
Peering

90 Published by the IEEE Computer Society 1089-7801/11/$26.00 © 2011 IEEE IEEE INTERNET COMPUTING

S ervice-oriented architecture (SOA) and its
flagship implementation technology known
as Web services have changed the way

software engineers design and develop today’s
enterprise applications. Web services help orga-
nizations maintain an operative presence on the
Internet. Acting as building blocks that can pro-
vide and transform data, Web services connect
together to create new on-demand value-added
composite services.1 Although SOA practitioners
advocate regularly for its benefits, SOA’s cur-
rent state doesn’t really sustain these benefits:
current SOA applications are designed primarily
for closed environments, are static at runtime,
and rely mainly on formal features and meth-
ods. The use of social networks of services can
remove these limitations.

Web Services Fall Short
of Their Potential
The current state of SOA has limited the wide-
spread use of Web services (or services com-
plying with SOA principles in general) because
several important issues remain unresolved,
including where to advertise services for bet-
ter and immediate exposure, how to discover
services with respect to user needs, how to
trust services when they’re found, and how to
smoothly replace services when they fail. These
issues have made services fall short of their
potential because services

•	 know only about themselves, not about their
users or peers;

•	 limit users’ intervention considerably and
operate as black boxes;

•	 consider only their own internal functional
and nonfunctional details during execution
and ignore other external details, such as
past user interactions;

•	 can’t delegate their invocations;
•	 don’t instantaneously and voluntarily coop-

erate with each other or self-organize; and
•	 can’t reconcile ontologies among each other

or with their users.

As pointed out in other work,2 current incar-
nations of Web services are impractical and
almost unusable, except in carefully controlled
corporate environments. The problem is in the
semantics used to characterize services: the
semantics in WSDL service descriptions, or in
proposed extensions to WSDL, are inadequate
for automated discovery. It was suggested2 that a
user community might be able to provide seman-
tic descriptions via a Wikipedia-like effort. How-
ever, for appropriate and useful services to be
discovered and engaged, sufficiently precise
semantics for describing services must be com-
bined with sufficiently intelligent software for
understanding the semantic descriptions. More-
over, better descriptive semantics improves only
the discovery part of the practical service prob-
lem, not the runtime execution part.

Fortunately, behavioral semantics are avail-
able in how services are used and combined, and
how they behave and interact. This is the social
aspect of services. Just as marshaling a social
community of users could result in improved
semantic descriptions of services, a similar
marshaling of the runtime behaviors of socially
enhanced services can be exploited to meet run-
time execution objectives.

The following example illustrates how ser-
vices are used with no reference to social ele-
ments. To find the definition of a word in
English, translate it into French, and then email
it, Alice creates a mashup consisting of Dic-
tionary, Translator, and PostTwitter ser-
vices. To find the weather forecast, translate it

Why Web Services
Need Social Networks
Zakaria Maamar • Zayed University, Dubai
Hakim Hacid • Alcatel-Lucent Bell Labs, Paris
Michael N. Huhns • University of South Carolina

IC-15-02-Peering.indd 90 2/25/11 10:52 AM

Why Web Services Need Social Networks

MARCH/APRIL 2011 91

into French from English, and post
it on her Twitter profile, Alice cre-
ates another mashup using Weather,
Translator, and PostTwitter ser-
vices. Here, Alice is using Trans-
lator for the second time without
questioning how it behaved/oper-
ated in the presence of Translator
when it was used for the first time.
Indeed, she connected Transla-
tor and Post Twitter again without
paying attention to the outcome of
the first connection — was it success-
ful or not? This detail isn’t reported
anywhere unless Alice decides to
keep track of everything that she
did, which is neither appropriate nor
doable. Could Translator “step in”
smoothly during the mashup devel-
opment to advise Alice not to use
PostTwitter, for example? Another
user, Bob, wants to create a mashup
that finds the weather description for
his city so that he can post it on his
blog. He uses the following services:
MyLocation, Weather, Transla-
tor, BlogPost, tinyURL, and either
PostTwitter or Email. Suppose
Carol also wants to create a new
mashup based on a weather forecast
service. Could she benefit from any
of Bob’s service mashups? Tradi-
tionally, the answer has been “no.”
Successful service invocations and
compositions aren’t saved for later
use, nor are unsuccessful ones.

