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Bacterial alkaline phosphatases (APases) are important enzymes in
organophosphate utilization in the ocean. The subcellular local-
ization of APases has significant ecological implications for marine
biota but is largely unknown. The extensive metagenomic se-
quence databases from the Global Ocean Sampling Expedition
provide an opportunity to address this question. A bioinformatics
pipeline was developed to identify marine bacterial APases from
the metagenomic databases, and a consensus classification algo-
rithm was designed to predict their subcellular localizations. We
identified 3,733 bacterial APase sequences (including PhoA, PhoD,
and PhoX) and found that cytoplasmic (41%) and extracellular
(30%) APases exceed their periplasmic (17%), outer membrane
(12%), and inner membrane (0.9%) counterparts. The unexpect-
edly high abundance of cytoplasmic APases suggests that the
transport and intracellular hydrolysis of small organophosphate
molecules is an important mechanism for bacterial acquisition of
phosphorus (P) in the surface ocean. On average, each marine
bacterium possessed at least one suite of uptake of glycerol
phosphate (ugp) genes (e.g., ugpA, ugpB, ugpC, ugpE) for dissolved
organic phosphorus (DOP) transport, but only half of them had ugpQ,
which hydrolyzes transported DOP, indicating that cytoplasmic
APases play a role in hydrolyzing transported DOP. The most abun-
dant heterotrophic marine bacteria, a- and y-Proteobacteria, might
hydrolyze DOP outside the cytoplasmic membrane, but the former
could also transport and hydrolyze DOP in the cytoplasm. The abun-
dant extracellular APases could provide bioavailable P for organisms
that cannot directly access organophosphates, and thereby increase
marine biological productivity and diversity.
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hosphorus (P) is an essential element for life, and P cycling

is intimately linked to carbon and nitrogen dynamics in the
ocean (1). Although inorganic phosphate (P;) is the preferred P
source for microbial growth (2), it frequently becomes depleted
in surface waters of many oceanic regions (2, 3). Dissolved
organic phosphorus (DOP) dominates the total dissolved P pool
in the surface ocean (4). Thus, the ability to use the DOP pool
would be ecologically advantageous for marine microorganisms.

Alkaline phosphatases (APases) occur in a broad diversity of
microorganisms and are important in the utilization of phos-
phoesters, one of the most abundant groups of DOP compounds
in the ocean (5). To date, at least 3 prokaryotic APase gene
families have been recognized (i.e., PhoA, PhoD, PhoX). They
differ in substrate specificity and requirements of specific metal
ions for their activities [supporting information (SI) Table S1].
Many marine microorganisms use APase enzymes to release P;
from phosphoesters, and thereby fulfill their P requirement for
growth and reproduction (6).

APases have been reported primarily to be periplasmic in
Gram-negative bacteria (7-10), but they also occur on the cell
surface and extracellularly (11, 12). Because of their critical
ecological role in organic P processing, efforts have been made
to distinguish periplasmic and cell surface APase activities in
marine bacteria (7). Quantification of the subcellular localiza-
tions of APases would provide valuable insights about the
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ecology of marine bacteria and enhance our understanding of
the marine P cycle.

The Global Ocean Sampling (GOS) metagenomic database
(13) provides an opportunity to investigate the distribution
patterns of subcellular localizations of APases in the marine
bacterial community. In this study, we developed a bioinformat-
ics pipeline to identify APase peptide sequences and designed an
algorithm to predict their subcellular localizations. The ecolog-
ical and biogeochemical significance of our findings is discussed.

Results and Discussion

APase Distribution in World Ocean. A total of 935 PhoA, 887 PhoX,
and 1,911 PhoD homologs were identified in this survey of GOS
sampling sites. Normalizing APases to recA, a single-copy gene
(14), indicated 0.50 and 0.32 APase per genome in the open
ocean and coastal waters. This is consistent with previous
observations in isolates in which 63% of open ocean bacterial
isolates expressed APase compared with only 11-53% of coastal
isolates (15, 16).

MEtaGenome Analyzer (MEGAN) (17) analysis binned the
majority of APases as uncharacterized taxonomic groups (Fig. 1).
This is in contrast to species distribution data, in which only 16.3%
of the 16S rRNA was attributed to unclassified Proteobacteria and
other bacteria (13). The substantial amount of unclassified APases
indicated that APases in marine bacteria were highly diverged from
their counterparts in characterized bacteria. Although «-Pro-
teobacteria are more abundant than y-Proteobacteria in the GOS
samples (13), the latter made a greater contribution to the APase
gene pool (Fig. 1). Planctomycetes accounted for 0.1% of the
bacteria in the GOS samples, but they appeared to be an important
source of APases (Fig. 1). In contrast, few characterized APases
were affiliated with Gram-positive bacteria (Fig. 1), which represent
12% of bacteria in the GOS samples (13). Alteromonadales, Burk-
holderiales, and Rhodobacterales were consistently represented in all
three APase families, whereas Planctomycetes, Bacteroidetes, and
Cyanobacteria were overrepresented in PhoD, PhoA, and PhoX,
respectively (Fig. 1). All six phylotypes were well represented in
cytoplasmic, periplasmic, and extracellular APases (Fig. 1).

