
Sharing Ontology Schema Information for Web Service Integration

Jingshan Huang, Rosa Laura Zavala Gutiérrez, Benito Mendoza García, and Michael N. Huhns

Computer Science and Engineering Department
University of South Carolina
 Columbia, SC 29208, USA

{huang27, zavalagu, mendoza2, huhns}@engr.sc.edu

Abstract

In spite of many standards efforts, Web services

with similar or compatible functionalities often have
heterogeneous semantics. One reason is the disparate
ontologies used for service descriptions. In order to
compare and compose Web services, the ability to
merge different ontologies is essential. This paper
describes an approach to align numerous,
independently designed ontologies. Our approach is a
completely automated one, without the need for prior
agreement on semantics. It incorporates WordNet and
heuristic reasoning and infers new knowledge by self-
learning. Our system provides a solid base for the
seamless integration of Web services.

1. Introduction

In traditional business, great potential value will be
added if Web service applications are to be integrated.
Originally business partners needed to predefine the
terminology of their interaction using EDI standards
such as ebXML [15]. Therefore, the automation
activities in the Web were tightly coupled. Nowadays
Web services can be considered the next generation of
EDI with extra capabilities because they also allow
sharing tasks and automating processes. As they are
based on simple and non-proprietary standards (i.e.,
UDDI for discovery, WSDL for description,
BPEL4WS for coordination, WSCI for choreographed
interactions, and SOAP for communication), Web
services promise to increase interoperability and reuse,
and lower the costs of software integration and data-
sharing with partners.

There is no doubt users can obtain some value in
accessing a single Web service through a semantically
well-founded interface. However, a greater value is
derived through enabling a flexible composition of
services, which will not only create new services, but
also potentially add value to preexisting ones [1].

Therefore, the seamless composition of distributed
Web services becomes important. On the other hand,
because there is no agreed-upon global ontology, Web
services from different providers are usually featured
by heterogeneous semantics. A challenging but
worthwhile goal, then, is to be able to share schema
information from different ontologies.

In this paper, we introduce a system (PUZZLE)
implementing an approach to merge/align distributed
and independently designed ontologies. In [2] the main
technique for semantic mapping between two ontology
concepts relies on simple string and substring matching.
We extend that work to incorporate: further linguistic
analysis; contextual analysis based on the properties of
the concepts in the ontology and the relationships
among these concepts; extended use of WordNet [4] to
include the search of not only synonyms but also
antonyms, plurals, hypernyms, and hyponyms; use of
the Java WordNet Library API [13] for performing
run-time access to the dictionary; integration of
heuristic knowledge into the contextual analysis phase;
and reasoning rules based on the relationships among
ontology concepts and each concept’s property list. A
set of experiments and corresponding evaluation have
been carried out to show the promising result.

The paper is organized as follows. Related work is
discussed in Section 2. Section 3 overviews the
PUZZLE system, whose details are described in
Section 4. Section 5 evaluates the experiments
conducted and gives some analysis. Finally, conclusion
and future work are mentioned in Section 6.

2. Related Work

Much research has been carried out in ontology
matching, mostly using one of two approaches [10]:
instance-based and schema-based. All of the following
systems belong to the latter, except for GLUE [6].

GLUE introduces well-founded notions of semantic
similarity, applies multiple machine learning strategies,

and can find not only one-to-one mappings, but also
complex mappings. However, it depends heavily on
the availability of instance data. Therefore, it is not
practical for cases where there is an insignificant
number of instance or no instances at all.

In [14], a method is investigated for agents to
develop local consensus ontologies to help in
communications within a multiagent system of B2B
agents. This work shows the potential brought by local
consensus ontologies in improving how agents conduct
B2B Web service discovery and composition. It also
explores the influence of a lexical database in ontology
merging. However, it does not take into consideration
the properties of ontology concepts.

PROMPT [9] is a tool making use of linguistic
similarity matches between concepts for initiating the
merging or alignment process, and then use the
underlying ontological structures of the Protege-2000
environment to inform a set of heuristics for
identifying further matches between the ontologies.
PROMPT has a good performance in terms of
precision and recall. However, user intervention is
required, which is not always available in real world
application.

COMA [11] provides an extensible library of
matching algorithms, a framework for combining
results, and evaluation platform as well. According to
their evaluation, COMA is performing well in terms of
precision, recall and overall measures. Although being
a composite schema matching tool, COMA does not
integrate reasoning and machine learning techniques.

