

describes the presentation characteristics of cancer of the oesophagus and the pathophysiological

processes of invasion and metastasis. While the construction of the graphical structure of the network

was relatively straightforward, probability elicitation with existing methods proved to be a major

obstacle. To overcome this obstacle, we designed a new method for eliciting probabilities from

experts that combines the ideas of transcribing probabilities as fragments of text and of using a scale

with both numerical and verbal anchors for marking assessments. In this paper, we report experiences

with our method in eliciting the probabilities required for the oesophagus network. The method

allowed us to elicit many probabilities in reasonable time. To gain some insight in the quality of the

probabilities obtained, we conducted a preliminary evaluation study of our network, using data from

real patients. We found that for 85% of the patients, the network predicted the correct cancer stage.

# 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

The Netherlands Cancer Institute, Antoni van Leeuwenhoekhuis, is a specialised centre

for the treatment of cancer patients. Every year some 80 patients receive treatment for
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oesophageal cancer at the centre. These patients are currently assigned to a therapy by

means of a standard protocol that includes a small number of prognostic factors. Based

upon this protocol, 75% of the patients show a favourable response to the therapy provided.

One out of every four patients, however, develops more or less serious complications as a

result of the therapy. To arrive at a more fine-grained protocol with a more favourable

response rate, a decision-support system is being developed for patient-specific therapy

selection. The system is destined for use in clinical practice and is being constructed with

the help of two experts in gastrointestinal oncology from The Netherlands Cancer Institute.

The two experts are the co-authors B.M.P. Aleman and B.G. Taal of the present paper.

The kernel of our decision-support system is a probabilistic network. A probabilistic

network is a mathematical model that encodes statistical variables and the probabilistic

relationships between them in a graphical structure; the strengths of the relationships

between the variables are indicated by conditional probabilities [7]. The probabilistic

network of our system models the presentation characteristics of an oesophageal tumour,

such as its length and shape, as well as the pathophysiological processes underlying its

invasion into the oesophageal wall and its metastasis. The network further captures the

sensitivity and specificity characteristics of the diagnostic tests that are typically performed

to assess the stage of a patient’s cancer. For prognostication, the network in addition

describes the possible effects of the different therapies available. When a patient’s

symptoms and test results are entered, the network predicts the most likely stage of

the patient’s cancer and assesses the most likely outcomes of the different treatment

alternatives. In the sequel, we will use the phrase oesophagus network to refer to our

probabilistic network of oesophageal cancer.

The oesophagus network is being constructed with the help of two domain experts. First,

we carefully modelled, in the network’s graphical structure, the relationships between the

statistical variables that represent for example the characteristics of an oesophageal tumour

and the possible effects of the different therapies. We then focused on obtaining the

probabilities required for the quantitative part of the network. This task is generally

acknowledged to be the most daunting in the construction of a probabilistic network [5].

For our network, it indeed turned out to be the hardest and most time consuming of the

various tasks involved. At first sight, many sources of probabilistic information appeared to

be readily available. Unfortunately, a thorough literature review did not yield any usable

results. Moreover, we were not able to compose a rich enough data collection from which

the probabilities could reliably be estimated. The single remaining source of probabilistic

information, therefore, was the knowledge and personal clinical experience of our two

domain experts.

The problems that are typically encountered when eliciting probabilities from human

domain experts are widely known [8]. An expert’s assessments may for example reflect

various biases and may not be properly calibrated. Acknowledging these problems, in the

field of decision analysis several methods have been developed for eliciting judgemental

probabilities, ranging from probability scales for marking assessments to gambles [10,13].

For eliciting the probabilities required for the oesophagus network, we decided to use these

well-known methods with our experts. Unfortunately, we encountered numerous problems.

Most importantly, we found that using the more involved methods tended to take

considerable time with every single assessment. In fact, it became clear that, with these
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methods, the elicitation of the large number of probabilities required for our network was

infeasible. We concluded that existing elicitation methods may work well for small

numbers of probabilities, but do not easily scale up to the thousands of probabilities that

are typically required for even a moderately sized probabilistic network. Building upon our

negative experiences, we designed a new method that we tailored to the elicitation of a

large number of probabilities. Our method combines several ideas, such as transcribing the

required probabilities as fragments of text and providing a scale with both numerical and

verbal anchors for marking assessments. We used our new method for the elicitation of the

probabilities for the oesophagus network. With the method, our domain experts provided

the probabilities required at a rate of over 150 numbers per hour.

To gain some insight in the quality of the probabilities that we obtained with our new

elicitation method, we conducted a preliminary evaluation study of the oesophagus

network, using data from real patients diagnosed with oesophageal cancer. We focused

on the part of the network that provides for establishing the stage of a patient’s cancer. This

stage summarises the depth of invasion of the primary tumour into the oesophageal wall

and the extent of its metastasis, and is indicative of the prognosis for the patient. We would

like to note that in our decision-support system the depth of invasion and extent of

metastasis themselves are of interest rather than the stage derived from them. Focusing on

the summarising stage, however, serves to provide overall insight in the diagnostic part of

the network. We found that for 85% of the patients, the stage yielded by our network as the

most likely stage matched the stage that was recorded in the patient’s data.

In this paper, we describe our new method for probability elicitation and report

experiences with the method in eliciting from our domain experts the probabilities required

for the oesophagus network. In Section 2 we describe the network. In Section 3 we discuss

our initial experiences with probability elicitation using existing methods. In Section 4 we

detail the method that we designed for eliciting a large number of probabilities. In Section 5

we describe our experiences with this method in the construction of the quantitative part of

the oesophagus network; more specifically, we comment on the observations made by the

domain experts. In Section 6 we reflect on the probabilities obtained and present the results

of a preliminary evaluation study of our network. The paper ends with some concluding

observations in Section 7.

2. The oesophagus network and the patient data

With the help of two experts in gastrointestinal oncology from The Netherlands Cancer

Institute, Antoni van Leeuwenhoekhuis, we constructed a probabilistic network for

oesophageal cancer. In this section, we provide some background knowledge on cancer

of the oesophagus and introduce the network. In addition, we briefly describe the patient

data that we used in our preliminary evaluation study.