Examining the distribution of the individual APase families in
the 46 open ocean and coastal water samples (Dataset S1), the
mean numbers of PhoA and PhoX per genome were not
significantly different (¢ test, P = 0.09), whereas the mean
number of PhoD per genome was significantly greater than the
mean number of either PhoA or PhoX per genome (¢ test, P <
107¢ in either case). The mean number of each APase type per
genome was greater in the open ocean than in coastal waters, but
these differences were not significant (¢ test, P > 0.05). Strong
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Taxonomic distribution of APase genes recovered from the GOS metagenomic database. APases were sorted by family type and by subcellular

localizations. The chart size indicates the relative abundance of APases, and the number of genes is shown. The y-Proteobacteria category does not include
Alteromonadales, which is shown separately. The a-Proteobacteria category does not include Rhodobacterales, which is shown separately. Proteobacteria only

include those APase genes that cannot be assigned to any known phylotypes within Proteobacteria.

correlations were found between the number of PhoA, PhoD,
and PhoX, respectively, and the total number of sequences
sampled (r = 0.94, 0.91, and 0.92, respectively) (Dataset S1),
indicating that each APase type is uniformly distributed across
a variety of open ocean and coastal waters.

A recent study showed that PhoX is more abundant in the
ocean than previously considered (18). We observed that PhoD
is even more abundant than PhoX across a wide variety of marine
habitats. Moreover, 4 pairs of PhoX and PhoD peptides were
mapped to four paired reads and one pair of PhoX and PhoD was
mapped to a single read (Dataset S2), indicating that PhoX and
PhoD can co-occur in marine bacteria. Both PhoX and PhoD are
activated by Ca?", an abundant ion in the ocean, whereas PhoA
requires Zn?* (Table S1), which often occurs at subnanomolar
concentrations (18, 19). The replacement of Zn?* with Ca?*
could be an important factor in the selection of PhoX and PhoD
over PhoA in the ocean. We applied a loose but reliable
searching criterion and identified more PhoA and PhoX ho-
mologs than previously shown (18). The abundant nature of
PhoD genes suggests that they may play an important role in
organophosphate hydrolysis in the surface oceans.

We then examined the subcellular localization of the hydro-
lysis of organophosphates. The MetaP algorithm was applied to
the GOS datasets to sort APase sequences by their subcellular
localizations. In total, there were 1,518 cytoplasmic, 641
periplasmic, 1,100 extracellular, 439 outer membrane, and 35
inner membrane APases. The mean number of cytoplasmic
APases per cell across the open ocean and coastal waters was
significantly greater than that of any other localization type per
cell (¢ test, P < 0.001 in each case). The mean number of
extracellular APases per cell was slightly greater than the mean
number of the ectoenzymatic APases per cell, but this difference
was not significant (¢ test, P = 0.50). Our finding of more
periplasmic than outer membrane APases per cell is consistent
with experimental evidence showing that more APase activity
was in the periplasm than in the cell surface (7), but this
difference was not significant (¢ test, P = 0.28). No significant
differences were found between the mean number of each
localization type per genome in the open ocean and in coastal
waters (¢ test, P > 0.05). There was a significant correlation
between the number of cytoplasmic APases and the total
number of sequences sampled from the open ocean and coastal
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waters (r = 0.81). The same pattern was found for periplasmic
and extracellular APases (r = 0.93 and 0.94, respectively).
Membrane proteins were not included in the correlation analysis
because of their low abundance. This indicates that the subcel-
lular distribution of APases is generally homogeneous between
the open ocean and coastal waters.

Examining individual APase families revealed different pat-
terns in their subcellular localization. In both PhoA and PhoD,
cytoplasmic proteins dominate over other proteins (one-sample
proportion test, P < 0.05), whereas extracellular proteins com-
prised the majority of PhoX (one-sample proportion test, P <
0.05) (Fig. 2). The numbers of periplasmic proteins in both PhoA
and PhoX were greater than in outer membrane proteins,
although the inverse was observed for PhoD (Fig. 2). These
patterns indicate PhoA, PhoD, and PhoX could be employed in
different ecological strategies for using organophosphate in
P-depleted surface waters.
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Fig. 2. Subcellular localization distributions of APases recovered from the
GOS metagenomic database.
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Taxonomic distribution of ugp genes recovered from the GOS metagenomic database. The chart size indicates the relative abundance of ugp genes,
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and the number of genes is shown. The y-Proteobacteria and Proteobacteria categories are the same as described for Fig. 1. The a-Proteobacteria category does
not include Rhodobacterales, Rhizobiales, and Rickettsiales, which are shown separately.

Cytoplasmic APases and Uptake of Gllycerol Phosphate System for
DOP Uptake. A substantial fraction (41%) of APases from the
GOS database was located in the cytoplasm. Although no
experimental evidence has shown the existence of cytoplasmic
APases in isolated bacteria, it is possible that a greater diversity
of APase subcellular localizations and metabolic pathways oc-
curs in the ocean, because the GOS study found that over half
of the 16S rRNA ribotypes at the species level (<97% identical)
were not reported previously (13). A substantial number of
highly diverged APases in the GOS database indicate that
APases in marine bacteria could have evolved other functions
(e.g., subcellular localizations).