Services are treated as isolated
components despite their previous
interactions with other peers when
complex services are built. Capturing
service interactions using, for exam-
ple, social networks could be benefi-
cial for software engineers who can
capitalize on the known successful
interactions as needs arise. The first
interaction concerns the selection
that led into identifying, in this case,
Weather over another peer service
such as Weather Forecast. Both ser-
vices are in competition because they
do the same job, which is to provide
weather information. The second
interaction concerns the execution

dependencies between services that
can become recurrent over time.
Translator and PostTwitter have
participated in several joint compo-
sitions. Finally, the third interaction
concerns service reliability. When
PostTwitter fails, Email takes over
automatically. If social networks
could capture all these interactions,
a (SOA- compliant) service would

•	 recommend the peers with whom
it would like to collaborate in case
of compositions, such as Weather
and Translator;

•	 recommend the peers that can
substitute for it in case of failure,
such as PostTwitter and Email;
and

•	 be aware of the peers that com-
pete against it in case of selec-
tion, such as Translator and
TranslatorWS.

Collaboration, substitution, and
competition are some of the links
that can connect Web services
together. To make full use of these
links, we describe in another work
some steps that software engineers
can adopt when building Web ser-
vices’ social networks:3 identify
these networks’ components, ana-
lyze Web services’ similarities and
differences to identify in which net-
works these Web services can sign
up, manage these networks’ growth,
navigate through these networks
to collect necessary details, and
maintain these networks in case of
changes in Web services.

The Value of Adding Social
Networks to Web Services
When enterprises discover and
engage Web services for business
needs, they’re included in service
compositions based on both the func-
tionality they offer and the quality
of service (QoS) they can guarantee,
which implies the need for contracts.
However, when consumers engage
and compose services, it’s much

more informal and dynamic, much
like how people download iPhone
apps. But unlike iPhone apps, which
are monolithic and operate indepen-
dently of each other, Web services are
intended to be composed, and their
functionality and QoS are interde-
pendent with other services. More-
over, they execute remotely and with
some degree of autonomy. Their dis-
covery and subsequent engagement
thus become social activities, much
like the collaboration and competi-
tion supported in social networks.

Social networks exemplify the
tremendous popularity of Web
2.0 applications, which help users
become proactive; colloquially, we
can refer to users now as prosum-
ers, providers and consumers at the
same time.4 Prosumers post defini-
tions on wikis, establish groups of
interest, and share tips and advice.
These various operations illustrate
the principles of “I offer services
that somebody else might need”
and “I require services that some-
body else might offer” upon which
SOA is built. Service offerings and
requests demonstrate perfectly how
people behave in today’s society,
imposing a social dimension on
how Web services must be handled
in terms of description, discovery,
binding, and composition. What if
this social dimension is the missing
link? It could serve as an additional
ingredient to the formal methods
that support SOA needs, namely,
service description, discovery,
binding, and composition.

Weaving social elements into
Web service operation means new
social Web services (SWSs) that will

•	 establish and maintain networks
of contacts;

•	 put users either explicitly or
implicitly in the heart of their life
cycle, enabling additional func-
tionalities through collaboration;

•	 rely on privileged contacts when
needed;

IC-15-02-Peering.indd 91 2/25/11 10:52 AM

Peering

92 www.computer.org/internet/ IEEE INTERNET COMPUTING

•	 form with other peers strong
and long-lasting collaborative
groups; and

•	 know with whom to partner to min-
imalize ontology reconciliation.

We see SWSs as the result of blend-
ing social computing with service-
oriented computing. On one hand,
social computing is the computa-
tional facilitation of social studies
and human social dynamics as well
as the design and use of information
and communication technologies
that consider social context.5 Social
computing is also about collective
actions, content sharing, and infor-
mation dissemination in general.
On the other hand, service-oriented
computing builds applications on
the principles of service offer and
request, loose coupling, and cross-
organization flow.6 Blending social
computing with service-oriented
computing leads to SWSs that
“know” with whom they’ve worked
in the past and with whom they
would potentially like to work in the
future. These two timestamped ele-
ments constitute the “memory” of
actions that SWSs can accumulate
over time and apply in the future.
In addition, they show the collective

action of a group of SWSs that share
respective experiences in response
to requests for developing complex
value-added composite services.
SWSs are expected to take the initia-
tive in advising users how to develop
and reuse value-added services.

Social Web Services in Action
In many ways, smartphone apps
are like Web services in that they’re
functional components that are dis-
covered and executed. However, they
have significant differences:

•	 apps are complete and
stand-alone;

•	 apps are owned and executed
locally;

•	 apps aren’t composable, except as
informal mashups; and

•	 apps have non-standard APIs.