2.1. Oesophageal cancer

As a consequence of a lesion of the oesophageal wall, for example as a result of frequent

reflux or associated with smoking and drinking habits, a tumour may develop in a patient’s
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oesophagus. The various presentation characteristics of the tumour, which include its

location in the oesophagus and its histological type, length, and macroscopic shape,

influence its prospective growth. The tumour typically invades the oesophageal wall and

upon further growth may invade such neighbouring structures as the trachea and bronchi or

the diaphragm, dependent upon its location in the oesophagus. In time, the tumour may

give rise to lymphatic metastases in distant lymph nodes and to haematogenous metastases

in, for example, the lungs and the liver. The depth of invasion and extent of metastasis,

summarised in the cancer’s stage, largely influence a patient’s life expectancy and are

indicative of the effects and complications to be expected from the different available

treatment alternatives. To establish these factors in a patient, typically a number of

diagnostic tests are performed, ranging from multiple biopsies of the primary tumour

to a gastroscopic and endosonographic examination of the oesophagus and a CT-scan of the

patient’s chest and liver.

While establishing the presence of an oesophageal tumour in a patient is relatively

straightforward, the staging of the cancer and especially the selection of an appropriate

therapy are far harder tasks. In The Netherlands Cancer Institute, Antoni van Leeuwen-

hoekhuis, different treatment alternatives are available, ranging from surgical removal of the

oesophagus to positioning a prosthesis. The effects aimed at by providing a therapy include

removal or reduction of the patient’s primary tumour to prolong life expectancy and to

improve passage of food through the oesophagus. The therapies differ in the extent to which

these effects can be attained, however. For example, where the main goal of surgical removal

of the oesophagus is to attain a better life expectancy for a patient, positioning a prosthesis in

the oesophagus cannot improve life expectancy: the latter is performed merely to relieve the

patient’s difficulty with swallowing food. Providing a therapy is often accompanied not just

by beneficial effects but also by complications. These complications can be very serious and

may in fact result in death. The effects and complications expected from the different

therapies for a specific patient depend on the characteristics of his or her primary tumour, on

the depth of invasion of the tumour into the oesophageal wall and neighbouring structures,

and on the extent of metastasis of the cancer. The cancer’s stage therefore plays a crucial role

in the selection of an appropriate therapy for a patient.

2.2. The oesophagus network

We captured the state-of-the-art knowledge about oesophageal cancer and its treatment

in a probabilistic network, also known as a Bayesian network or causal network [7]. The

network includes a graphical structure encoding statistical variables and the probabilistic

relationships between them. Each variable represents a diagnostic or prognostic factor that

is relevant for establishing the stage of a patient’s cancer or for predicting the outcome of

treatment. The probabilistic influences among the variables are represented by directed

links; the strengths of these influences are indicated by conditional probabilities. Our

probabilistic network of oesophageal cancer currently includes over 70 statistical variables

and more than 4000 conditional probabilities. The graphical structure and its associated

probabilities uniquely capture a joint probability distribution over the represented vari-

ables. Any probability of interest over these variables can therefore be computed from the

network. More specifically, the stage of a patient’s cancer can be established by entering his
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or her symptoms and test results into the network, and computing the effect of these

observations on the marginal probability distribution for the variable that models the

cancer’s stage.

Thus far, we focused our elicitation efforts on the part of the network that pertains to the

characteristics, depth of invasion, and metastasis of an oesophageal tumour. This part

constitutes a coherent and self-contained probabilistic network. In the sequel, we will refer

to this network by the phrase oesophagus network as well, as long as ambiguity cannot

occur. The network’s graphical structure is depicted in Fig. 1; the figure also shows the

prior marginal probability distributions for the various statistical variables.

The 40 variables involved required some 1000 probability assessments. The variable

requiring the largest number of assessments, 144, models the cancer’s stage. This variable

classifies a patient’s oesophageal cancer in one of six categories of disease. It is

deterministic in the sense that its value is determined uniquely by the values of its

predecessors in the graphical structure of the network; the probabilities required for this

variable therefore are all equal to 0 or 1. The non-deterministic variable requiring the

largest number of probability assessments is the variable that describes the result of an

endosonographic examination of a patient’s oesophagus with respect to the depth of

invasion of the primary tumour into the oesophageal wall; it required 80 assessments.

2.3. The patient data

For studying the ability of the oesophagus network to correctly predict the stage of a

patient’s cancer, the medical records of 156 patients diagnosed with oesophageal cancer

are available from the Antoni van Leeuwenhoekhuis in The Netherlands. For each patient,

various diagnostic symptoms and test results are available, such as the results from a

gastroscopic examination of the oesophagus and an assessment of the patient’s ability to

swallow food. The number of data available per patient ranges between 6 and 21, with an

average of 14.8. The data therefore are relatively sparse. For each patient, also the stage of

his or her tumour, as established by the attending physician, is recorded. This stage can be

either I, IIA, IIB, III, IVA, or IVB, in the order of advanced disease. In addition, values for

various intermediate, unobservable variables are stated; these values basically are con-

jectures by the physician. The three most important intermediate variables pertain to the

presence of haematogenous metastases, to the extent of lymph node metastases, and to the

invasion of the primary tumour into the different layers of the oesophageal wall.

3. Initial experiences with probability elicitation

The oesophagus network was constructed and refined with the help of two experts in

gastrointestinal oncology from The Netherlands Cancer Institute, Antoni van Leeuwen-

hoekhuis. In a sequence of 11 interviews of 2–4 hours each, the experts identified the

relevant diagnostic and prognostic factors to be captured as statistical variables in the

network, along with their possible values. The relationships between the variables were

elicited from the experts using the notion of causality as a heuristic guiding principle:

typical questions asked by the elicitors during the interviews were ‘‘What could cause this
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effect?’’ and ‘‘What manifestations could this cause have?’’. The elicited causal relation-

ships were expressed in graphical terms by taking the direction of causality for directing

the links between related variables. Once the graphical structure of the network was

considered robust, we focused our attention on obtaining the probabilities required for the

network’s quantitative part.

Probability assessment soon proved to be a major obstacle in the construction of our

network. As in many domains, numerous sources of probabilistic information seemed to be

readily available. We collected data from historical patient records and we performed an

extensive literature review. Since The Netherlands is a low-incidence country for oeso-

phageal cancer, we were not able to compose an up-to-date, large and rich enough data

collection to allow for reliable assessment of the thousands of probabilities required for our

network. After due consideration, we decided to retain the collected data for evaluation

purposes. Literature review also did not result in ready-made assessments. Although the

literature provided abundant probabilistic information, it seldom turned out to be directly

amenable to encoding in our network. Research papers, for example, often reported

conditional probabilities of the presence of symptoms given a cause, but not always the

probabilities of these symptoms occurring in the absence of the cause. Both probabilities

were required for our network, however. Also, conditional probabilities were often given in

a direction opposite to the direction required. For example, the statement ‘‘70% of the

patients with oesophageal cancer are smokers’’ specifies the probability of a patient being a

smoker given that he or she is suffering from oesophageal cancer, while for the network the

probability of oesophageal cancer developing in a smoker was required. Moreover,

probabilities for unobservable intermediate disease states were lacking altogether. Another

commonly found problem that prohibited direct use of the reported probabilistic informa-

tion, related to the characteristics of the population from which the information was

derived. These characteristics often were not properly specified or deviated seriously from

the characteristics of the population for which the oesophagus network is being developed.