Many bacteria possess the ability to take up monoesters and
diesters of glycerol phosphate directly via the uptake of glycerol
phosphate (ugp) system in P-limiting environments (20). Glyc-
erol phosphate is the diacylation product of phospholipids (20),
which are ubiquitous in bacteria and eukarya, accounting for
~15-20% of total cellular P (1). In Escherichia coli, the ugp
system consists of ugpB, ugpA, ugpE, ugpC, and ugpQ (20).
UgpB is a specific binding protein, and ugpA and ugpE are
membrane-imbedded proteins. UgpC is an ATP-binding protein
that has a strong homology with the functionally exchangeable
protein (MalK) for maltose transport (21). UgpQ is a glycerol
phosphoryl phosphodiesterase that only hydrolyzes the assimi-
lated diesters at the inner surface of the cytoplasmic membrane,
and thus is not required for glycerol phosphate transport (20).

A substantial number of ugp transporter genes were identified
in the GOS database (Table S2). Normalizing to the number of
genomes represented by the recA gene, we found that each
marine bacterial genome contained, on average, at least one
suite of the ugp transport genes (Dataset S1), indicating that the
ugp system may be prevalent in the ocean. In addition, the
number of ugp systems per genome was significantly greater than
the number of APases (sum of PhoA, PhoX, and PhoD) per
genome (¢ test, P < 10719) across the GOS open ocean and
coastal water samples, suggesting that the ugp system is more
widespread than APases and that direct transport of small
molecular DOP could be substantial in the ocean. Moreover, the
mean number of ugp transporter genes (sum of ugpA, ugpB,
ugpC, and ugpE) per genome in the open ocean was significantly
greater than that in coastal waters (¢ test, P < 0.05), suggesting
that transport of glycerol phosphate could be more substantial in
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the open ocean than in coastal waters. MEGAN analysis re-
vealed that a-Proteobacteria was the dominant phylotype in the
ugp gene pool, producing approximately half of the ugp genes,
whereas y-Proteobacteria made limited contributions (Fig. 3).
This pattern was in sharp contrast to APase taxonomic distri-
bution (Fig. 1), suggesting that these two most abundant marine
bacterial phylotypes (13) mediate DOP utilization by distinct
biological mechanisms. Likewise, Bacteroidetes and Planctomy-
cetes were important sources for APases, but they produced few
ugp transporter genes.

The function of the ugp system implies that the subcellular
localizations of its component proteins are associated with the
cytoplasmic membrane. We confirmed this hypothesis by exam-
ining ugp proteins from the GOS metagenome. Most met-
agenomic ugpA (92%) and ugpE (94%) were predicted to be
inner membrane proteins. Most ugpC (94%) and ugpQ (97%)
were cytoplasmic proteins, and periplasmic proteins comprised
the majority (72%) of ugpB (Dataset S3), suggesting that the ugp
system is linked to a transport and subsequent cytoplasmic
hydrolysis strategy. An intriguing observation was that the
number of ugpQ per genome was only about half that of the ugp
transporter gene per genome, indicating that many marine
bacteria possess ugp transporter genes but lack ugp hydrolyzer
genes. Some marine bacteria might substitute cytoplasmic
APases for ugpQ. Taxonomic binning of ugpQ and cytoplasmic
APases showed that these 2 cytoplasmic phosphoester hydro-
lyzers dominate in different taxonomic groups (Figs. 1 and 3),
which lends strong support for the occurrence of cytoplasmic
APases in marine bacteria and strengthens the hypothesis that
cytoplasmic APases play a similar role as ugpQ in hydrolyzing
transported DOP in marine bacteria. Moreover, the mean sum
of cytoplasmic APase and ugpQ per genome is significantly
smaller than the mean number of the ugp systems per genome
(¢t test, P < 10712), indicating that the identified number of
cytoplasmic APases could be a conservative estimate. Cytoplas-
mic APases are likely associated with the inner surface of the
cytoplasmic membrane and contribute to intracellular hydrolysis
of transported phosphoesters, a scenario observed for ugpQ
(20). This avoids hydrolysis of the cytoplasmic phosphoesters
that are essential for metabolism.

Ecological Implications for the Ugp System and Cytoplasmic APases.

Utilization of single or multiple phosphoester substrates by a
marine microorganism depends on 2 independent mechanisms:
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the occurrence of periplasmic or cell surface-bound phosphoes-
terases or the presence of phosphoester transporters embedded
in the cytoplasmic membrane (1). However, the relative impor-
tance of these pathways remains unknown. Few studies have
quantified the direct uptake of phosphoesters by marine bacte-
ria. Our finding of the presence of a large number of phos-
phoester transporter genes in the GOS metagenome indicates
that direct transport of dissolved phosphoesters by bacteria could
be an important mechanism of P acquisition in the ocean. A large
number of cytoplasmic APases and ugpQ suggests that intracel-
lular hydrolysis of the exogenous DOP might be significant.
However, considering the complex cellular metabolism and
regulation by internal P compounds in the cytoplasm, these
cytoplasmic APases could play a role in internal organophos-
phate hydrolysis. To support this shift in our changing perception
of how marine bacteria acquire P requires additional field and
laboratory studies regarding the intracellular fate of small phos-
phoester molecules in marine bacteria.

APase activity has been widely used as an indicator of P
limitation in bacterioplankton (16, 22). The analog substrate
4-methylumbelliferyl phosphate (MUF-P) is commonly used to
determine potential APase activity (22). Because MUF-P is not
transported across the cytoplasmic membrane, such measure-
ments cannot quantify the activity of cytoplasmic APases. The
limitation of current APase activity measurements and the
possibility of direct phosphoester uptake could potentially ex-
plain the previous observations that phosphate concentrations
and APase activity are not inversely related in some aquatic
ecosystems (23).

