
Generating MIF files 

 
Introduction 
In order to load our handwritten (or compiler generated) MIPS assembly problems into our 
instruction ROM, we need a way to assemble them into machine language and then save these 
machine language programs in a text file where the binary machine instructions are 
represented as a sequence of ASCII hexadecimal values. 
 
For this, we will use a Java-based MIPS simulator called MARS.  MARS is an improved version of 
the SPIM simulator that you may have used in CSCE 212.  We have installed MARS in a shared 
directory, but in order to avoid the need to specify its entire path, you can specify a UNIX alias 
to make it more convenient to run MARS. 
 
Open a terminal and type gedit .profile. In the text editor, add the following line to the end of 
file: 
alias mars='java -jar /usr/local/3rdparty/csce611/MARS/Mars.jar' 
 
Save the file and close the editor. You will only need to do this once. Now log out and log back 
into your workstation. Now we can invoke the tool by typing mars in the terminal.  
 
You can also download MARS from www.cs.missouristate.edu/MARS or get a copy at your 
home directory. 
 
For the usage of the simulator, please check the MARS tutorial at 
http://courses.missouristate.edu/KenVollmar/MARS/tutorial.htm 
 
MIF Files 
A memory Initialization File (.mif) is an ASCII text file (with the extension .mif) that specifies the 
initial content of a memory block (CAM, RAM, or ROM), that is, the initial values for each 
address. This file is used during Quartus project compilation and/or simulation. 
 
The MIF file serves as an input file for memory initialization in the Quartus compiler and 
simulator. You can also use a Hexadecimal Intel-Format File (.hex) to provide memory 
initialization data.  
 
In this class, we provide you with a script file to automate generate MIF file from MIPS 
assembly codes.  In this tutorial, we will introduce you to MIF file generation in the following 
example. 
 
1. Open a terminal and copy the file GenMIF.sh from the directory /usr/local/3rdparty/ 
csce611/CPU_support_files/  to your design directory. 
 
2. For our first program, copy the following file into your home directory: 

http://www.cs.missouristate.edu/MARS
http://courses.missouristate.edu/KenVollmar/MARS/tutorial.htm


 
cp /usr/local/3rdparty/csce611/benchmarks/my_program.asm 

 
3. In order to show you what the program looks like, open this file in a text editor: 
 
gedit my_program.asm 

 
As you will see, this program is composed of a data section and a text (code) section.  Our script 
will generate MIF files for both sections, which correspond to the data memory and the 
instruction memory, respectively. 
 
Also notice that this particular program is quite simple and is composed entirely of load 
instruction and a branch at the end which is clearly being used to halt the program by 
deliberately entering into an infinite loop.  The reason for this is because in the following 
tutorial, we will implement the load instructions and the branch instruction used in this 
program.  It will be up to you to implement the other instructions listed in the MIPS instruction 
set detail on the course webpage. 
 
4. Generate the MIF files using the following command: 
 
./GenMIF.sh  my_program 

 
You should see the following messages: 
 
Reading file my_program.asm 
Generating ROM1.mif 
Generating RAM1.mif 
Generating RAM2.mif 
Generating RAM3.mif 
Generating RAM4.mif 
Memory MIF file generation successful. 

 
and you should have the following .mif files in the my_program subdirectory: 
ROM1.mif, RAM1.mif, RAM2.mif, RAM3.mif and RAM4.mif 
 
At this point, the generics in your ROM and RAM instances should point to the ROM and RAM 
MIF files that you just generated. 
 
Congratulations, you have just loaded a program into your computer!  Now it’s time to begin to 
work on your CPU design so you can implement the instructions used in this program. 
  



Implementing the MIPS Instruction Set 
 
In this tutorial we’ll be adding functionality to the CPU design. 
 
Instancing  Primary Components to Your Top-Level CPU Design 
 
In order to implement the load and branch instructions, we’ll need a few basic components.  
These will include: 

 an ALU 

 a register file 

 a program counter (PC) 

 a PC incrementer adder 

 a PC branch target adder 
 
Instantiate the ALU that you have previously designed, as well as the RegFile32x32, reg10, and 
two add10s from the CSELib. 
 

