
Agents on the Web

Robust Software

2 MARCH • APRIL 2002 http://computer.org/internet/ 1089-7801/02/$17.00 ©2002 IEEE IEEE INTERNET COMPUTING

Michael N. Huhns • University of South Carolina • huhns@sc.edu
Vance T. Holderfield • University of South Carolina • vance@sc.edu

L ast week, we watched a neighbor build a
brick wall next to his house. His old one
had fallen down and he was determined not

to let that happen again. “I’m going to make it
twice as thick,” he said. Earlier, we had asked a
friend who was a bridge designer how he was sure
the bridges he designed wouldn’t collapse. He
answered, “We calculate how much steel we will
need to handle the expected stresses and strains,
and then multiply by three.”

As software developers, we would like the systems
we construct to be robust and not crash. But we can’t
make them more robust simply by adding more
code, as we add more bricks or steel to make a phys-
ical structure stronger. Otherwise Windows 98 with
20 million lines of code would be incredibly robust,
and we haven’t heard anyone make that claim!

Blindly adding code introduces more errors, makes
the system more complex, and renders it harder to
understand. However, adding more code can make
software better, if it is added in the right way. As this
article describes, the key concepts appear to be redun-
dancy and the appropriate granularity.

Redundancy
Redundancy is the basis for most forms of robust-
ness. For years, NASA has made its satellites more
robust by duplicating critical subsystems. If a
hardware subsystem fails, an identical replacement
is ready to begin operating. The space shuttle has
quadruple redundancy and won’t leave the ground
without all copies functioning. However, software
redundancy must be provided in a different way.
Identical software subsystems will fail in identical
ways, so extra copies don’t provide any benefit.

Moreover, we can’t arbitrarily multiply the
amount of code by three, just as steel can’t be
added arbitrarily to a bridge. When we make a
bridge stronger, we do it by adding beams that are
not identical to ones already there, but that have
equivalent functionality. This turns out to be the
basis for robustness in software systems: there

must be software components with equivalent
functionality, so that if one fails to perform prop-
erly, another can provide what is needed. The chal-
lenge is to design the software system so that it
can accommodate the additional components and
capitalize on their redundant functionality.

Agents are a convenient level of granularity at
which to add redundancy and that the software
environment that takes advantage of them is akin to
a society of such agents, where multiple agents can
fill each societal role. Agents by design know how to
deal with other agents, so they can accommodate
additional or alternative agents naturally. They are
also designed to reconcile different viewpoints.

Theory of Redundancy
Fundamentally, information and coding theory has
specified well the amount of redundancy required.
Assume each software module in a system can
behave either correctly or incorrectly. Then two
modules with the same intended functionality are
sufficient to detect an error in one of them, and three
modules are sufficient to correct the incorrect behav-
ior (by voting, or the best two-out-of-three). This is
exactly how parity bits work in code words. Unlike
parity bits, and unlike bricks and steel bridge beams,
however, the software modules can’t be identical, or
else they could not correct each other’s errors.

If we want a system to provide n functionalities
robustly, we must introduce m×n agents, so that
there will be m ways of producing each function-
ality. Each group of m agents must understand
how to detect and correct inconsistencies in each
other’s behavior, without a fixed leader or central-
ized controller. If we consider an agent’s behavior
to be either correct or incorrect (binary), then,
based on a notion of Hamming distance for error-
correcting codes,1 m agents can detect m – 1 errors
in their behavior and can correct 1/2(m – 1) errors.

Granularity
Fundamentally, system designers must balance

redundancy with complexity, which is
determined by the number and size of
the components chosen for building a
system. That is, adding more compo-
nents increases redundancy, but might
also increase the system’s complexity.
This is just another form of the com-
mon software engineering problem of
choosing the proper size of the mod-
ules used to implement a system.
Smaller modules are simpler, but their
interactions are more complicated
because there are more modules.

An agent-based system can cope with
a growing application domain by in-
creasing the number of agents, each
agent’s capability, the computational
resources available to each agent, or the
infrastructure services needed by the
agents to make them more productive.
Either the agents or their interactions can
be enhanced, but to maintain the same
degree of redundancy n, they would have
to be enhanced by a factor of n.

Example Applications
Redundancy is a powerful tool to ensure
a more robust result. Imagine an admis-
sions committee considering an appli-
cant to a university. The members of the
admissions committee evaluate each
applicant according to four criteria.
They vote either “yes” or “no” depend-
ing on whether the applicant meets each
criterion, and then overall on whether
to grant admission. Now consider the
following information in Table 1.

In this situation, the student would
not be admitted to the university if the
decision were left up to any individual
committee member, even though the
majority favored the student in each
criterion. However, by aggregating the
information in each criterion sepa-
rately, the redundant composition of
the committee can overturn the fallac-
ies or biases of the individuals.2

Consider the more graphical exam-
ple task show in Figure 1 of finding
various routes from the University of
South Carolina Visitor’s Center to the
Alumni House.

Individually, all three routes (red,
yellow, and blue) are correct and

achieve their goal of getting from the
start to the finish. Due to redundancy,
the system could achieve a consensus
decision and obtain the more obvious,
direct route (straight across). Moreover,
the traversal execution is more robust,
because it can overcome failures
(blockages) in any of the paths.

Successful teams in the RoboCup
competition all make extensive use of
redundancy. Team members each pos-
sess several different defensive and
offensive strategies they can switch to
at appropriate times. In each, players
will support and back up their team-
mates. If a defender cannot win the
ball from an attacker, another can try
by approaching from a different angle.
This redundancy of abilities located in
the team players allows for a more
dynamic gaming strategy.

