
A Framework for Intelligent Web Services: Combined HTN and CSP Approach

Incheon Paik*, Daisuke Maruyama*, Michael N. Huhns**
* School of Computer Science and Engineering

University of Aizu
E-mail: paiki@u-aizu.ac.jp, dmaru@ebiz.u-aizu.ac.jp

** Dept. of Computer Science and Engineering
University of South Carolina

E-mail: huhns@cs.edu

Abstract

Solving general real-life problems requires a set of
appropriate services to be composed via planning,
scheduled, and then executed. Web service composition is
the most difficult aspect and is our focus. In this paper,
we describe a new framework for intelligent semantic
Web services that supports the planning and scheduling
aspects by a combined HTN planner and CSP. The
framework covers all of the procedures needed to deal
with a user’s request, including domain analysis of the
request, task flow decisions and CSP creation by the
planner, and solving the CSP by a distributed CSP solver.

1. Introduction

Web users require various types of information and
constraints, and automatic service composition requires
several rounds of planning, because of trial and error, or
for flexibly coping with dynamic exceptions. Web service
composition by a planner alone has limitations that apply
to a more general and intelligent composition of services.
First, it is inefficient for autonomously finding a solution
in planning, because it does not provide a suitable basis
for dealing with the evaluation of planning results with
constraints. Second, although it works well for task
ordering in planning, it is not good for dealing with a Web
user’s various requests for information. As real-life
problems1 involve planning, scheduling, and executing,
Web service composition in real life requires not only
planning information, but also additional information
requests with constraints, which can be met by scheduling
tasks jointly. A Constraint Satisfaction Problem (CSP)
formulation provides a strong basis for scheduling in a
variety of real-life problems on the Web. Third, it is weak
regarding maintenance, because of the frequent
invocation of services on the Web. Although an
Hierarchical Task Network (HTN) planner can invoke
outside Web services during planning, this causes severe

1 The planner determines a sequence of actions, and the

scheduler maps activities and their respective operating
times to resources. In this paper, we involve the
executor with the HTN planner.

restrictions and inefficiency, because service invocations
in the planner are merged with the planning strategy.

In this paper, we suggest a combined architecture of
planning and CSP for a basic problem-solving engine to
automate Web service composition that tackles the
problems above, giving an entire framework of intelligent
Web services for users. We claim that a HTN and CSP
combination is better than an HTN alone when problems
involve scheduling plus other parameters. Composed Web
service problems are of this type. The framework of a
combined architecture will give an intelligent Web
service composer a better environment for solving various
problems, from tactical planning with well-established
process fragments to puzzle-mode planning that
characterizes domains such as the blocks-world.

2. Sample Scenarios
Users’ constraints can be different in different domains,

and there can be many details in a domain. Here, we
illustrate an example of scenarios for intelligent Web
services.

A user, who lives in Aizu City in Japan, wants to go to
South Carolina in the U.S.A for a vacation. If the user
wants to go by train to the Narita international airport near
Tokyo, there are three stages: by local train from Aizu to
Koriyama bullet train station, by bullet train from
Koriyama to Tokyo, and by JR Express from Tokyo to
Narita, from where a series of flights completes the
journey to South Carolina.

Therefore, the user calls an agent to construct an
itinerary to South Carolina. For this, the user provides
basic information such as the departure date and location,
and the arrival date and location. Suppose that the user
wants to depart at 2:00 PM from Aizu because of a
special business meeting. Therefore, he adds this new
constraint to the basic input information.

Now, when the travel planner solves this problem, the
solution may produce other internal spontaneous
constraints temporarily. For instance, the planner should
reserve a one-night stay in a hotel near Narita and a flight

the next day when there is no flight to South Carolina at
Narita on that day. On another occasion, the user may
specify the arrival time in South Carolina as a constraint,
which the planner will also need to accommodate.

