
Abstract
Conventional methods for software develop-
ment, testing and validation do not provide the
levels of reliability and robustness that consum-
ers of large, complex and heterogeneous systems
will demand. This document introduces the idea
of multiagent-based redundancy for robust soft-
ware development. Robustness can be achieved
through redundancy, and we hypothesize that
agents by being naturally smaller and easier to
program than conventional systems, are an ap-
propriate unit for adding redundancy. Agents
having different algorithms but similar responsi-
bilities produce the redundancy. The paper pre-
sents a testbed related to autonomic computing
that is based on the use of existing Web services.
We discuss the results obtained from the testbed.
We also discuss the applicability of the work
presented here to autonomic computing. We pre-
sent in a nutshell results obtained from some
other experiments we have run so far, as well as
our future research plans.

1 Introduction
Making robust software systems has been always an issue
of importance in software engineering. It is a highly de-
sirable and sometimes indispensable requirement that a
system be able to function correctly or coherently in a
changing environment, in the presence of invalid or con-
flicting inputs, and in the presence of situations not con-
sidered during its design.

The complexity of systems has increased significantly
in recent years. Computer systems are now entrusted with
control of global telecommunications, electric power dis-
tribution, water supplies, airline traffic, weapon systems,
and the manufacturing and distribution of goods. Such
tasks are typically complex, involve massive amounts of
data, affect numerous connected devices, and are subject
to the uncertainties of open environments such as the
Internet. Our society has come to expect uninterrupted
service from these systems. Unfortunately, making robust
software systems becomes a more challenging task as the
complexity of the systems increases: it is extremely diffi-

cult and sometimes impossible to anticipate all the possi-
ble scenarios in which these complex systems will per-
form so as to make the appropriate tests.

The complexity of current computing systems as well
as their robustness is also an issue addressed in the field
of Autonomic Computing. Large, complex and heteroge-
neous systems as seen by autonomic computing [Kephart
and Chess, 2003; IBM, 2002] will be very difficult to test
effectively, and to deploy with the levels of confidence
that consumers will demand: “Testing autonomic ele-
ments and verifying that they behave correctly will be
particularly challenging in large-scale systems because it
will be harder to anticipate their environment, especially
when it extends across multiple administrative domains
or enterprises” [Kephart and Chess, 2003]. Nevertheless,
they have to be robust in order to make things simpler for
administrators and users of IT.

This document introduces the idea of multiagent-based
redundancy for the development of robust software, even
conventional, non-agent-based software. Robustness can
be achieved through redundancy, and we hypothesize that
agents are an appropriate unit for adding redundancy. By
being naturally smaller and easier to program than con-
ventional systems, cooperative and communicative, able
to allow dynamic composability and interaction abstractions,
and able to represent multiple viewpoints, negotiate and
use different decision procedures, agents seem to be the
best approach to incorporate software redundancy. The
agents have different algorithms but similar responsibili-
ties.

In the next section we summarize the methodology we
have been using. In section three we present a testbed
related to Autonomic Computing that is based on the use
of existing Web services. Then, we present results that
show an improvement in robustness due to redundancy.
We conclude by discussing our future research plans.

2 Methodology
Our goal is to create robust software systems and we
propose to do that through massive redundancy, where
the redundancy is managed by techniques developed for
multiagent systems. That is, agents will represent the
individual algorithms and components, and will use tech-

Achieving Software Robustness via Multiagent-Based Redundancy
(Extended Abstract)

Rosa Laura Zavala Gutiérrez and Michael N. Huhns
University of South Carolina,

Department of Computer Science and Engineering
Columbia, SC 29208 USA

{huhns, zavalagu}@engr.sc.edu

niques for cooperation and negotiation to achieve coher-
ent, system-wide behavior.

Several researchers have investigated the use of multi-
agent systems for the development of software systems.
Jennings has shown that multiagent systems can form the
fundamental building blocks for software systems, even
if the software systems do not themselves require any
agent-like behaviors [Jennings, 2000]. When a conven-
tional software system is constructed with agents as its
modules, it can exhibit several additional benefits
[Coelho et al, 1994; Huhns, 2001].

Because agents can represent multiple viewpoints and
can use different decision procedures, they can produce
more robust systems. The essence of multiple viewpoints
and multiple decision procedures is redundancy, which is
the basis for error detection and correction.

We aim to create agent systems in which the agents
work together as a group and give better results than
those they give as individuals. We construct the agent
systems out of software components and wrappers for
those components, which give them core agent grouping
capabilities, that is, the capabilities needed to participate
in a group decision. Each agent in the system has differ-
ent software components but similar responsibilities. Its
agent-based wrapper knows nothing about the inner
workings of the component. It has knowledge only about
the characteristics of its component, such as the input
data type, the output data type, its time complexity and
its space complexity.