Because of these and similar problems, hardly any probabilistic information reported in the

literature turned out to be usable for our network. The knowledge and personal clinical

experience of the two domain experts involved, therefore, was the single remaining source

for obtaining the required probabilities.

In general, the role of domain experts in the construction of the quantitative part of a

probabilistic network should not be underestimated. An expert’s knowledge and experi-

ence can help not just in assessing the probabilities required, but also in fine-tuning

probabilities obtained from other sources of information to the specifics of the domain at

hand, and in verifying them within the context of the network. Notwithstanding, the

problems that are typically encountered when eliciting probabilities from experts are

widely known [8]. An expert’s assessments may, for example, reflect various biases.

Examples of frequently found biases are overestimation, where an expert consistently gives

probability assessments that are higher than the true probabilities, and overconfidence,

where assessments for likely events are too high and assessments for unlikely events are too

low. Biases such as these are generally the result of the heuristics, or shortcuts, experts,

often unconsciously, use for the assessment task. Moreover, the methods and presentation

formats with which assessments are elicited can give rise to additional biases, especially if

these do not closely match the experts’ usual way of dealing with uncertainties.
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Acknowledging the problems associated with human probability assessment, a number

of methods have been developed in the field of decision analysis for the elicitation of

judgemental probabilities [10,13]. These methods have been designed to avert to at least

some extent the problems of bias and poor calibration. As these methods find widespread

use in the construction of decision-analytic models, we decided to employ them with our

domain experts for the assessment task. We focused on the use of a probability scale for

marking assessments, on different presentation formats for the probabilities to be assessed,

and on the use of gambles. Before commenting on our experiences with these methods, we

would like to emphasise that, prior to the construction of the oesophagus network, our

domain experts had little or no acquaintance with expressing their knowledge and clinical

experience in terms of probabilities.

A well-known method for probability elicitation is the use of a probability scale. A

probability scale is a horizontal or vertical line with some numerical anchors. Experts are

asked to unambiguously mark this line with their assessment for a requested probability.

The basic idea of the scale is to support experts in their assessment task by allowing them to

think in terms of visual proportions rather than in terms of precise numbers. Probability

scales are generally acknowledged to be easy to understand and use, and to take little time

on the part of the experts involved.

The probability scale that we used with our domain experts, was a horizontal line with

the three anchors 0, 50, and 100; the scale is reproduced in Fig. 2. We asked the experts to

indicate the assessments for all conditional probabilities pertaining to a single variable

given a single conditioning context on the same line. For example, for the context of a

polypoid, circular oesophageal tumour of more than 10 cm, the experts were asked to mark

the line with their assessments for the probabilities of the passage of solid food, of the

passage of pureed food at best, of liquid food, and of no passage of food at all; the experts

thus had to indicate four assessments on a single line. We chose to follow this procedure as

we felt that it would allow the experts to compare and verify their assessments, thereby

reducing the risk of overestimation. Contrary to expectation, the experts indicated that they

felt quite uncomfortable working with the probability scale: it gave them ‘very little to go

by’. The request to indicate several assessments on a single line further appeared to

introduce a bias towards aesthetically distributed marks. This bias, commonly known as the

spacing effect [13], seems to originate from people’s tendency to organise perceptual

information so as to optimise visual attractiveness.

Another problem in our first elicitation efforts turned out to be that the probabilities to be

assessed for the oesophagus network were communicated to the domain experts in

mathematical notation. For example, the probability that an arbitrary patient with

oesophageal cancer can swallow liquid food at best, given that he or she has a polypoid,

circular primary tumour of more than 10 cm, was presented as:

PrðPassage¼ liquidjCircumference¼circular ^ Shape¼polypoid ^ Length>10 cmÞ

Fig. 2. The probability scale used for probability elicitation.
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Our experts experienced considerable difficulty understanding conditional probabilities in

this presentation format. Especially the meaning of what is represented on either side of the

conditioning bar appeared to be confusing, and in fact remained to be so during successive

interviews. As a result of the confusing notation, constructing a mental model of the

situation referred to required considerable effort, hampering the experts focusing exclu-

sively on the assessment task at hand.

An alternative presentation format for communicating about probabilities with experts is

the frequency format [6]. This format builds on the observation that registering occurrences

of events is a fairly automatic cognitive process requiring little conscious effort. When later

asked to assess the relative frequency of the occurrence of a specific event, one may,

subconsciously, review the registered events and estimate the requested frequency. The

basic idea of the format therefore is to transcribe probabilities in terms of frequencies,

thereby converting abstract mathematics into simple manipulations on sets of events that

are easy to visualise. The frequency format generally is easier to understand for experts

than mathematical notation and has been reported to be less liable to lead to biases.

For the oesophagus network, the example probability given was transcribed in the

frequency format as

Imagine 100 patients with a polypoid, circular oesophageal tumour of more than

10 cm. How many of these patients will be able to swallow liquid food at best?

Unfortunately, our experts had difficulties visualising the numbers of patients mentioned

in the fragments of text: since oesophageal cancer has a low incidence in The Netherlands,

visualising 100 patients with a certain combination of characteristics turned out to be a

demanding, if not impossible, task.

The use of a probability scale as discussed, is a direct method for probability elicitation

in the sense that experts are asked to give their assessments directly as numbers or visual

proportions. With an indirect elicitation method, experts are asked not for a number or

proportion but for a sequence of binary decisions from which their assessment is inferred.

The use of an indirect elicitation method forestalls the need of explicitly indicating

numbers and has been reported to work well for experts who do not have clear intuitions

about numerical probabilities. Indirect elicitation methods are, for example, the gamble-

like methods based upon the standard reference gamble principle [12]. The basic idea is to

present an expert with a gamble, that is, a choice between two lotteries. For one of the

lotteries, the probability of winning corresponds with the probability to be assessed.

The probability of winning for the other lottery, termed the reference probability, is set by

the elicitor. Given this explicitly set probability, the expert is asked to choose between the

two lotteries. Based upon the expert’s decisions, the reference probability is varied

stepwise until the expert is indifferent as to which of the two lotteries is chosen. The

indifference indicates that the expert judges the probability of winning to be the same for

both lotteries, from which the probability to be assessed is readily inferred. Underlying the

idea of a reference gamble is the assumption that people, when confronted with a gamble,

try to maximise expected pay-off.