Phosphoesters are probably selectively transported by their
uptake systems, because membrane transporters have specificity
in substrate transport. Laboratory studies have shown that many
phosphoesters cannot be taken up without hydrolysis in the
periplasm or cell surface (24). The selective uptake of phos-
phoesters and potential subsequent intracellular dephosphory-
lation indicate that cytoplasmic APases could differ in substrate
specificity from secreted APases. The wide distribution of
bacterial cytoplasmic APases and limitations with current APase
activity measurements suggest that marine bacteria may have
even a greater role in the phosphoester utilization and the P
cycle.

Ectoenzymatic and Extracellular APases. Ectoenzymes function in
the periplasmic space and on the cell surface, whereas extracel-
lular enzymes are released from cells (22). Marine bacterial
APases are primarily considered as ectoenzymes rather than
extracellular enzymes (7, 22). However, a substantial fraction
(30%) of marine bacterial APases appears to be extracellular,
indicating that the function of extracellular APases in substrate
processing is important. This corresponds well with the results of
some laboratory and field studies showing that dissolved APase
accounts for ~30% of total APase activity (16, 25, 26). However,
the fraction of extracellular APase activity is highly variable (16,
26), and extracellular APase activity has been considered to
occur primarily as a result of grazing, viral lysis, or filtration
artifacts. Hence, it is reasonable to propose that the observed
cell-free APase activity in the ocean is a combination of signal-
targeted APases and APases released as a result of the above
factors.

Although we cannot account for the expression and kinetics of
these gene products, the subcellular locations of the enzymes
have important ecological ramifications. The hydrolytic activities
of extracellular APases and subsequent release of P; can benefit
source and neighboring cells, whereas cell-associated APases
mainly provide P; for the source cells that synthesized them.
Differences in subcellular localization can lead to a variety of
ecological relations. However, it is important to note that such
factors as diffusion and a cell’s microenvironment may influence
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the coupling of DOP hydrolysis and P; uptake regardless of
whether the enzyme is cell-associated or cell-free. The occur-
rence of extracellular APase might be important for P; utilization
by marine microorganisms lacking the enzymatic capability for
using DOP in the surface ocean.

Microorganisms are found in much greater abundance on
organic aggregates in comparison to the surrounding seawater
(27). Attached bacteria actively transform particles, gels, and
colloids (28), and even though it has been proposed that
“extracellular enzymes” are critical in the degradation of these
matrices (28), the subcellular locations of these enzymes remain
unclear. Most organic matrices are porous and can effectively
retain secreted enzymes, which, in turn, readily decompose the
organic matrices. Therefore, it would be ecologically advanta-
geous for attached bacteria to secrete extracellular enzymes. In
the GOS Expedition, attached bacteria were largely excluded
from collection in most sampling sites. Further studies should
examine the subcellular locations of APases in attached marine
bacteria.

The computational prediction of APase subcellular localiza-
tion indicates a potential mechanistic shift in our understanding
of bacterial utilization of phosphoesters; however, it is the
expression and regulation of the different APases and the DOP
transport system that are important. These studies will enhance
our understanding of oceanic P cycling and its interconnection
with carbon cycling.

Materials and Methods

Recovery of APase and Ugp Peptide Sequences from GOS Metagenomic Data-
bases. Seawater samples collected from the GOS sampling sites were filtered
(>0.1 um and <0.8 um) to concentrate marine microorganisms (13). To
recover as many homologous sequences as possible, we used 2 seed queries
obtained from 2 distantly related bacteria for each APase family (PhoA, PhoD,
and PhoX) and ugp genes (ugpA, ugpB, ugpC, ugpE, and ugpQ). The accessions
of query sequences are summarized in Table S3. We applied a position-specific
iterated BLAST (29) with an expectation value of 0.1 to recover homologous
sequences from the GOS database (30). In this step, some similar but nonho-
mologous sequences were also retrieved.

The retrieved sequences were verified using protein domain databases. We
applied a reversed position-specific BLAST (29) to search all the retrieved
sequences against a conserved domain database (CDD) (31). For each se-
quence, only the top hit known as PhoA, PhoD, and PhoX was accepted as an
APase. Another putative APase family, PhoV (32), was not used in the analysis
because their conserved domain has not been represented in a CDD. The same
rule was applied to ugp peptides. The accessions of all APases and ugp
peptides in the CDD are listed in Table S4. To identify the duplicate sequences
attributable to paired reads, each APase and ugp peptide’s J. Craig Venter
Institute (JCVI) PEP number was mapped to JCVIRead ID and Mate ID (Datasets
S2 and S3). Duplicate sequences were then assembled. All relevant informa-
tion was parsed by Perl scripts. Ten GOS samples were not included in the
analysis (Dataset S1), because organisms other than prokaryotes were col-
lected. Twenty-five open ocean samples and 21 coastal water samples were
used for statistical analyses. The open ocean samples from the Tropical South
Pacific were not included because of their small sample sizes (Dataset S1). All
statistical analyses were performed using the R statistical software package
(33). Apparent taxonomic distributions of APases were estimated by MEGAN
with the recommended parameter setting (min-score: 100, top-percent: 10%,
min-support: 2) (17).