The methodology we are investigating requires many
diverse copies of algorithms and components. A problem
is how to obtain these. One solution is to rely on open-
source communities of developers. Another potential
source of algorithms can be based on Web services,
which is the option elaborated in this paper.

For combining their functionalities, the agents jointly
agree on a solution. We studied possible modes for the
agents to do that [Huhns et al, 2003]. A preprocessing
approach would consist of the agents choosing, at the
beginning, which one or ones are going to perform the
task. Techniques for this approach include randomly
picking an agent, selecting an agent by auction or voting
(using information such as reliability and past perform-
ance of components), and distributing the task to be per-
formed into subtasks to individual agents. A post-
processing approach would consist of all the agents per-
forming the task and then deciding on which one pro-
duced the best result. Techniques for this approach in-
clude taking the result of the agent whose processing was
the fastest, choosing the result given by most agents (vot-
ing), making a decision only about controversial data
subsets, and incremental voting. A combination of the
preprocessing and postprocessing approaches could also
be used.

A wider description of these techniques as well as ad-
ditional interaction protocols for the coordination and
communication among agents when making a decision
can be found in [Huhns et al, 2003]

3 A Testbed for Autonomic Computing
We created client agents for a number of Web services
for weather, each offered by a different provider. Cur-
rently we have clients for ten different weather Web ser-
vices. Then we converted each component or Web ser-
vice into an agent by wrapping it. The agent gives to the
component the capabilities to interact with others in order
to jointly agree on a solution.

Each agent consists of a component (weather Web ser-
vice) and a wrapper for that component. The wrapper
knows nothing about the inner workings of the compo-
nent. It only knows about the external characteristics of
its component, such as its input and output data type(s),
its location, the methods that it exposes (its interface) and
its complexity. The agent wrappers were written in JADE
and make use of the Java JAX-RPC and SAAJ APIs, as
well as the Apache AXIS SOAP implementation. The
agents can be viewed as SOAP clients with agent capa-
bilities, i.e., protocols for handling communication, nego-
tiation, and interaction.

A distributed preprocessing approach was used for an
initial experiment on our testbed [Zavala, 2003]. The
agents use the FIPA-request protocol to communicate and
agree on a solution. Upon a user request, each agent de-
cides, based on the input data type and desired output,
whether its component is capable of executing the user
request. All the agents whose component is capable of
executing the user request try to run it and the first valid
result (does not return null or a fault) is drawn. In this
way, over a period of time, the fastest and most available
components are chosen the most often, though some con-
nections are very slow or sometimes not available.

Together, our weather agents provide a more robust
weather service than any individual weather Web service
alone: they work faster, have less connection failures (is
much more unlikely that none of the ten connections
work), and they work for a wider set of scenarios. Some
of them accept only a US zip code as input. Others give
the weather for different countries, i.e., one of them
works only for Iraq (asking for the name of the city) and
US (asking for the zip code) while another can give the
weather for almost every country by means of an airport
code. Some of them give temperatures in Fahrenheit, oth-
ers in Celsius, and others in both scales. Also, some
components provide only the current temperature, while
others provide additional information like n-day fore-
casts, humidity, sky, wind, visibility, location, etc. The
components vary also on the additional methods provided
to make their use easier, i.e., list of the countries for
which they can give the weather, list of airports in a par-
ticular country or region, list of regions in a country, etc.
Finally, some connections are faster than others as well
as steadier.

In earlier experiments we built three agent systems,
each for a different domain (sorting a list of elements,
reversing the order of the elements in a list, and evaluat-
ing arithmetic expressions defined in postfix notation).
The collected software components or algorithms have

different characteristics, such as input data type, output
data type, time and space complexity, performance and
correctness. They were all written in Java and the wrap-
pers in JADE. We conducted a set of experiments with
the agent systems and with the software components
alone. The architectures we used for the combination of
the agent’s functionality were a distributed pre-
processing approach and a distributed post-processing
approach. From our experiments we could observe that
more algorithms produced better results than any one
algorithm working alone. Together, they succeeded for a
wider set of inputs than the inputs accepted by any indi-
vidual component. Also, working together they avoided
raising exceptions that were raised in some situations
when working alone.

4 Conclusions and Future Work
Our research intersects with the realm of autonomic
computing in several ways. First, our methodology can
benefit from considering the autonomic elements neces-
sary to facilitate redundancy through agents, such as self-
monitoring, self-awareness, and environment-awareness.
Second, autonomic computing applications can use our
methodology at different levels: (a) making individual
components of autonomic systems robust, which would
help in the fault tolerance requirement of those compo-
nents; and (b) customers could apply our approach by
creating redundant agent systems out of services from
different providers. That would make their software more
robust. Finally, software robustness provided by multi-
agent-based redundancy should alleviate the necessity of
a self-healing task.