Fig. 3 shows a gamble that we used for eliciting the probabilities for our oesophagus

network: the gamble pertains to the probability that an arbitrary patient with oesophageal

cancer has a primary tumour of more than 10 cm in length. In the lower lottery, the elicitor
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varied the reference probability p until the domain experts were indifferent between the

two lotteries. The probability p0 thus found equalled the experts’ assessment for the

probability of a tumour with a length of more than 10 cm. Unfortunately, the use of

standard reference gambles with our experts was associated with several difficulties. The

experts indicated that they often felt that the lotteries were very hard to conceive because of

the rare or unethical situations they represented. In fact, gambling appeared to be rather

demanding on the experts. Apparently, it deviated substantially from their usual cognitive

processes.

Our experiences with the standard methods, from the field of decision analysis, for the

elicitation of judgemental probabilities were thus unexpectedly negative. Many of the

difficulties we encountered can probably be attributed to our experts’ inexperience with

assessing probabilities. In fact, we feel that a more extensive training would have helped to

forestall at least some of these problems. Notwithstanding, we noticed that using the more

involved methods especially tended to take considerable time with every single assess-

ment. In fact, it became apparent that, even with extensive training, the elicitation of the

several thousands of conditional probabilities required for our network with these methods

was infeasible.

4. A method for effective probability elicitation

For the oesophagus network, several thousands of conditional probabilities had to be

assessed. As we have argued in the previous section, these probabilities had to be elicited

from the domain experts involved in the construction of the network. Experiences with

well-known methods for probability elicitation had shown that assessing all probabilities

required was not an easy task. Our negative experiences in fact induced us to design a new

method for eliciting probabilities from domain experts that would enable us to elicit a large

number of conditional probabilities in reasonable time.

Our new method for probability elicitation from domain experts combines several

different ideas. Although some of these ideas were presented before by others, we

combined and enhanced them to yield a novel elicitation method. The two most important

ingredients of our method are the presentation format for the probabilities to be assessed

Fig. 3. An example gamble, used for elicitation of the probability of a tumour of more than 10 cm in length.
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and the response scale. In communicating a conditional probability to our domain experts,

we do not use mathematical notation, but instead transcribe the requested probability by a

fragment of text. For the oesophagus network, for example, the probability that a patient’s

primary tumour invades the muscularis propria of the oesophageal wall given that the

tumour is polypoid in shape and less than 5 cm in length, is presented as

Consider a patient with a polypoid oesophageal tumour; the tumour has a length of

less than 5 cm. How likely is it that this tumour invades the muscularis propria (T2) of

the wall of the patient’s oesophagus, but not beyond?

The fragments of text are stated in terms of likelihood rather than in terms of frequency

to prevent difficulties with the assessment of conditional probabilities for which the

conditioning context is quite rare. To support the experts in their assessment task, a

response scale is depicted to the right of the text fragment. The scale in essence is a vertical

line. Indicated on this line are several numerical and verbal anchors. The line is divided into

six, unequally spaced, segments by the seven verbal anchors ‘‘(almost) certain’’, ‘‘prob-

able’’, ‘‘expected’’, ‘‘fifty-fifty’’, ‘‘uncertain’’, ‘‘improbable’’, and ‘‘(almost) impossible’’;

on the right side of the line are the numbers 100, 85, 75, 50, 25, 15, and 0. We will presently

comment on these anchors. The intended use of our scale is similar to that of the more

standard numerical probability scale, that is, experts are asked to unambiguously indicate

their assessment for a specific probability on the line of the scale.

The fragments of text, with the associated response scales, are grouped in such a way that

the probabilities from the same conditional distribution can be taken into consideration

simultaneously: they are presented in groups of two or three per page. If necessary, the

various groups pertaining to the same distribution are depicted on consecutive single-sided

sheets of paper so that they can be spread out on the table in front of the experts. An

example is shown in Fig. 4. Explicitly grouping related probabilities has the advantage of

reducing the number of times a mental switch of conditioning context is required of the

domain experts during the elicitation. It also allows experts to check the coherence of their

judgements.

The verbal–numerical response scale used with our method is the result of a study into

the use of verbal probability expressions in dealing with uncertainty [11]. Research on

human probability judgement has indicated that most people in most situations feel more at

ease with verbal expressions than with numerical expressions of probability. Physicians

more in specific, tend to express and process probabilities in verbal rather than numerical

form. They rarely reason using numerical probabilities, and if they do, they tend to make

errors [9]. Verbal probability expressions are considered to be more natural, easier to

understand and communicate, and better suited to convey the vagueness of beliefs than

numerical probabilities [14]. Yet, the interpretation of verbally expressed probabilities has

been found to be more dependent on the context in which they are framed [2]. Also, the

interpretation has been found to lead to greater within and between subject variability [3].

As there are arguments for and against the use of words and numbers, we decided to

investigate the possibility of developing a scale that would support both modes of

probability expression by providing verbal as well as numerical anchors. Such a double

scale would allow domain experts to use either the numerical or the verbal anchors to guide

them in their assessment task, the mode depending on the context and their preference.
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Fig. 4. Two pages with the figures pertaining to the conditional probability distribution for Invasion, given a polypoid oesophageal tumour with a length of less than

5 cm.
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To develop a scale of verbal probability expressions to be used with numbers, we

undertook four separate studies. In the first study, we asked subjects to provide a list of

the verbal probability expressions they commonly use. This study yielded seven most

frequently used expressions, being (translated from the corresponding Dutch expressions)

‘‘certain’’, ‘‘probable’’, ‘‘expected’’, ‘‘fifty-fifty’’, ‘‘uncertain’’, ‘‘improbable’’, and ‘‘impos-

sible’’. In the second study, (other) subjects were asked to rank order these expressions. The

results from this study indicated that the seven verbal probability expressions had a

considerably stable rank ordering between subjects. To establish the relative distances

between the seven expressions, in the third study, subjects were asked to compare each pair

of expressions and assess the degree to which the two expressions conveyed the same

probability. The distances generated in this study were used to project the verbal probability

expressions onto a numerical scale. The expression ‘‘certain’’ was fixed at 100% and

‘‘impossible’’ was fixed at a 0% probability. The expression ‘‘probable’’ was calculated to

be equivalent to approximately 85%, and ‘‘expected’’ to approximately 75%; ‘‘fifty-fifty’’

was calculated to be equal to 50%, ‘‘uncertain’’ to approximately 25%, and ‘‘improbable’’ to

approximately 15%. Using this projection of verbal probability expressions onto numbers,

the fourth study focused on the question whether decisions were influenced by the mode in

which probability information was presented. The results indicated that a difference in

presentation mode, that is, either verbal or numerical, did not affect our subjects’ decisions.