Figure 1 illustrates some of the
differences in the way that Web
services and apps are composed
and executed, leading to a variety
of architectural possibilities. The
appropriate choice of architecture
is based primarily on QoS, such as
the amount of computation required,
bandwidth of the data exchange, the
system’s response time, the user’s

privacy requirements, and whether
the service being provided is pro-
prietary and charged per use. When
“socialized,” Web services can pro-
vide information about how they’ve
behaved and been used in the past.
Architecturally, services deployed
in a cloud could have their social
aspects exploited more easily.

Establishing and maintaining
Web services’ social networks can
happen in three ways:

•	 Collaboration. By combining their
respective functionalities, SWSs
have the capacity to work together
on complex user requests. Conse-
quently, an SWS manages its own
network of collaborators, so that
it decides if it likes collaborat-
ing with peers based on previous
experiences. It can also recom-
mend peers.

•	 Competition. SWSs compete
against each other when they offer
similar functionalities. Their non-
functional properties differentiate
them when users’ nonfunctional
requirements must be satisfied.
Consequently, an SWS learns
about its own network of com-
petitors, so that it can attempt to
improve its nonfunctional proper-
ties with respect to other peers.7

•	 Substitution. Although SWSs
compete against each other, they
can still help each other when
they fail if they offer similar
functionalities.8 Consequently,
an SWS manages its own net-
works of substitutes, so that it
can meet its service-level agree-
ments (SLAs) when it encounters
a potential failure. It can then
identify its own best substitutes
in response to users’ nonfunc-
tional requirements.

These three ways for maintaining
social networks can be considered
independently as a network of social
behaviors. They can be the starting
point of building more networks,

Smart-
phone

App
1

...

Download

Appropriate when
computation minimal and
apps minimally dependent

Appropriate when service
is proprietary or pay-per-use
and data exchange modest

WSBPEL
composer

Web
service

1

Web
service
N

Invoke ...

App
N

WSBPEL
composer

...
Web

service
1

Web
service
N.

Invoke

Cloud execution appropriate
when computation

and data exchange demanding

Figure 1. Architectures for service composition and execution. Different
execution configurations are suggested depending on the nature of components
(Web services or app) involved and users’ nonfunctional requirements.

IC-15-02-Peering.indd 92 2/25/11 10:52 AM

Why Web Services Need Social Networks

MARCH/APRIL 2011 93

depending on the interactions that
arrive between Web services such as
delegation and supervision.

Communities vs. Social
Networks of Web Services
Communities can establish connec-
tions between Web services.9 How-
ever, a community-based connection
offers only a limited view of the
activities required in managing Web
services. In contrast, a social-based
connection offers a wider view by
stressing the interactions that occur
between users, between Web ser-
vices, and between users and Web

services. Table 1 highlights Web
service management by comparing
basic strategies to community- and
social-based strategies. The compari-
son criteria include user profiling,
Web service description, Web service
discovery, Web service composition,
Web service advertisement, and trust
between Web services and users.

A social network-based strategy
for Web service management, as
shown in this table, intends clearly
to reinforce Web services’ perfor-
mance capabilities through a fine-
grained consideration of analysis
and reasoning10 and consideration

of “extra” information such as past
experiences rather than just infor-
mation related to Web services. A
social network-based strategy offers
better exposure, use, and follow-up
of Web services compared to basic
and community-based strategies.
As an example, at the composition
level, social networks can include
recommendations based on particu-
lar users’ interests (as well as their
immediate social relatives) instead
of considering “general” and static
behaviors of the services’ composi-
tion. Another example of the social
network-based strategy’s strength is

Table 1. Web service management strategies.

Comparative
elements

Basic Community (Web 2.0) Social networks

User level

Profile User profile built
following regular use
of Web services

General profile built for whole community
according to use of Web services; this
profile is then distributed to all members
and customized individually

User profile built following regular use
of Web services and social relations that
users maintain with others; relations are
either explicit or implicit

Web service level

Description Web service
description
developed by
provider and then
made available to all
users

Web service description made available by
provider subject to enrichment through
annotations by community members and
then offered to other members for use;
enriched description might suffer from
discrepancies

Web service description made available by
provider subject to possible enrichment
through annotations by members of
the same social network, increasing the
enriched description acceptance by the
rest of this social network

Discovery Web service
discovery after
registry screening

Web service collective discovery after
registry screening and discovery outcome
shared with other community members

Web service discovery after registry
screening driven by the needs of each
social network’s members

Composition Web service
composition
driven by individual
users familiar
with composition
techniques and
constraints

Web service collective composition
driven by some community members;
composition outcome shared with other
members; community interests prevail
over individual interests