3. Framework of Intelligent Web Service
In this section, an outline of our framework for

intelligent Web services is explained. A user presents a
request with some constraints to a service interface of the
intelligent Web service. The user’s request, in general
domains, can be in the form of natural language or a
flexible Web graphical user interface. Then, the request is
passed to the domain analyzer (DA).

The DA analyzes the request to capture its goal and
domain. According to this analysis, the DA decides the
domain of the problem, a rule to solve the top-level
problem, the initial variables and states, i.e., the initial
CSP tuple, and the constraints.

The information is then passed to the problem-solving
engine. The problem solving engine, which also plays the
role of composing Web services automatically, using an
HTN planner and a CSP solver, comprises three parts: the
HTN planner, the CSP tuple, and the DCSP solver. This
engine is the core element of our research. Here, we
combine the HTN planner and CSP problem solving.

When the HTN planner in the problem-solving engine
receives information about the goal problem such as the
initial states and the goal, clues for HTN planning, and the
initial CSP tuple, it selects a suitable method for the
problem, planning from a KB or from available Semantic
Web rules. As the planner operates, it produces the final
CSP tuple according to the planning results.

Then, the CSP constructor elaborates the prestage CSP
tuple to create complete CSP tuples, considering the
ontology and grammar of CSP in that domain. We have
developed a novel way of describing the CSP tuple in our
framework. The CSP information will be converted into
the form of a CSP tuple. The final CSP solver reads this
input concerning CSP tuples to produce the final solution
sets. The solver solves the problem by filling out the
variables in the domain with values satisfying the
constraints using backtracking search and a DCSP solving
technique.

4. From HTN to CSP Domain
4.1 Input and Domain Analysis

In our framework, a user’s request is analyzed in the
DA, which will then be passed to the planner part of the
problem-solving engine. A user’s request mainly
comprises three elements: basic information, additional
information and the user’s constraints, and a domain
information goal. For example, this is a user request in the

trip domain: “Plan a trip from Aizu-Wakamatsu to South
Carolina, starting on Sep. 20, 2005 1:00 PM, returning to
Aizu on Sep. 29, 2005.”

4.2 Creation of HTN Input Information
(HTNInput)

The set of UserRequest needs to be mapped into the
contents of the HTN planner.
From UserRequest to HTNInput, mapping function fU2H,
fU2H: UserRequest HTNInput. Here, HTNInput =
{Operator, Method, Axiom, InitialState, Goal}.

We can define the functions that map the elements of
UserRequest into the HTNInput set as follows.

fU2H = {(BasicInfo, InitialState∪Axiom), (UserConstraint,

Method∪Operator), (DomainInforGoal,
Goal)}

The information for HTNInput generated from

UserRequest will be added to the real entity for input to
the HTN planner.

4.3 Creation of CSP-Tuple Set from the HTN
Planner

The objective of an HTN planner is to produce a
sequence of actions that perform some activity or task to
reach a goal. The description of the planning domain
includes a set of operators similar to those of classical
planning, and a set of methods, each of which is a
prescription for how to decompose a task into subtasks.
Planning proceeds by using methods to decompose tasks
recursively into smaller and smaller subtasks, until the
planner reaches primitive tasks that can be performed
directly, using the planning operators.

Within this framework, the HTN is to generate the CSP
set. Resulting from the planning operations of SHOP2,
SHOP2 produces a sequence of instantiated operators that
will achieve the task list from a state in a set of axioms,
operators, and methods. These operators represent the
main stream of work required to reach the goal state.

The planning result does not contain additional
information, such as scheduling information, required to
satisfy the final state from the user’s original problem. In
our trip domain example, the HTN planner will produce a
basic route and transportation, such as “Aizu (Train)
Koriyama (Shinkansen) Tokyo (JR Express) Narita
(Airplane) South Carolina”. To fulfill the user’s
original request, we need to include time, fare, and
transportation information, number of passengers,
constraints among these data, etc. Therefore, although the
planner develops a plan, it needs to produce additional
information for a final solution in the form of a CSP.