We would like to note that the four studies included subjects as well as examples from the

field of medicine. For further details of the studies, we refer the reader to [11]. Since the

studies had not been designed to generate verbal to numerical translations or vice versa,

the verbal probability expressions could not be taken to be translations of the numerical

probabilities just like that. We therefore decided to position the verbal anchors close by

rather than simply beside the numerical anchors. We further decided to add the moderator

‘‘(almost)’’ to the extreme verbal expressions to indicate the positions of very small and very

large probabilities. The resulting response scale is reproduced in Fig. 5.

As our new method was designed for the elicitation of a large number of probabilities

from domain experts in little time, the probabilities obtained with the method are likely to

be inaccurate and may require further fine-tuning. We therefore envision the use of our

elicitation method as the first step of an elicitation procedure in which, alternately,

sensitivity analyses are performed and probability assessments are refined. The basic

idea of performing a sensitivity analysis of a probabilistic network is to systematically vary

the assessments for the network’s conditional probabilities and study the effects on its

behaviour. Some probabilities are likely to show a considerable effect, while others will

reveal hardly any influence. For the less influential probabilities, the initial assessments

may suffice. For the more influential probabilities, however, refinement may be worth-

while. For example, more elaborate elicitation methods may be applied to obtain more

accurate assessments for these probabilities. Given the limited and costly time of experts, it

is opportune to be able to thus focus on the probabilities to which the network’s behaviour

shows the highest sensitivity. Iteratively performing sensitivity analyses and refining

probabilities is pursued until satisfactory behaviour of the network is obtained, until

the costs of further elicitation outweigh the benefits of higher accuracy, or until higher

accuracy can no longer be attained due to lack of knowledge. For further information about

the overall elicitation procedure envisioned, we refer the reader to [4].
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5. Experiences with the elicitation method

We used our newly designed method for eliciting probabilities from domain experts in

the construction of the quantitative part of the oesophagus network. In this section, we

describe our experiences with the method. More specifically, we comment upon the

observations made by our domain experts.

5.1. Using the method in practice

In the first interview with the two domain experts, we informed them of the basic ideas

underlying the new elicitation method. The general format of the fragments of text was

demonstrated and the intended use of the response scale was detailed. We explained the

way in which the fragments of text and associated scales were grouped, and instructed the

experts to take the probabilities from the same conditional probability distribution into

consideration simultaneously by spreading out on the table in front of them the various

sheets of paper pertaining to these probabilities. Finally, we explained to the experts that

their probability assessments would be subjected to an analysis that would reveal the

sensitivity of the network’s behaviour to these assessments, and that, if necessary, we

would try to refine the most influential ones later on. The basic idea of sensitivity analysis

was explained to reassure the experts that rough assessments for the requested conditional

probabilities would suffice at this stage in the construction of the network.

The elicitation of all probabilities required for the part of the oesophagus network

outlined in Section 2, took five interviews of approximately two hours each. Each interview

Fig. 5. The response scale with both verbal and numerical anchors.
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focused on a small coherent part of the network. During the interviews, the two experts

jointly assessed the required probabilities. They discussed the situations described in the

fragments of text and their likelihood, correcting and refining one another, before marking

the response scale with their mutually agreed assessment. Prior to each interview, the

elicitors spent some 10 hours preparing the fragments of text and associated response

scales to be presented to the experts; after the interview, it took the elicitors 2–5 hours to

process the obtained information. The new method allowed the domain experts to give their

assessments at a rate of 150–175 probabilities per hour.

In the last interview, the domain experts were asked to evaluate the use of our new

method of probability elicitation. For this purpose, we prepared a written evaluation form

so as not to influence their observations. The domain experts were asked whether or not the

different ingredients in the method had helped them in the assessment task. Also, we asked

for their opinion of the specific anchors used on the response scale. The experts indicated

that, overall, they had felt very comfortable with the method. They found the method most

effective and much easier to use than any method for probability elicitation they had been

subjected to before. Before commenting on their observations in more detail, we would like

to point out that during the earlier, unsuccessful elicitation efforts, our domain experts had

acquired some proficiency in expressing their knowledge and personal clinical experience

in probabilities. As a result, they now appeared less daunted by the assessment task.

We recall from Section 4 that one of the ideas underlying our elicitation method is the

use of a fragment of text, stated in terms of likelihood, to communicate a conditional

probability to be assessed to the domain experts. During the interviews the elicitors had

noticed that these fragments of text worked very well, as additional explanation of the

requested probabilities was seldom necessary. The two domain experts confirmed this

observation and indicated that they had had no difficulties understanding the described

probabilities. The elicitors had further noted that the characteristics described in the

fragments of text served to call to mind specific patients or cases from scientific papers.

Although the experts could not visualise a large group of patients with certain specific

characteristics, their extensive clinical experience with cancer patients in general and their

knowledge of cancer growth, along with information recalled from literature, enabled them

to provide the required assessments without much difficulty.

With respect to the response scale used, the domain experts indicated that they had found

the presence of both numerical and verbal anchors quite helpful. They mentioned that,

when thinking about a probability to be assessed, they had used words as well as numbers.

Depending on how familiar they felt with the characteristics described in the fragment of

text, they preferred using the verbal or numerical expressions on the scale to guide them in

their assessment task. For example, the more uncertain they were about the probability to

be assessed, the more they were inclined to think in terms of words. The verbal anchors of

the scale then helped them to determine the position that they felt expressed the assessment

they had in mind. The elicitors noticed in the consecutive interviews that it became

progressively easier for the experts to express their assessments as numbers. In the first few

interviews they often stated a verbal expression and then encircled the corresponding

anchor or put a mark close to the anchor on the scale. In the later interviews, they

considered the entire response scale, marked the scale with their assessment, and subse-

quently wrote a number next to their mark.
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The two domain experts further mentioned that they had felt comfortable with the specific

verbal anchors used on the response scale. They indicated, however, that the expression

‘‘impossible’’ is hardly ever used in oncology. Especially in their communication with

patients, oncologists seem to prefer the more cautious expression ‘‘improbable’’ to refer to

almost impossible events. As a consequence, our domain experts tended to interpret the

expression ‘‘improbable’’ as a 5% or even smaller probability rather than as a probability of

around 15%. However, since the response scale provided both words and numbers, they had

no difficulty indicating what they meant to express. The experts also mentioned that an extra

anchor for 40% would have been useful. We would like to add to these observations that our

response scale hardly accommodates for indicating rather extreme probability assessments,

that is, assessments very close to 0 or 100%. There are no anchors close to 0 and 100%

probability on the scale since only very few subjects in our study had generated rather

extreme verbal expressions. The domain experts never seemed to want to express such

assessments either. When asked about this, they confirmed the correctness of our observation.