Subcellular Localization Prediction of APases. Gram-negative bacteria domi-
nate (~90%) the marine prokaryotic community in the GOS samples (13).
Archaea are nearly absent in the GOS samples, which are surface samples (13).
Proteinsin Gram-negative bacteria have five possible subcellular localizations:
cytoplasm, inner membrane, periplasm, outer membrane, and extracellular
space. Although a variety of methods are available, for the purpose of
predicting fragmentary peptide sequences (e.g., GOS peptides) and discover-
ing unrecognized localizations of APases, only algorithms using amino acid
compositional bias are useful, such as CELLO, SUBLOC, and LOCTree.

In some cases, different algorithms make different predictions (Dataset S2).
To reconcile this discrepancy, we developed a metaalgorithm, MetaP. It works
as follows. Given a protein sequence, its localization predictions from all
independent algorithms (CELLO, SUBLOC, and LOCTree) are collected and
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transformed into a standard format using Perl scripts. In a previous metaal-
gorithm (34), different locations were regarded as independent classes and
performance-based weighted voting was used to summarize predictions.
MetaP considers the common properties shared by sorting signals targeting
neighboring subcellular locations. We used the following weighted voting to
incorporate these neighborhood relations among the subcellular locations as
well as suboptimal predictions by base algorithms.

The predicted location of MetaP for a sequence s is the one that has the
maximum sum of weighted voting for that subcellular location. The prediction
can be denoted formally as P; = arg max; Ej"’:1 P(i, j), where N is the total
number of base predictors and i is the index of a predicted subcellular
compartment: cytoplasmic (i = 1), cytoplasmic membrane (i = 2), periplasmic
(i = 3), outer membrane (i = 4), and extracellular (i = 5). P(j, j) denotes the
voting weight of the prediction(s) of the jth element predictor for compart-
ment /. It is defined as P(i, j) = SV, 2-lk=ilwy, where Mj is the number of
predictions of the jth predictor. It means that the voting weight of a prediction
by the jth predictor for compartment i depends on the offset of the index cx
of its predicted class with regard to the index i as well as its normalized
score Wy.

The performance of MetaP to predict fragmentary protein sequences was
evaluated using sets of testing sequences whose localizations were verified by
experiments. We showed that MetaP is an accurate method in predicting
cytoplasmic, periplasmic, and extracellular proteins (Table S5).

Among the three base algorithms (CELLO, SUBLOC, and LOCTree), only
CELLO can predict inner membrane and outer membrane proteins, whereas
membrane proteins must be removed from the datasets before analysis by
SUBLOC and LOCTree (35). We showed that CELLO makes accurate predictions
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for membrane proteins (Table S6). We initially applied CELLO to identify
membrane APase peptides, and the remaining nonmembrane sequences
were predicted by all base algorithms and MetaP. For ugp proteins, CELLO was
used to predict ugpA and ugpE, which are inner membrane proteins, whereas
all three base algorithms and MetaP predicted ugpB, ugpC, and ugpQ, which
are nonmembrane proteins. Duplicate sequences attributable to paired reads
were assembled before prediction. All predictions were collected (Dataset S2).
More details are provided in S/ Methods.
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S| Methods

Database Download. Bioinformatics databases were downloaded
from the web site (ftp://ftp.ncbi.nlm.nih.gov/pub/mmdb/cdd/) of
the National Center for Biotechnology Information (NCBI)
CDD in April 2009 (1). The CDD is a collection of protein
sequence models that represent protein domains conserved in
molecular evolution (1). The CDD imports various well-curated
domain collections, including Pfam-A seed alignments from the
protein families database of alignments and Hidden Markov
Models (HMMs) (Pfam), clusters of orthologous groups
(COGs), the Simple Modular Architecture Research Tool
(SMART), and Protein Clusters, and domain databases are also
established internally by the CDD research group at the NCBI
(1).

GOS metagenomic databases at Community Cyberinfrastruc-
ture for Advanced Marine Microbial Ecology (CAMERA) were
also downloaded from the web site (http://camera.calit2.net/)

2)-

Algorithm Design for Predicting Subcellular Localization of Met-
agenomic APases. Many computational algorithms have been
developed to predict the subcellular localization of proteins in
Gram-negative bacteria. These algorithms employ a variety of
supervised machine learning techniques and different informa-
tion sources to make predictions. They can be generally classified
into four types (3). One type is based on signal peptide predic-
tion, such as SignalP and Phobius. It cannot be applied to
incomplete peptides, such as metagenomic sequences. The sec-
ond type, such as Proteome Analyst, uses localization informa-
tion from well-annotated homologous sequences identified by
BLAST. It is not suitable to make discoveries of APases with
different subcellular localizations. The third type (e.g., CELLO,
SUBLOC, LOCTree) usually predicts protein localization using
features, such as amino acid/dipeptide compositional bias, phys-
icochemical properties of amino acids, and others derived from
whole protein sequences. Yet another type is a hybrid of the
above methods, such as PSORT-B. It is also not applicable
because it utilizes inappropriate modules from the initial two
types. Only the third approach is useful for the purpose of this
study.