 
 
 
Program Counter Logic 
 
Some of these components have fairly obvious connections.  For example, we know that the PC 
keeps track of the address of next instruction to be fetched, so we need to connect it to the 
instruction address output.  However, since we also need to use the output of the PC to 
increment the PC, we cannot directly tie the output of the PC register to the output pin, 
because this would involve “reading an output” which VHDL forbids.  Therefore we will need to 



create a signal called “PC” for this, which we can rename to InstructionAddr using an embedded 
block. 
 
Also, we know that the PC’s input can come from either the PC incrementer adder or the 
branch target adder.  So let’s add an embedded multiplexer (as you did for the logical unit in 
the ALU) to the input of the PC, and connect the PC incrementer adder (which computes PC+1) 
and the branch target adder. 
 
Also, you need to connect the PC to the global clock and reset signals.  You may want to do this 
through “signal stubs” with implicit connections. 
 
Finally, we will use the same embedded block that we used to rename the PC signal for setting 
some constants, which we’ll need for ALU carryin inputs (CI), the PC enable, and the input for 
the PC incrementer. 
 

 
 

Register File and ALU 
 
Next let’s deal with the register file.  We know that the ReadAddrA and ReadAddrB inputs come 
directly from the rs and rt fields of the instruction, so we can connect those signals using bus 
rippers. 
 
Recall that we’re only implementing the BEQ instruction and the load instructions at this time.  
Of these, only the load instructions write to the register file.  As a result, we know the 
WriteData input to the register file comes from the data memory input.  However, since we’ll 



need to design a data alignment unit for the LH and LB instructions, we’ll just add a signal stub 
for now, named “DataInAlignedExt”. 
 
The WriteAddr input to the register file comes directly from the rt field, so we can make this 
connection as well. You can also connect the outputs of the register file directly to the ALU 
inputs. 
 
The register file write enable will be named “RegWrite_WB” since this signal is part of the 
Write-Back pipeline stage. 
 
For the ALU’s shift amount input, you may connect InstructionIn(10 downto 6) for now.  
However, in the future you will need to multiplex this input to support the variable shift 
instructions (i.e. sllv, srlv and srav). 
 

 
 

Load Alignment and Extension Logic 
 
Now we’ll design the load alignment and sign/zero extension logic.  After a load instruction is 
fetched, let’s assume the control unit will drive a signal called “load_type” with the following 
encodings: 
 

Instruction load_type 

LW 000 

LH 001 

LHU 010 

LB 011 

LBU 100 

Set up your design as shown below: 



 

 
 
Control Unit 
 
Now let’s work on the main control unit.  Add an embedded block to your design with the I/O 
ports shown in the following figure. 
 
Also, add the following four registers so the CPU will have access to the values of RegWrite, 
load_type, stall_pipe, and the register destination field1 from the previous cycle. 
 

                                                           
1
 Hint:  Note that—since we’re only implementing load instructions—the register destination field is always the rt 

field from the instruction.  However, after you add R-type instructions, you’ll need to account for cases when the 
rd field should be used instead. 



 
Now we can design the actual control unit.  Double-click the embedded block and choose Truth 
Table as the view type. 
 
The main function of the control unit is to decode instructions into a set of control signals, 
which are distributed to various components in the CPU and establish datapaths for executing 
each instruction.  Control signals are usually made up of multiplexer selects and write enables. 
 
We will design one monolithic control unit that will control all aspects of the CPU, including the 
ALU control and branch control (recall that Hennessy and Patterson’s design had separate 
control units for these functions). 
 
At this point we will enter control signals for six instructions:  LW, LH, LHU, LB, LBU, and BEQ.  
According to the instruction set detail, these instructions have the following control information 
encoded into their machine-language representations: 
 

Instruction Opcode (bits 31:26) 

LW 100011 

LH 100001 

LHU 100101 

LB 100000 

LBU 100100 

BEQ 000100 

 
Design the control unit truth table as shown below. 
 



 
For reference a complete CPU design is shown in the following figure. 
 

  
Verifying the CPU 
 
At this point our CPU is finished.  Let’s simulate it.  More specifically, we need to simulate the 
“MyComputer” design, because it contains the instruction memory , which we need to provide 
our CPU with a workload.  So make you simulate the “MyComputer” design hierarchically and 
not just the CPU itself. 
 