Another ingredient of our method is the grouping of the fragments of text in such a way

that the probabilities from the same conditional distribution can be taken into consideration

simultaneously. As mentioned before, the domain experts were advised to spread out on the

table in front of them the various sheets of paper pertaining to these probabilities. They

were encouraged to focus first on the probabilities from a conditional distribution that were

the easiest to assess, and then to use these as anchors for distributing the remaining

probability mass over the more difficult ones. This turned out to be a most effective

heuristic for eliciting assessments for variables with more than two or three values.

Especially in the later interviews, the domain experts were able to verify the coherence of

their assessments without help and adjusted them whenever they thought fit.

5.2. The use of trends

During the elicitation interviews with our domain experts, the concept of trend emerged.

We use the term ‘trend’ to denote a fixed relation between two conditional probability

distributions. To illustrate the concept of trend, we address the variable Invasion from the

oesophagus network that models the depth of invasion of the primary tumour into the wall

of a patient’s oesophagus. This variable can take one of the values T1, T2, T3, and T4; the

higher the number indicated in the value, the deeper the tumour has invaded into the

oesophageal wall and the worse the prognosis for the patient is. For the variable Invasion,

several conditional probabilities were required, pertaining to different shapes and varying

lengths of the primary tumour. Upon assessing these probabilities, the domain experts

started with the probabilities for the depth of invasion of a polypoid oesophageal tumour

with a length of less than 5 cm. They subsequently indicated that patients with ulcerating

tumours of this length were 10% worse off with regard to the depth of invasion of the

primary tumour than patients with similar polypoid tumours. They thus explicitly related

the two conditional probability distributions to one another. As trends appeared to be a

quite natural way of expressing probabilistic information, we encouraged the experts to

provide trends wherever appropriate.

We designed a generic method for dealing, in an intuitively appealing and mathema-

tically sound way, with the trends provided by our domain experts. The method is best
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explained in terms of the example trend given. Suppose that, given a polypoid oesophageal

tumour of less than 5 cm in length, the probabilities for the four different values of the

variable Invasion are assessed at x1, x2, x3, and x4—xi being the probability assessment for

the value Ti. The probabilities xi, i ¼ 1; . . . ; 4, constitute the anchor distribution that is to

be adjusted by the indicated trend to compute the probabilities for the related distribution.

After close consultation with our domain experts, we interpreted the specified trend as

stating that 10% of the patients with a polypoid tumour of less than 5 cm with Ti for its

depth of invasion would have had Tiþ 1 for the depth of invasion if the tumour were an

ulcerating tumour, i ¼ 1; . . . ; 3. The basic idea of the interpretation of the trend is depicted

in Fig. 6. For the probability assessments y1; . . . ; y4 for the different values of the variable

Invasion given an ulcerating tumour of less than 5 cm, we now define

y1  x1 	 0:10x1

y2  x2 	 0:10x2 þ 0:10x1

y3  x3 	 0:10x3 þ 0:10x2

y4  x4 þ 0:10x3

It is readily verified that y1; . . . ; y4 lie between 0 and 1, and together sum up to 1. In

addition, it will be evident that this method of handling trends can easily be generalised to

variables with an arbitrary number of values and to trends specifying other percentages and

other directions of adjustment.

6. A preliminary evaluation study

To gain insight in the quality of the probabilities obtained with our new elicitation

method, we conducted a preliminary evaluation study of the oesophagus network. In this

study, we used data from patients from the Antoni van Leeuwenhoekhuis diagnosed with

oesophageal cancer. In Section 6.1, we reflect on the probabilities obtained; we compare

them against the available data in Section 6.2. In Section 6.3, we focus on the elicited

probabilities in the context of the network. For this purpose, we entered, for each patient,

all diagnostic symptoms and test results available and computed the most likely stage of the

patient’s cancer from the network; we subsequently compared the computed stage against

the stage recorded in the data.

6.1. The obtained probabilities

The part of the oesophagus network outlined in Section 2, includes 39 statistical

variables. For these variables, 900 probabilities were required, constituting a total of

Fig. 6. A schematic representation of handling trends.
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267 (conditional) probability distributions. The number of probabilities to be assessed per

variable ranged between 3 and 144.

Many of the assessments that we obtained from our domain experts, equalled either 0 or

1: the experts gave 312 zeroes and 100 ones, together amounting to 46% of the network’s

probabilities. We would like to note that 144 of these probabilities pertain to the

deterministic variable that models the cancer’s stage, that is, 35% of the zeroes and ones

serve to constitute the conditional probability distributions for a single variable. The

domain experts further specified many probabilities on the lower half of the response scale:

72% of their assessments were less than or equal to 0.50. For 12 of the 39 variables in the

network, the domain experts indicated trends, as described in the previous section. Using

these trends, 241 probabilities were computed from other assessments. Of the total of 900

probabilities, therefore, 73% were assessed directly and 27% indirectly by adjustment of

other probabilities. The indirect assessments pertained to 65 different conditional prob-

ability distributions. The trends indicated by the domain experts ranged from equal to the

anchor distribution to a 20% adjustment, in either direction, from this distribution.

To study the overall distribution of the assessments obtained with our elicitation method,

we performed a frequency count over the network’s quantitative part. Fig. 7(a) summarises

the frequencies of all assessments obtained, be it directly or indirectly; we restricted the

figure to the assessments that are not equal to zero or one to enhance discernibility of the

other frequency counts. Fig. 7(b) shows the frequencies of the assessments that were

specified directly by the domain experts; once again we excluded zero and one from the

figure.

We recall from Section 4 that the response scale used with our elicitation method

specifies seven numerical anchors: 0, 15, 25, 50, 75, 85, and 100, or, alternatively, 0, 0.15,

0.25, 0.50, 0.75, 0.85, and 1.00. By comparing our experts’ assessments with these anchors,

we find that 54% of all assessments and 63% of all direct assessments coincide with

anchors. Focusing on the non-extreme assessments, that is, excluding 0 and 1.00, we find

that 16% of all assessments and 20% of the direct assessments are anchors. The frequency

counts further reveal that among the 10 most often specified assessments, there are four

anchors from the response scale: 0, 0.15, 0.85, and 1.00. Among the 10 most frequently

specified direct assessments, there are even six anchors: 0, 0.15, 0.25, 0.75, 0.85, and 1.00.