Signal peptide-based methods, such as SignalP (4, 5), Phobius
(6), and TatP (7), have been widely used to predict protein
localizations. However, they have important limitations. They
can only predict a protein as a secretory or nonsecretory protein.
They cannot provide further information regarding the finer
locations, such as periplasm and extracellular space. Next, the
accuracy of these methods requires that the signal peptides
actually exist and are complete at the N-terminal part. Because
there is no guarantee that the N-terminal part is correctly
assembled in the GOS metagenomic sequences, the reliability of
signal peptide-based algorithms is questionable. Finally, some
secretory proteins have their signal peptide locating in the
middle part or C-terminal part or even do not possess a signal
peptide. In this case, the signal peptide-dependent methods
cannot make correct predictions. A previous study demonstrated
that Synechococcus elongatus PCC 7942 possesses an atypical
APase that does not have a cleavable signal peptide at its
N-terminal even though it is transported across the cytoplasmic
membrane and into the periplasmic space (8). We found that
both SignalP and Phobius erroneously predict it as a cytoplasmic
protein. Proteome Analyst (9) is another category of method,
which initially applies a BLAST search against the SwissProt

Mww.pnas.org/cgi/content/short/0907586106]

database to obtain homologs with manually curated annotation
(3). This approach is restricted to find known localizations for a
specific protein, and it cannot make other predictions.

Recently, a number of algorithms using a support vector
machine [CELLO (10, 11), SUBLOC (12), LOCTree (13), SLP
(14), PSLpred (15), and P-CLASSIFIER (16)] have been devel-
oped to predict the subcellular localizations of proteins in
Gram-negative bacteria (3). They use information on amino
acid/dipeptide and other compositional biases at the whole
sequence level (3). Hence, most algorithms in this category are
minimally affected by the incompleteness of peptide sequences.
Among these algorithms, PSLpred requires a single sequence
submission at a time (3), which is not appropriate for high-
throughput analysis. P-CLASSIFIER is currently not available.
SLP performs undesirably on the incomplete sequences (Table
S5) because it still relies heavily on the presence of N-terminal
protein sequences (14). Therefore, PSLpred, P-CLASSIFIER,
and SLP were not applied, whereas CELLO, SUBLOC, and
LOCTree were useful in this study. Because all algorithms have
their own bias, the predictions from CELLO, SUBLOC, and
LOCTree were frequently inconsistent (Dataset S1).

To address this issue, we developed a metaalgorithm (MetaP),
which combines predictions from CELLO, SUBLOC, and LOC-
Tree to get weighted consensus predictions. A previous simple
metaprediction algorithm reported improvement of prediction
accuracy and is superior to all base algorithms (17). The MetaP
algorithm proposed here considers neighborhood relations
among subcellular localizations and also suboptimal predictions,
and thus has the benefit of resolving conflicting predictions by
the base algorithms and achieves higher precision and accuracy
of prediction.

Actually, sorting signals targeting different subcellular loca-
tions usually share some similarities. For example, sorting signals
targeting the periplasm and outer membrane both have N-
terminal positively charged regions. In this case, prediction
algorithms usually have some ambiguity for distinguishing these
neighboring compartments. When an algorithm predicts a pro-
tein as a periplasmic protein with the highest confidence, it also
implies that the protein has a probability of being located in its
neighboring compartments, including the cytoplasm, inner mem-
brane, outer membrane, and extracellular space, with higher
probability assigned to the locations closest to the periplasm.
Indeed, neighboring compartments are usually reported as sub-
optimal predictions by the component algorithms (CELLO,
SUBLOC, and LOCTree).

The voting weight wy for kth prediction is defined on the basis
of its relative score by comparison with all other predictions
made by this algorithm. Because raw scores of predictions from
different component base algorithms are not directly compara-
ble, the raw score s, is converted into a normalized probability
p(k) = p(s = s) by calculating the percentage of predictions with
lower raw scores among all predictions for a given algorithm. wy
is then defined as wx = p(x). In the case of the reported atypical
APase (8), different base algorithms produced contradictory
results. For instance, CELLO, SUBLOC, and LOCTree pre-
dicted it as an outer membrane protein, periplasmic protein, and
cytoplasmic protein, respectively. However, MetaP correctly
predicted it as a periplasmic protein.

The prediction accuracy of the proposed ensemble algorithm
MetaP will be influenced by the prediction accuracy of the
component base predictors. Although the predication accuracies
of the three base prediction algorithms CELLO (10, 11), SUB-
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LOC (12), and LOCTree (13) were reported on different
datasets using different criteria (10, 11-14), they were mainly
restricted to complete sequences. These performance data may
not be directly applied to the GOS incomplete peptides occur-
ring in the GOS metagenomic database. We downloaded testing
protein sequences with known localizations from multiple liter-
ature sources (15, 18, 19), manually removed their N-terminal
peptides with different lengths, and applied these base algo-
rithms and MetaP to predict their localizations. We pooled
testing sequences located at the periplasm and extracellular
space as secreted proteins. Membrane proteins were not used
because they cannot be predicted by SUBLOC and LOCTree
(3). SLP was used as a comparison and was not included in
MetaP. Table S5 shows their accuracy for predicting complete
and incomplete protein sequences.

Statistical Test for One-Sample Proportion. To test whether PhoX
localization patterns (mainly extracellular) are different from
PhoD and PhoA (mainly cytoplasmic) localizations (Fig. 2), we
designed a statistical approach. The basic method is the one-

1. Marchler-Bauer A, et al. (2009) CDD: Specific functional annotation with the Conserved
Domain Database. Nucleic Acids Res 37:D205-D210.

2. Seshadri R, Kravitz SA, Smarr L, Gilna P, Frazier M (2007) CAMERA: A Community
Resource for Metagenomics. PLoS Biol 5:e75.

3. Gardy JL, Brinkman FSL (2006) Methods for predicting bacterial protein subcellular
localization. Nat Rev Microbiol 4:741-751.