Similarity Flooding [8] utilizes a hybrid matching
technique based on the idea that similarity spreading
from similar nodes to the adjacent neighbors. Before a
fix-point is reached, alignments between nodes are
refined iteratively. This algorithm only considers the
simple linguistic similarity between node names,
leaving behind the node property and inter-node
relationship.

Cupid [12] combines linguistic and structural
schema matching techniques, as well as the help of a
precompiled dictionary. But it can only work with a
tree-structured ontology instead of a more general
graph-structured one. As a result, there are many
limitations to its application, because a tree cannot
represent multiple-inheritance, an important
characteristic in ontologies.

For HELIOS [5], WordNet is used as a thesaurus
for synonyms, hyponyms, hypernyms, and meronyms.
However the thesaurus has to be initialized for each
domain for which it is used. If additional knowledge or
a different domain is needed, then the user has to input
the respective terminology interactively.

S-Match [7] is a modular system into which
individual components can be plugged and unplugged.
The core of the system is the computation of relations.
Five possible relations are defined between nodes:
equivalence, more general, less general, mismatch, and
overlapping. Giunchiglia et al. claim that S-Match
outperforms Cupid, COMA, and SF in measurements
of precision, recall, overall, and F-measure. However,
like Cupid, S-Match uses a tree-structured ontology.

3. Overview of Our Solution

The goal of our work is to construct a correctly
merged ontology from numerous independently
designed ontologies. The main idea of our approach is
that any pair of ontologies, G1 and G2, can be related
indirectly through a semantic bridge consisting of
other previously unrelated ontologies, even when there
is no direct relationship between G1 and G2. The
metaphor is that a small ontology is like a piece of
jigsaw puzzle. It is difficult to relate two random
pieces of a jigsaw puzzle until they are constrained by
other puzzle pieces. Similarly, for the semantic bridge
between a given pair of ontologies G1 and G2, the more
ontologies the semantic bridge comprises, the better
the semantic match between G1 and G2.

In order to construct a merged ontology from a
number of ontologies, we take two ontologies and
merge them into a new one, and then we iteratively
merge the resultant ontology with each additional one.
We show that the order by which the ontologies are to
be merged will not affect the final result—the only
difference lies in the intermediate resultant ontologies.
If we choose the original ontologies in an optimal
order, we will have a monotonically incremental
intermediate ontology for each step. However, the
eventually merged ontology will be exactly the same
regardless of the order we choose. We will explain
next our method for merging two ontologies.

We represent an ontology using a directed acyclic
graph. In order to merge two ontologies, G1 and G2, we
try to relocate each concept (node) from one ontology
into the other one. Figure 1 shows this merging
procedure.

First we introduce the relocation value of a target
concept C against any other concept C’. A relocation
value is a value from 0 to 1, reflecting the likelihood of
correctly relocating a concept. As the equation below
indicates, a relocation value is calculated as the
weighted sum of the values from linguistic matching
and contextual matching.

relocation value = wlinguistic * vlinguistic + wcontextual * vcontextual

When trying to match concepts, we consider both
linguistic and contextual features. The meaning of an
ontology concept is determined by its name and its
relationship with other concept(s). In this paper, we
assume that the linguistic factors contribute 70 percent
and the contextual factors contribute 30 percent in
concept matching. That is, wlinguistic is set to 0.7 and
wcontextual is set to 0.3 in the above equation. The former
is greater than the latter, because in our experiments,
the input ontologies have less contextual information.
Therefore, we do not want the contextual factors to
dominate in the matching process. Notice that these
weight values can always be customized according to
different application requirements.

From all the candidate concepts in the destination
graph G, we build a list of candidate concepts for each
type of relationship of C (see details in Section 4.1).
Within each list, we calculate the relocation value of C
against each concept in that list, and then choose the
one producing the highest value. After we finish
processing all candidate lists, we have sufficient
information to be able to relocate C.

4. Details of the PUZZLE System

As the flow chart in Figure 1 indicates, the
relocation for all concepts as a whole will be repeated
until no new information regarding the ontology
schema is found. Firstly, we adopt a top-down width-
first order to traverse G1 and pick up a concept C as the
target to be relocated into G2. Consequently, C’s parent
set Parent(C) in the original graph G1 has already been
relocated into the suitable place(s) in the destination
graph G2 before the relocation of C itself. Based on the
information from both C and its parent set, we relocate
C in G2. After every concept has been relocated, we
traverse G1 again, bottom-up this time, trying to obtain
new information about the relocation of C according to
the new location(s) of its child(ren). Then we repeat
the above process until there is no more information
found for any concept. The idea behind this repeating
relocation process is that the correct new location of
each concept depends on both its linguistic and
contextual features, while the latter comprises a
concept’s properties and its relationship(s) with
other(s). The most important relationship mentioned
here is the subclass-superclass relation. Therefore, the
new locations of both parent(s) and child(ren) are
critical in determining where to relocate a concept.
Moreover, the newly obtained information about the
relocation of parent(s)/child(ren) will affect the
relocation of child(ren)/parent(s). As a result, we need

this iterative process to guarantee the most suitable
new location of each concept.