These findings are consistent with the often reported observation that the external stimulus

used, in our case the response scale, plays a dominant role in the elicitation process. If

anchors are presented, assessors are more inclined to use these than place their marks in

between anchors, thereby possibly introducing a bias towards the anchors. Our findings

suggest that such a bias may be present in the assessments that we obtained for the

oesophagus network.

To conclude our discussion of the probabilities obtained, we observe that, while the

experts indicated that an extra anchor for 0.40 would have been helpful, they gave this

assessment only seven times.

6.2. A comparison against the data

As described in Section 3, we had not been able to compose a large and rich enough data

collection to allow for reliable assessment of the probabilities required for the oesophagus

140 L.C. van der Gaag et al. / Artificial Intelligence in Medicine 25 (2002) 123–148



Fig. 7. The distribution of all assessments obtained (a), and of the assessments that were specified directly (b); 0 and 100% are excluded to enhance discernibility.
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Fig. 7. (Continued ).
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network. Our efforts to compose such a collection, however, had resulted in data from the

historical records of 156 patients diagnosed with oesophageal cancer from the Antoni van

Leeuwenhoekhuis, as outlined in Section 2. In this section, we compare the probabilities

given by our domain experts against estimates computed from these data. Before doing so,

we would like to note that the data collection does not constitute a fully independent source

of information, as the collection consists of data from patients treated by our domain

experts and their colleagues at the Antoni van Leeuwenhoekhuis. However, since the

historical records date back to between 1978 and 1985, and at that time the experts had not

been actively assessing probabilities as we are asking them to do now, it is almost

impossible that they would retrieve probability assessments for the data collection from

memory. They may, of course, remember the patients they had treated before, but not at

such a level of detail that the data would be too much dependent to render the comparison

less meaningful.

We estimated, from our data collection, as many probabilities for the oesophagus

network as possible. For only 26 of the 39 statistical variables involved, however,

probability estimates could be obtained: the remaining 13 variables were not recorded

in the data. Furthermore, for the variables that were recorded, not all probabilities required

could be estimated, as several combinations of values were missing from the data

collection. For example, the data collection did not include any patients with a non-

circular ulcerating tumour with a length of less than 5 cm: this combination of presentation

characteristics is not impossible, but merely unlikely. The data all in all provided for the

estimation of 368, or 41%, of the network’s probabilities, pertaining to 125 conditional

distributions.

To investigate whether or not the probability assessments given by our domain experts

were in the same range as the estimates obtained from the data, we computed a 95%-

confidenceinterval for each of the 368 probability estimates. The 95%-confidenceinterval

of a specific estimate is the interval in which the ‘true’ probability lies with 95% certainty.

The length of the interval thus quantifies the uncertainty in the estimate. For a probability

estimate p, its 95%-confidenceinterval was approximated as follows:

p	 1:96

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pð1	 pÞ

n

r
; pþ 1:96

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pð1	 pÞ

n

r" #
\ ½0; 1�

where n is the number of patients whose data were used in the computation of the estimate

p. From the formula it is readily seen that the larger the number of patients on which the

estimate is based, the smaller the estimate’s 95%-confidenceinterval. The confidence

intervals that we obtained for our probability estimates differed in length, due to the

varying availability of data. For example, for the estimate 0.50 for the probability of an

amount of weight loss of more than 10% in patients who are able to swallow liquid food at

best, we found a 95%-confidenceinterval of ½0:38; 0:62�, based on the data of 66 patients;

for the estimate 0.60 for the same amount of weight loss in patients who are not able to

swallow any food at all, the computed interval equalled ½0:17; 1:00�, based on the data of

just five patients. The computed confidence intervals were rather large as a result of data

sparseness; we found an average length of 0.25. For 250 of the 368 estimates, the 95%-

confidenceinterval covered the assessment that we had elicited from our experts. So, from
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the assessments that could be compared against the data, 68% were more or less similar to

the computed probability estimates.

As mentioned before, our domain experts had indicated trends for 12 statistical

variables, pertaining to 65 different conditional probability distributions. For 23 of these

65 trends, we could compare the probabilities from both the specified anchor distribution

and the distribution computed from the anchor, against probability estimates from the data.

To determine whether a specific distribution specified by the experts matched the data, we

conducted a number of w2-tests. A w2-test builds upon a specific distribution for the

difference between two probability distributions. This difference is measured as follows:

k ¼
X

xi

ðPrðxiÞ 	 bPrðxiÞÞ2bPrðxiÞ

where Pr is the observed probability distribution, that is, the distribution estimated from the

data, and bPr is the expected distribution as given by the experts; the values xi over which the

summation is performed, are the values of the statistical variable to which the two

probability distributions pertain. If the probability of k is less than or equal to 5%, then

the difference between the observed distribution and the estimated distribution is statis-

tically significant, from which we then conclude that the two distributions are not

sufficiently similar. Fig. 8 summarises the comparison results that we obtained for the

various trends.

For 15, or 65%, of the 23 trends, the anchor distribution given by the experts did not

significantly differ from the same distribution estimated from the data. For eight of these 15

trends, the probability distribution that was computed from the anchor distribution by

adjustment did not significantly differ from the same distribution estimated from the data

either. For 35% of the trends specified by the experts, therefore, both the anchor

distribution and the computed distribution closely matched the data. Of the eight trends

of which the anchor distribution given by the experts differed significantly from the

distribution estimated from the data, we found for three of them that also the computed

distribution did not match the data. For 13% of the trends, therefore, both the anchor

distribution and the computed distribution differed significantly from the distributions

estimated from the data.

For the eight trends of which both the anchor distribution and the computed distribution

matched the data, we may conclude that the direction as well as the percentage of

adjustment that were indicated by our domain experts were closely reflected in the data

Fig. 8. The number of matching anchor and computed distributions.
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collection. For the three trends of which both the anchor distribution and the computed

distribution did not match the data, we investigated whether or not the specified trend itself

was reflected in the data collection. For this purpose, we applied the trend, not to the anchor

distribution given by the experts, but to the same distribution estimated from the data. For

one of these trends, the thus computed probability distribution closely matched the data.

We conclude that for a total of nine trends, that is, for 39% of the trends specified by the

domain experts, the indicated direction and percentage of adjustment were reflected in the

data collection. Alternatively, 61% of the trends appeared not to be present in the data.