4. Dyrlov Bendtsen J, Nielsen H, von Heijne G, Brunak S (2004) Improved prediction of
signal peptides: SignalP 3.0. J Mol Biol 340:783-795.

5. Nielsen H, Krogh A (1998) Prediction of signal peptides and signal anchors by a hidden
Markov model. Proc Int Conf Intell Syst Mol Biol 6:122-130.

6. Kall L, Krogh A, Sonnhammer ELL (2007) Advantages of combined transmembrane
topology and signal peptide prediction—The Phobius web server. Nucleic Acids Res
35:W429-W432.

7. Bendtsen J, Nielsen H, Widdick D, Palmer T, Brunak S (2005) Prediction of twin-arginine
signal peptides. BMC Bioinformatics 6:167.

8. Ray JM, Bhaya D, Block MA, Grossman AR (1991) Isolation, transcription, and inacti-
vation of the gene for an atypical alkaline phosphatase of Synechococcus sp. strain PCC
7942. J Bacteriol 173:4297-4309.
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sample test on proportions. For each APase family, we define the
sample space comprising cytoplasmic and extracellular APases
and defined a statistic, z = (p—p0)/(p0-(1-p0)/n)®-3, where n is the
sample size, which is the number of genes for each APase family;
p is the sample proportion, which is the proportion of the number
of cytoplasmic APases (or other localizations) among the sample
size n; and p0 is a designated true proportion (population
proportion, p0 = 0.39 here). For large sample size n (as in our
case), the statistic z fits approximate standard normal distribu-
tion. This property is used to test whether the sample proportion
is significantly different from the designated true proportion. We
found that, for PhoX, the sample proportion of extracellular
proteins is significantly greater than 0.39, whereas the propor-
tions of others are significantly smaller than 0.39 (P < 0.05 in all
cases). In contrast, for both PhoD and PhoA, the sample
proportion of cytoplasmic proteins is significantly larger than
0.39, whereas the proportions of others are significantly smaller
than 0.39 (P < 0.05 in all cases). We concluded that PhoX is
dominated by extracellular proteins, whereas PhoD and PhoA
are dominated by cytoplasmic proteins. The difference of the
distribution pattern is significant.

11. YuCS, Chen YC, Lu CH, Hwang JK (2006) Prediction of protein subcellular localization.
PROTEINS: Structure, Function, and Bioinformatics 64:643-651.

12. Hua'S, Sun Z (2001) Support vector machine approach for protein subcellular localiza-
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Table S1. APase properties

APase type Substrate specificity Metal cofactor
PhoA Monoesters (1) Zn, Mg (2)
PhoD Monoesters, diesters (3-5) Ca (4)
PhoX Monoesters, diesters (6) Ca (6)

1. Sone M, Kishigami S, Yoshihisa T, Ito K (1997) Roles of disulfide bonds in bacterial
alkaline phosphatase. J Biol Chem 272:6174-6178.

. Coleman JE (1992) Structure and mechanism of alkaline phosphatase. Annu Rev
Biophys Biomol Struct 21:441-483.

. Yamane K, Maruo B (1978) Alkaline phosphatase possessing alkaline phosphodiester-
ase activity and other phosphodiesterases in Bacillus subtilis. J Bacteriol 134:108-114.

. Yamane K, Maruo B (1978) Purification and characterization of extracellular soluble
and membrane-bound insoluble alkaline phosphatases possessing phosphodiesterase
activities in Bacillus subtilis. J Bacteriol 134:100-107.

5. Eder S, Shi L, Jensen K, Yamane K, Hulett FM (1996) A Bacillus subtilis secreted
phosphodiesterase/alkaline phosphatase is the product of a Pho regulon gene, phoD.
Microbiology 142:2041-2047.

6. Wu J-R, et al. (2007) Cloning of the gene and characterization of the enzymatic
properties of the monomeric alkaline phosphatase (PhoX) from Pasteurella multocida
strain X-73. FEMS Microbiol Lett 267:113-120.
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Table S2. Number of ugp genes in GOS database

Gene name No. genes
ugpA 9,277
ugpB 9,509
ugpC-MalK* 9,195
ugpE 8,801
ugpQ 4,652

*The ugp system is a multicomponent system driven by an ATP-hydrolyzing
subunit, which is known as ugpC. UgpC is functionally exchangeable with
MalK, the ATP-binding cassette of the maltose transport system (1, 2). UgpC
and MalK sequences are very similar, making it difficult to distinguish one
from the other using reversed position-specific BLAST searches against CDDs.
Hence, we consider ugpC and MalK as a unit in comparison to other ugp
component genes.

1. Hekstra D, Tommassen J (1993) Functional exchangeability of the ABC proteins of the
periplasmic binding protein-dependent transport systems Ugp and Mal of Escherichia
coli. J Bacteriol 175:6546-6552.

2. Brzoska P, Rimmele M, Brzostek K, Boos W (1994) The Ugp paradox: The phenomenon
that glycerol 3-phosphate, exclusively transported by the Escherichia coli Ugp system,
canserve as a sole source of phosphate but not as a sole source of carbon is due to trans
inhibition of Ugp-mediated transport by phosphate. Phosphate in Microorganisms
Cellular and Molecular Biology, eds Torriani-Gorini A, Yagil E, Silver S (ASM, Wash-
ington, DC) pp 30-36.
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Table S3. Seed query information for APases

Gene name

Seed query NCBI accession no.