Web service composition driven by the
needs and previous experiences of each
social network’s members

Trust Trust directly
established between
user and Web
service provider

Web service trusted by members of the
community based on past experiences;
ranking technique can be used

Trust mainly related to the strength of the
social relations that users have on top of
their experiences of Web service use

Enterprise level

Advertising Web service
advertisement done
by its provider

Web service use supports advertisement,
but limited within community boundaries;
limited use of Web services because of
trust concerns

Web service advertisement taken care of
by users via their social contacts; better
use of Web services because of trust in
these contacts

IC-15-02-Peering.indd 93 2/25/11 10:52 AM

Peering

94 www.computer.org/internet/ IEEE INTERNET COMPUTING

exemplified at the enterprise level by
leveraging the diffusion property of
a network for a better advertisement
of Web services.

W eb services have progressed sig-
nificantly from their inception

for addressing business problems to
their subsequent democratization to
their anticipated socialization. Social
networks, with their underlying prin-
ciples and metrics, can offer innova-
tive solutions to some of the issues
Web services face today. The grow-
ing number of initiatives reflecting
the blend of social computing with
service-oriented computing is cer-
tainly a positive sign of this area’s
growing importance.8,10,11

References
1. M. Papazoglou et al., “Service-Oriented

Computing: State of the Art and Research

Challenges,” Computer, vol. 40, no. 11,

2007, pp. 38–45.

2. C. Petrie, “Practical Web Services,” IEEE

Internet Computing, vol. 13, no. 6, 2009,

pp. 94–96.

3. Z. Maamar et al., “Using Social Networks for

Web Services Discovery,” to be published in

IEEE Internet Computing, 2011.

4. C. Pedrinaci and J. Domingue, “Toward

the Next Wave of Services: Linked

Services for the Web Data,” J. Universal

Computer Science, vol. 16, no. 13, 2010,

pp. 1694–1719.

5. F.Y. Wang et al., “Social Computing: From

Social Informatics to Social Intelligence,”

IEEE Intelligent Systems, vol. 22, no. 2,

2007, pp. 79–83.

6. M.P. Singh and M.N. Huhns, Service-

Oriented Computing: Semantics, Processes,

Agents, John Wiley & Sons, 2005.

7. M. Alrifai, D. Skoutas, and T. Risse,

“Selecting Skyline Services for QoS-

based Web Service Composition,” Proc.

19th Int’l World Wide Web Conf. (WWW

2010), ACM Press, 2010, pp. 11–20.

8. Z. Maamar et al., “LinkedWS: A Novel

Web Services Discovery Model Based

on the Metaphor of Social Networks,”

Simulation Modelling Practice and

Theory, Elsevier Science Publisher, vol. 19,

no. 10, 2011, pp. 121–132.

9. L. Chen et al., “Towards a Knowledge-based

Approach to Semantic Service Composition,”

Proc. 2nd Int’l Semantic Web Conf. (ISWS

2003), Springer-Verlag, 2003, pp. 319–334.

10. A. Maaradji et al., “Towards a Social

Network-based Approach for Services

Composition,” Proc. 2010 IEEE Int’l Conf.

Communications (ICC 10), IEEE Press,

2010, pp. 1–5.

11. M. Nam Ko et al., “Social-Networks

Connect Services,” Computer, vol. 43,

no. 8, 2010, pp. 37–43.

Zakaria Maamar is a full professor in the Col-

lege of Information Technology at Zayed

University, Dubai, UAE. His research inter-

ests include Web services, social networks,

and context-aware computing. Maamar

has a PhD in computer science from Laval

University, Quebec City, Canada. Contact

him at zakaria.maamar@zu.ac.ae.

Hakim Hacid is a researcher at Bell Labs

France (Alcatel-Lucent). His current

research focuses on social interaction

analysis to provide added value appli-

cations for users and service providers.

Before joining Bell Labs, Hacid was a

research associate at the University of

New South Wales, where he worked with

the service-oriented computing group.

He has a PhD in computer science from

the University of Lyon, France. Contact

him at hakim.hacid@alcatel-lucent.com.

Michael N. Huhns holds the NCR Professor-

ship and is chair of the Department of

Computer Science and Engineering at

the University of South Carolina. He has

a PhD in electrical engineering from the

University of Southern California. Huhns

serves on the editorial boards for 12

journals, is a senior member of the ACM,

and is a fellow of IEEE. Contact him at

Huhns@sc.edu.

IC-15-02-Peering.indd 94 2/25/11 10:52 AM