Upon examining the 14 apparently mismatching trends, we found that for four of them a

related trend seemed to be present in the data collection: for either an opposite direction or

a weaker percentage of adjustment, the computed distribution matched the data. We would

like to note that for many of the trends given by our experts only very few patient data were

available as a basis for comparison. As a consequence, we feel that no conclusive

statements with regard to the specified trends can be made.

6.3. The quality of the network

To conclude our preliminary evaluation of the elicited probabilities, we studied the

performance of the oesophagus network with the available patient data. The study again

focused on the part of the network that provides for establishing the stage of a patient’s

cancer; we recall that this stage can be either I, IIA, IIB, III, IVA, or IVB, in the order of

progressive disease.

In a first study of our network, we entered, for each patient from the data collection, all

diagnostic symptoms and test results available. We then computed the most likely stage of

the patient’s cancer from the network and compared it against the stage recorded in the

data. Fig. 9 shows the results from this first study. For 80 of the 156 patients, the stage of the

cancer recorded in the data matched the stage that was computed from the network to have

the highest probability. Assuming that the stages recorded in the data are correct, we

conclude that the network established the correct stage for 51% of the patients. We would

like to note that it is not uncommon to find a percentage in this range in initial evaluations

of knowledge-based systems [1].

In trying to identify the reasons for the network’s relatively poor performance, we

carefully examined the patient data. In doing so, we identified three major problems. For 10

patients, the stage recorded in the data was acknowledged by the domain experts to be

incorrect on retrospection. Various other anomalies in the data constituted the second

problem. For example, for some patients a deeper invasion of the primary tumour into the

oesophageal wall was found during surgery than conjectured from endosonographic

findings. For these patients, the pre-surgical findings and the post-surgical stage were

recorded in the data. Because only the (pre-surgical) findings had been entered, the network

had yielded a stage different from the recorded one. The third major problem was found in

the way that findings had been entered into the patients’ medical records. Often no

distinction was made between facts and findings from diagnostic tests. For example, for

many patients the medical record stated the presence or absence of lymphatic metastases

near the truncus coeliacus without indicating how this fact had been established. Without

explicitly stated test results, the network could not establish the presence or absence of
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these metastases, which often resulted in an incorrect stage. The network so far included a

single diagnostic test for establishing the presence or absence of metastases near the

truncus coeliacus. This diagnostic test, a laparoscopic procedure, is rather invasive and has

only recently been introduced into clinical practice. As it is very unlikely that this test had

been performed in the majority of the patients from our data collection, we concluded that

some variables modelling diagnostic tests were missing from our network.

Building upon the aforementioned observations, we decided to conduct a second study

of the oesophagus network. For this purpose, we corrected the erroneous stages and the

other anomalies in the data, that is, as far as they had been identified by our experts. As we

carefully examined and, if necessary, corrected the data of every single patient regardless

of whether or not the network had established the correct stage, we felt that the results from

the first study would not bias the results of this second study. For the second study, we

extended the network with three extra statistical variables. These variables model two

additional diagnostic tests for establishing the presence or absence of metastases in the

lymph nodes near the truncus coeliacus and one test for establishing the presence or

absence of lymphatic metastases in the neck. We entered for each patient the available

symptoms and test results, as before. If no diagnostic tests were specified explicitly for

facts with regard to lymphatic metastases in the neck or near the truncus coeliacus, we

entered these facts as test results for the appropriate newly included variables. In addition,

we entered for each patient the facts stated in the data for which an indication of the test

performed was missing; on average, 0.4 additional facts were entered per patient. The

overall results of the second study are shown in Fig. 10.

The figure reveals that for 132 of the 156 patients, the stage of the cancer as recorded in

the (modified) data matched the stage computed from the network. Again assuming that the

stages recorded in the data are correct, the network now established the correct stage for

85% of the patients.

Fig. 9. The results from the first study.

146 L.C. van der Gaag et al. / Artificial Intelligence in Medicine 25 (2002) 123–148



7. Concluding observations

With the help of two experts in gastrointestinal oncology from The Netherlands Cancer

Institute, Antoni van Leeuwenhoekhuis, a decision-support system is being developed for

patient-specific therapy selection for oesophageal cancer. The kernel of the system is a

probabilistic network that describes the presentation characteristics of a tumour of the

oesophagus and the pathophysiological processes of its invasion and metastasis; in

addition, it describes the possible effects of the available treatment alternatives. In the

construction of our network, we found that probability elicitation can be a major obstacle.

Building upon negative experiences with existing methods, we designed a new method for

eliciting probabilities from domain experts that allows for the elicitation of large numbers

of probabilities in reasonable time. Our elicitation method combines several ideas, among

which are the ideas of transcribing probabilities as fragments of text and of using a

response scale with both numerical and verbal anchors. We used our new elicitation

method for obtaining the probabilities required for a coherent and self-contained part of the

oesophagus network. Our domain experts indicated that they found the method much easier

to use than any method for probability elicitation they had been subjected to before.

Moreover, the method allowed the domain experts to give their assessments at a rate of over

150 probabilities per hour. So far our response scale has only been used by the two experts

involved in the construction of the oesophagus network. To establish whether our scale

would be helpful to other experts in other settings as well, we are currently conducting a

comprehensive study into its usability with a large number of subjects with different

backgrounds. Preliminary results suggest that our verbal–numerical scale improves the

assessment process when compared against the more conventional numerical probability

scale.

To gain some insight in the quality of the probabilities obtained with our new elicitation

method, we conducted a preliminary evaluation study of the oesophagus network. After

Fig. 10. The results from the second evaluation.
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correcting various anomalies in the data, we found that a correct stage was established by

the network for 85% of the patients. Given that the probabilities used are rough initial

assessments and that the patient data require further cleaning up, the results from this

preliminary study are quite encouraging. Before any conclusive statements about the

quality of the probabilities can be made, however, more extensive evaluation studies of our

network are required.

For the construction of the oesophagus network, our newly designed elicitation method

meant a major breakthrough. Prior to the use of our method, we had spent over a year

experimenting, on and off, with other methods for probability elicitation, without success.

Using our elicitation method, the probabilities for a major part of the oesophagus network

were elicited in reasonable time. Our method seems to us to be well suited for eliciting the

large number of probabilities that are typically required for a realistic probabilistic

network. Although our method tends to require considerable time from the elicitors for

preparing for the interviews with the experts, we feel that the ease with which probabilities

are subsequently elicited makes this time well spent.
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