5. Distributed CSP Solver
In the previous section, we showed the creation of the

CSP set by the planner to fulfill a user’s request. The CSP
solver in this section inputs this CSP set to produce a final
solution set, by solving the CSP. The CSP solver starts its
operation by input of the CSP set. We define a format to
describe the CSP set for the first-level CSP in our
framework, called Planner-CSP Interchange Format
(PCIF). As CSP comprises the triple <Variable,
Constraint, Domain>, PCIF describes this triple. As the
problem sets in CSP may belong to many problem
domains, we adopt a distributed CSP (DCSP) architecture.
The candidate values can be calculated from the internal
system, in the usual CSP solving world. However, for
Web services, we meet several different situations and
variations, such as different domain applications, different
service discovery and composability, and network
situations. In addition, for better performance on the
Internet, we need to invoke Web services simultaneously
and independently. These considerations lead us towards
using a DCSP set. For DCSP, we also adopt the concept
of “affiliation” according to the application domain.
Affiliation makes the CSP set differentiate between
domains.

From the DCSP tuple, the DCSP solver searches for a
final solution to the user’s request to invoke Web services
in the relevant domain.

6. Implementation and Evaluation
We implemented the whole sequence of the proposed

framework in order to provide proof of concept for it. The
implementation mainly comprises three parts: domain
analyzer, HTN planner, and CSP handler.

JSHOP2 was used as the planner. The planner
generates two pieces of information for the CSP: a task
flow (action sequence), and a CSP set corresponding to
the scheduling input for the final solution of the user’s
request. JSHOP2 was revised to generate the CSP sets
used by the HTN planner. The planner and CSP solver
communicate with Web services by Axis Simple Object
Access Protocol engine.

In the experiment, the problem solving time and the
number of Web service invocations were counted. Table 1
shows the experimental results. In our test samples, we
found that the number of invocations of Web services and
the problem solving time for the two models were similar.

The processing takes a long time because the generated
CSP set is supplied by the I/O operation, and the object
mapping and instantiation take considerable time. A
revision of the processing method to remove I/O
operations, and of the lightweight design of the CSP
solver, will enhance the system’s performance. However,
as Web service invocations take far more processing time

than problem solving, we need to decrease the number of
service invocations for better processing-time
performance.

Table 1. Experimental Result

7. Conclusions and Future Work

We presented in this paper a framework that provides a
user with intelligent services based on Semantic Web
services. We describe a complete architecture to capture
the domain from a user’s request, generate a solution plan
through semantic Web service composition, and then
execute the solution plan to satisfy the user’s requirement.
The main part of the framework, a model for problem
solving to automate Web service composition with
additional scheduling information by the combined HTN
planner and CSP, is described. Our combined system
removes the limitations very well. The HTN produces the
main task flow for problem solving in the form of a CSP
set, which contains all information for the user’s initial
requirement, including additional scheduling information,
and meshes well with the task flow information to
produce a final solution. We also implemented a
prototype for giving proof-of-concept of the framework.

8. References
[1] E. Sirin, B. Parsia, D. Wu, J. Hendler, D. Nau, HTN

planning for Web service composition Using SHOP2,
Journal of Web Semantics, Vol. 1, No. 4, 2004, pp.
377-396.

[2] Ugur Kuter, Evren Sirin, Bijan Parsia, Dana Aau,
James Hendler, “Information Gathering During
Planning for Web Service Composition”, In
Proceedings of the Third Internatonal Semantic Web
Conference (ISWC2004), Hiroshima, Japan,
November 2004.

[3] A. Nareyek and E. C. Freuder, etc, ”Constraints and
AI Planning”, IEEE Intelligent System, Mar./Apr.,
2005, pp. 62-72.

 Item
Solving
System

Web Service
Invocations

Solving Time
(ms)

Activity in
Composition

HTN
Planner
only

4

3039

Planning

Combined
HTN and
CSP

4

5789

Planning
Scheduling