We are currently working on the development and use
of ontologies to allow a better combination of compo-
nents and knowledge sharing between the agents. The
existence of a weather ontology, including concepts such
as forecast, humidity, sky, wind, visibility, location, air-
port, scales, zip code, countries, regions, and cities,
would allow the agents to compare their results and
maybe combine them to provide a better service to a user.
For example, if two agents that output the temperature in
different scales (i.e., Fahrenheit and Celsius) were to
compare their results they must be aware of that differ-
ence so that they do not mistakenly compare values hav-
ing different units. Even more, they could convert them
to an agreed scale.

Our interest is in experimentation on large-scale sys-
tems, i.e., wrapping agents around redundant software
components written in different computer languages, dif-
ferent OSs, and distributed geographically. We will con-
tinue our development of the Web services testbed.

A more interesting solution is to imagine a range of
developers from a broader class of our society. It is pos-
sible that through well programmed and verified agent
wrappers, software of a variety of types from a variety of
developers could be accommodated. Just as the Web
enables a wide range of people to publish and distribute
information, this would enable more people to develop

and contribute behavior. The resultant systems of aggre-
gated behavior, such as those for finances, electrical
power distribution, and telecommunications whose be-
havior affects the lives and well being of the members of
a society, would be more likely to operate on behalf of
those members.

The field of machine learning, in particular wrapper
learning, can be explored for cases where the collection
of software components is vast and it is not viable to cre-
ate a functional interface for all the components accord-
ing to the format of the one needed by our wrapper.
Wrapper learning techniques could be applied to make a
wrapper generator module that would generate wrappers
for each software component without the need of a func-
tional interface for those components. This module would
learn to deduce the information needed (input parameters,
way of running the component) from either a functional
interface provided by the component provider (which
could be in any format, even natural language) or the
code of the component (one module generator per lan-
guage).

Just as there are a number of ways that a group of peo-
ple can reach conclusions and make decisions, so are
there a number of ways that a group of agent-wrapped
software components can combine their results. We will
study alternative ways for combining the agents’ func-
tionality, i.e., a combination of preprocessing and post-
processing approaches, or a standby approach where re-
dundant components in the system are not used until a
primary service provider fails. Also, different techniques
for each approach can be tested, i.e., instead of choosing
the outcome reached by a majority of the agents in the
preprocessing approach, we could use the average of the
results (for the particular domain, such as weather).

Acknowledgments
The US National Science Foundation supported this work
under grant number IIS-0083362.

References
[Coelho et al, 1994] Helder Coelho, Luis Antunes, and
Luis Moniz, “On Agent Design Rationale,” in Proceed-
ings of the XI Simpósio Brasileiro de Inteligência Artifi-
cial (SBIA), Fortaleza (Brasil), October 17-21, 1994, pp.
43-58.

[Huhns et al, 2003] Michael N. Huhns, Vance T. Holder-
field, and Rosa Laura Zavala Gutierrez, “Achieving
Software Robustness Via Large-Scale Multiagent Sys-
tems,” in Software Engineering for Large-Scale Multi-
Agent Systems, Alessandro Garcia, Carlos Lucena,
Franco Zambonelli, Andrea Omicini, and Jaelson Castro,
editors, Springer Verlag, Lecture Notes in Computer Sci-
ence, Volume 2603, Berlin, 2003, pp. 199-215.

[Huhns, 2001] Michael N. Huhns, “Interaction-Oriented
Programming,” in Agent-Oriented Software Engineering,

Paulo Ciancarini and Michael Wooldridge, editors,
Springer Verlag, Lecture Notes in AI, Volume 1957, Ber-
lin, 2001, pp. 29-44.

[IBM, 2002] Autonomic Computing: IBM's Perspective
on the State of Information Technology, available at
http://www.research.ibm.com/autonomic/manifesto/,
June 2002.

[Jennings, 2000] Nicholas R. Jennings, “On Agent-Based
Software Engineering,” Artificial Intelligence, Vol. 117,
No. 2, 2000, pp. 277-296.

[Kephart and Chess, 2003] Jeffrey O. Kephart and David
M. Chess, “The Vision of Autonomic Computing,” IEEE
Computer, Vol. 36, No. 1, January 2003, pp. 41-50.

[Zavala, 2003] Rosa Laura Zavala Gutiérrez, “Weather
Agents Testbed.”
http://www.cse.sc.edu/~zavalagu/redundancy/testbed

