Design Requirements

This lab will introduce you to the Altera platform tools for developing embedded systems for the DE2 board.

In this lab your objective is to follow the tutorial to implement a system with the following characteristics:

- One of the 24 LEDs on the board is always lit
- The lighted LED changes in a fixed periodic interval, which can be every 250 ms, 125 ms, or 50 ms, depending on the current mode of the system
- On each change, the lighted LED shifts to the left until it reaches LEDR17, at which point it shifts to the left until it reaches LEDG0, and then repeats
- Pushing KEY3 changes the period to 250 ms, KEY2 to 125 ms, and KEY1 to 50 ms
- The console should display the new period when the mode is changed

Once you’ve completed this portion of the project, add the following new features on our own:

- The eight 7-segment displays on the board will change state on the same period as the LEDs
- When the period is 250 ms, the 7-segment displays will light with random configurations
- When the period is 125 ms, the 7-segment displays will follow a pattern where one segment is always lit and the lit segment follows a clockwise circular path around the outermost ring of segments, for example:

 (1) 88888888 (2) 88888888
 (3) 88888888 (4) 88888888
 (5) 88888888 (6) 88888888

- When the period is 50 ms, the 7-segment displays will show a decimal count from 0 to 99,999,999 and repeat

Setting Up Output Ports for 7-Segment Displays

Please make sure you check the documentation on the 7-segment LEDs before starting this lab:

Add the following to the nios_system port map (somewhere under the line “nios_system DUT(“):

```verilog
.out_port_from_the_HEX0(HEX0),
.out_port_from_the_HEX1(HEX1),
.out_port_from_the_HEX2(HEX2),
.out_port_from_the_HEX3(HEX3),
.out_port_from_the_HEX4(HEX4),
.out_port_from_the_HEX5(HEX5),
.out_port_from_the_HEX6(HEX6),
.out_port_from_the_HEX7(HEX7),
```

Also, delete the following lines from your Verilog code:

```verilog
assign HEX0 = 7'h00;
assign HEX1 = 7'h00;
assign HEX2 = 7'h00;
assign HEX3 = 7'h00;
assign HEX4 = 7'h00;
assign HEX5 = 7'h00;
assign HEX6 = 7'h00;
assign HEX7 = 7'h00;
```

After doing this, the eight 7-segment HEX outputs will be connected from your SOPC design through the pins on the FPGA to the actual 7-segment displays. You can access them from your C code using, for example:

```c
IOWR_ALTERA_AVALONPIO_DATA(HEX0_BASE, 3);
IOWR_ALTERA_AVALONPIO_DATA(HEX1_BASE, 4);
IOWR_ALTERA_AVALONPIO_DATA(HEX2_BASE, 5);
IOWR_ALTERA_AVALONPIO_DATA(HEX3_BASE, 6);
IOWR_ALTERA_AVALONPIO_DATA(HEX4_BASE, 12);
IOWR_ALTERA_AVALONPIO_DATA(HEX5_BASE, 56);
IOWR_ALTERA_AVALONPIO_DATA(HEX6_BASE, 87);
IOWR_ALTERA_AVALONPIO_DATA(HEX7_BASE, 127);
```

Project Submission

Each group must submit an archive of their complete project directory to Dropbox.