Before we begin, we should think about what we expect to see in the simulation.  Recall our 
sample program: 
 

  .data 

myval: .word 0xDEADBEEF 

 

  .text 

main: lw $1,0($0)  # ($1) = DEADBEEF 

  lh $2,2($0)  # ($2) = FFFFDEAD 

  lhu $3,2($0)  # ($3) = 0000DEAD 

  lb $4,1($0)  # ($4) = FFFFFFBE 

  lbu $5,1($0)  # ($5) = 000000BE 

stop: beq $0,$0,stop  # PC = 5 (infinite loop) 

 
The five loads at the beginning of the program should result in fix consecutive cycles of writing 
to the register file using the values shown in the comments.  As such, we should make sure we 
plot the following signals: 

 RegWrite_WB 

 register_dest_WB 
 

Also, the control sequence of the program should give the following sequence of program 
counter values and corresponding instruction stream: 
 

Program counter value Instruction being executed in stage 2 InstructionIn 

0 (reset CPU) ??? 

0 (stall CPU, fetching instruction 0) ??? 

1 execute instruction 0 8c010000 

2 execute instruction 1 84020002 

3 execute instruction 2 94030002 

4 execute instruction 3 80040001 

5 execute instruction 4 90050001 

6 execute instruction 5, take branch 1000ffff 

5 stall, fetch instruction 5 ??? 

6 execute instruction 5, take branch 1000ffff 

5 stall, fetch instruction 5 ??? 

6 execute instruction 5, take branch 1000ffff 

… … … 

So we should make sure we plot the program counter value (signal name PC) and InstructionIn. 
 
Since we’re simulating the “MyComputer” design but plotting signals in the CPU design, you’ll 
need to select the CPU (instance u_0) in the sim pane. 
 



 
 
Selecting u_0 will show all the CPU’s signals in the Object pane, allowing you to add to them to 
wave window by right-clicking the signals or dragging them into the wave window.  Note that 
you can also add signals from the block diagram editor using the toolbar on the bottom of the 
window. 
 
Once you’ve added the signals above--as well as clk and rst—convert all signals to hexadecimal.  
Also, click the “mountains” button at the bottom of the wave window to switch the signal 
names to their shortened representations. 
 

 
 
There is one last step before we run the simulation.  We need to set up the clock signal and 
perform a manual reset.  To set up the clock, right-click “clk” in the wave window, select 
“Clock…”, and click OK. 
 



 
 
To perform a manual reset, make sure the CPU (u_0) is highlighted in the sim pane, then enter 
the following commands into the Modelsim console: 
 

force –freeze rst 1 

run 

force –freeze rst 0 

run 1000 

 

 
 
 
Alternatively, we can use ModuleWare to generate the above input stimuli for simulation. In 
the Design Manager right-click the Design Unit MyComputer and in the pop-up menu select 
New -> Test Bench… Then click OK in Create Test Bench dialog box. Double-click the newly 
created Design Unit MyComputer_tb and delete the light-blue component in the block diagram 
view of the MyComputer_tb. Then choose Add ModuleWare button to add Clock and Pulse 
components from the Stimulus directory.  



 
 
Double-click the instantiated modulewares and change the default settings as follows. 
Note the Clock Edge Times must be at least 100 ns for the positive pulse to be sampled by the 
rising clock edge. 
 

  
Let’s simulate the CPU design by saving the Block Diagram view, highlighting MyComputer_tb 
in the Design Manager and launching Modelsim.  
 
What to do Next 
 
You now have a 3-stage pipelined CPU design, along with instruction and data memories that 
can be initialized within simulation and even after being implemented on an FPGA. 
 
However, your CPU is currently only capable of executing programs that are composed entirely 
of limited subset of instructions that includes the load instructions and the BEQ instruction. 
 
Your goal is to extend this CPU design such that it can execute all the MIPS instructions listed in 
the instruction set detail on the course webpage.  To do this, you will need to add multiplexers, 
control signals, and rows to the control unit truth table.  You will be able to test instructions as 
you add functionality for them by using the MARS design flow to write programs that contain 
those instructions. 



We will test your CPU design by loading a program called SimpleTest that contains at least one 
instance of every instruction in the instruction set. 
 
 