Source organism

PhoA
PhoD
PhoX
ugpA
ugpB
ugpC
ugpE

ugpQ

YP_002396458.1
ABP37735.1
NP_388144.1
YP_001092963.1
ABL09520.1
YP_001225533.1
P10905.1
ABQ74637.1
POAGS80.1
ABQ74635.1
P10907.3
ABQ74634.1
P10906.1
ABQ74636.1
P10908.1
ABQ75671.1

Escherichia coli

Chlorobium phaeovibrioides
Bacillus subtilis

Shewanella loihica
Pasteurella multocida
Synechococcus sp.
Escherichia coli
Mycobacterium tuberculosis
Escherichia coli
Mycobacterium tuberculosis
Escherichia coli
Mycobacterium tuberculosis
Escherichia coli
Mycobacterium tuberculosis
Escherichia coli
Mycobacterium tuberculosis
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Table S4. Conserved domain accession numbers for APases

Source database PhoA PhoD PhoX ugpA ugpB ugpC ugpE ugpQ

COG COG1785 COG3540 COG3211 COG1175 COG1653 COG3839 COG0395 COG0584

Pfam Pfam00245 Pfam09423 NA NA NA NA NA Pfam03009

PRK PRK10518 NA NA PRK10561 PRK10974 PRK11650 PRK11000 PRK10973 PRK09454

SMART smart00098 NA NA NA NA NA NA NA
!. Curated at NCBI* ¢d00016 NA NA NA NA ¢d03301 NA NA
‘ *This domain database uses 3D structure information to define domain boundaries and aligned blocks explicitly and to amend alignment details. It is curated
" by the National Center for Biotechnology Information (NCBI) CDD group, which is in contrast to other external databases (COG, SMART, Pfam, and PRK)

imported to the CDD (1). COG, cluster of orthologous groups of proteins (2); NA, not available; Pfam, Pfam-A seed alignments from the protein families database

m of alignments and Hidden Markov Models (HMM:s) (3); PRK, PRotein K(c)lusters (4); SMART, the Simple Modular Architecture Research Tool (5, 6).

. Finn RD, et al. (2008) The Pfam protein families database. Nucleic Acids Res 36:D281-D288.
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. Tatusov RL, Koonin EV, Lipman DJ (1997) A genomic perspective on protein families. Science 278:631-637.

. Klimke W, et al. (2009) The National Center for Biotechnology Information’s Protein Clusters Database. Nucleic Acids Res 37:D216-D223.
. Letunic I, Doerks T, Bork P (2009) SMART 6: Recent updates and new developments. Nucleic Acids Res 37:D229-D232.
. Schultz J, Milpetz F, Bork P, Ponting CP (1998) SMART, a simple modular architecture research tool: Identification of signaling domains. Proc Nat/ Acad Sci USA 95:5857-5864.
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Table S5. Performance of MetaP in predicting extracellular and periplasmic proteins*

Cytoplasmic Periplasmic Extracellular
Database Precision® Recall* Accuracy$ Precision Recall Accuracy Precision Recall Accuracy
db2 0.82 0.97 0.91 0.85 0.77 0.87 0.92 0.79 0.92
db3 0.82 0.98 0.92 0.84 0.77 0.87 0.92 0.79 0.92

*The first 200 amino acids at the N-terminal were removed in the testing sequences, and the sequences with no less than 30 amino acids were used in the analysis.

*Precison = TP/(TP + FP).

*Recall = TP/(TP + FN).

SAccuracy = (TP + TN)/(TP + TN + FP + FN), where TP is true positive, TN is true negative, FP is false positive, and FN is false negative. For instance, in the case
of extracellular proteins, TP is the number of proteins predicted to be extracellular that are indeed extracellular, TN is the number of proteins predicted to be
nonextracellular that are indeed nonextracellular, FP is the number of proteins predicted to be extracellular that are indeed nonextracellular, and FN is the
number of proteins predicted to be nonextracellular that are indeed extracellular.

Here, only extracellular and periplasmic proteins from database 2 (db2) (1) and database 3 (db3) (2) were used so as to balance the number of true-positive and

true-negative cases. Database 1 (db1) (3) was not used, because many secretory sequences in db1 are not labeled with finer subcellular localizations (e.g.,

extracellular or periplasmic).

1. Gardy JL, Spencer C, Wang K, Ester M, Tusnady GE, et al. (2003) PSORT-B: improving protein subcellular localization prediction for Gram-negative bacteria. Nucleic Acids Res
31:3613-3617.

2. Bhasin M, Garg A, Raghave GPS (2005) PSLpred: prediction of subcellular localization of bacterial proteins. Bioinformatics 21:2522-2524.

3. Menne KML, Hermjakob H, Apweiler R (2000) A comparison of signal sequence prediction methods using a test set of signal peptides. Bioinformatics 16:741-742.
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Table S6. Performance of MetaP in predicting inner and outer membrane proteins*

Inner membrane Outer membrane
Database Precision Recall Accuracy Precision Recall Accuracy
db2 0.99 0.74 0.94 0.97 0.86 0.95
db3 1 0.76 0.94 0.97 0.90 0.96

*The first 200 amino acids at the N-terminal were removed in the testing sequences, and the sequences with no
less than 30 amino acids were used in the analysis. The definitions of precision, recall, and accuracy are the same
as described in Table S5.
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Other Supporting Information Files

Dataset S1
Dataset S2

Dataset S3
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