RAID arrays are becoming the stan-
dard storage architecture for servers and
other computers that require high relia-
bility. With hardware prices decreasing,
RAID systems can store mass data
redundantly on multiple disks and
exchange data with each other to back
each other up. They can be repaired or
replaced without halting a system and
without loss of information.

In a similar vein, IBM is investing US
$1 billion to develop autonomic comput-
ing: “a systemic view of computing mod-
eled after a self-regulating biological sys-
tem.” An autonomic computing system
will adhere to self-healing, not by “cellu-
lar regrowth,” but by making use of re-
dundant elements to act as replenishment
parts. By taking advantage of redundant
services located around the world, a bet-
ter range of services will become avail-

IEEE INTERNET COMPUTING http://computer.org/internet/ MARCH • APRIL 2002 3

Robust Software

Table 1.Admission voting results.
Committee Good Good Good Good writing
member SATs? grades? letters? samples? Accept?

A Yes No Yes No No
B No Yes Yes Yes No
C Yes Yes No Yes No

Start
USC

Visitor
Center

Finish
USC

Alumni
House

Figure 1.Three alternative (redundant) routes to a destination that could be
combined into a single, more direct route. Because of the redundancy, blockage
of any one route could be overcome, leading to more robust path traversal.

able for customers in business transac-
tions (see Autonomic Computing, www.
research.ibm.com/autonomic/). Signal
towers (such as for cell phones) have long
used redundancy in providing uninter-
rupted service. A tower’s range often
overlaps another tower. Without such
overlap, there would be dead spots in sig-
nal coverage. Figure 2 demonstrates the
redundant nature of this overlap.

Testing Robustness
Exemplifying extreme redundancy in
hardware, HP Labs has built a mas-
sively parallel computer, the Teramac,
with 220,000 known defects, but it still
yields correct results.3 As long as there
is sufficient communication bandwidth
to find and use healthy resources, it
can tolerate the defects. Allowing so
many defects lets designers build the
computer cheaply.

A research team at the University of
South Carolina is investigating the
scalability of a system of medium-
complexity, heterogeneous agents. The
agents form geometric shapes on a 2D
grid by communicating with nearby
agents. Although only 60 agents are
involved, different people built the
individual agents.4 The specifications
for the agents were loosely articulated.
Working individually, the agents
lacked any cohesiveness in forming

geometrical shapes; however, when
redundant decision-making was intro-
duced, the agents began arranging
themselves into the appropriate shapes.

Implications for Developers
Producing robust software has never
been easy, and the approach recom-
mended here would dramatically affect
on the way that developers construct
software systems:

� It is difficult enough to write one
algorithm to solve a problem, let
alone n algorithms. However, algo-
rithms, in the form of agents, are
easier to reuse than when coded
conventionally and easier to add to
an existing system, because agents
are designed to interact with an
arbitrary number of other agents.

� We need to develop agent organi-
zational specifications to take full
advantage of redundancy.

� Agents will need to understand
how to detect and correct inconsis-
tencies in each other’s behavior,
without a fixed leader or central-
ized controller.

� There are problems when the agents
either represent or use nonrenew-
able resources, such as CPU cycles,
power, and bandwidth, because
they will use it n times as fast.

� Although error-free code will
always be important, developers
will spend more time on algorithm
development and less on debug-
ging, because different algorithms
will likely have errors in different
places and can cover for each other.

� In some organizations, software
development is competitive in that
several people might write an algo-
rithm to yield a given functionality,
and the “best” algorithm will be
selected. Under the approach sug-
gested here, all algorithms would
be selected.

Conclusion
Beyond robustness, we need to make
sure not only that our software systems
don’t crash, but also that they can be
trusted. In the next issue, we will
describe how agents are the right build-
ing blocks for constructing trustworthy
systems. These two thrusts—robust soft-
ware and trusted autonomy—represent
the future for agent technology and for
software engineering.

Acknowledgement
The National Science Foundation supported this

work under grant number IIS-0083362.

References
1. F.G. Stremler, Introduction to Communica-

tion Systems, Addison-Wesley, Reading,
Mass., 1977

2. D.P. Tollefsen, Collective Epistemic Agency,
doctoral dissertation, Dept. of Philosophy,
Ohio State Univ., Columbus, Ohio, 2002.

3. P. Coffee, “Perfect Computers Cost Too
Much,” PC Week, 6 July 1998, p. 54.

4. V.T. Holderfield, “A Foundational Analysis
of Software Robustness Using Redundant
Agent Decision-Making”, tech report, Cen-
ter for Information Technology, Univ. of
South Carolina, Columbia, 2001.

Michael N. Huhns is a professor of computer sci-

ence and engineering at the University of

South Carolina, where he also directs the

Center for Information Technology.

Vance T. Holderfield is a PhD candidate in com-

puter science and engineering at the Uni-

versity of South Carolina, where he also is

learning to scuba dive.

4 MARCH • APRIL 2002 http://computer.org/internet/ IEEE INTERNET COMPUTING

Agents on the Web

Oconee

Pickens

Anderson

Abbeville

McCormick

Aiken

Jasper

Hampton

Colleton

Dorchester

Orangeburg

Calhoun

Richland
Lexington

Dorchester

Bamberg

Charleston

Horry

Williamsburg

Georgetown

Berkeley

BerkeleyClarendon

Sumter

Dillon

DarlingtonChesterfield

Florence

Florence
Marion

Lancaster

York

Chester

Union

Cherokee

Spartanburg

Laurens

Newberry
Lee

Kershaw

Allendale

Barnwell

Beaufort

Edgefield

Greenwood

Greenville

Figure 2. Cell phone tower redundancy in South Carolina.