Figure 1. Top level procedure of PUZZLE system

4.1. Linguistic Matching

The linguistic factor reflects how the ontology
designer wants to encode the meaning of a concept by
choosing a preferable name for it. PUZZLE uses both
string and substring matching techniques when
performing linguistic feature matching. Furthermore,
we integrate WordNet by using the JWNL API in our
system. In this way, we are able to obtain the
synonyms, antonyms, hyponyms, and hypernyms of an
English word, which has been shown to increase the
accuracy of linguistic matching dramatically. In
addition, WordNet performs some preprocessing, e.g.,
the transformation of a noun from plural form to
singular form.

We claim that for any pair of ontology concepts C
and C’, their names NC and NC’ have the following
mutually exclusive relationships in terms of their
linguistic features.
- anti-match: NC is a antonym of NC’, with the

matching value vlinguistic = 0;
- exact-match: either NC and NC’ have an exact

string matching, or they are the synonyms of each
other, with the matching value vlinguistic = 1;

- sub-match: NC is either a postfix or a hypernym of
NC’, with the matching value vlinguistic = 1;

- super-match: NC’ is either a postfix or a hyponym
of NC, with the matching value vlinguistic = 1;

- leading-match: the leading substrings from NC and
NC’ match with each other, with the matching
value vlinguistic equaling the length of the common
leading substring divided by the length of the
longer string. For example, “active” and “actor”
have a common leading substring “act”, resulting
in a leading-match value of 3/6;

- other: the matching value vlinguistic = 0.
When relocating C, we perform the linguistic

matching between C and all the candidate concepts.
For each candidate concept C’, if an exact-match or a
leading-match is found, we put C’ into C’s candidate
equivalentclass list; if a sub-match is found, we put C’
into C’s candidate subclass list; and if a super-match is
found, we put C’ into C’s candidate superclass list.
Then we continue the contextual matching between C
and each concept in the three candidate lists to make
the final decision.

4.2. Contextual Matching

The context of an ontology concept C consists of
two parts, its property list and its relationship(s) with
other concept(s). The latter is not expressed explicitly
in any formula. Instead, we integrate the relationship
factor into our system by three reasoning rules
specified in Section 4.3.

4.2.1. Property List Matching. Considering the
property lists, P(C) and P(C’), of a pair of concepts C
and C’ being matched, our goal is to calculate the
similarity value vcontextual between them.

vcontextual = wrequired * vrequired + wnon-required * vnon-required

vrequired and vnon-required are the similarity values
calculated for the required property list and non-
required property list, respectively. wrequired and wnon-

required are the weights assigned to each list. In this
paper, we choose 0.7 and 0.3 for wrequired and wnon-

required. vrequired and vnon-required are calculated by the same
procedure. (In future research we will investigate the
sensitivity of our results to this choice of weights.)

Suppose the number of properties in two property
lists (either required or non-required ones), P1 and P2,
is n1 and n2 respectively. Without loss of generality, we
assume that n1≤ n2. There are three different matching
models between two properties.

1. total-match
- The linguistic matching of the property

names results in either an exact-match, or a
leading-match with vlinguistic ≥ threshold; and

- The data types match exactly.
Let v1 = number of properties with a total-match,
and f1 = v1/n1. Here f1 is a correcting factor
embodying the integration of heuristic reasoning.
We claim that between two property lists, the
more pairs of properties being regarded as total-
match, the more likely that the remaining pairs of
properties will also hit a match as long as the
linguistic match between their names is above a
certain threshold value. For example, assume that
both P1 and P2 have ten properties. If there are
already nine pairs with a total-match, and
furthermore, if we find out that the names in the
remaining pair of properties are very similar, then
it is much more likely that this pair will also have
a match, as opposed to the case where only one or
two out of ten pairs have a total-match.

2. name-match
- The linguistic matching of the property

names results in either an exact-match, or a
leading-match with vlinguistic ≥ threshold; but

- The data types do not match.
Let v2 = number of properties with a name-match,
and f2 = (v1 + v2)/n1. Similarly to f1, f2 also serves
as a correcting factor.

3. datatype-match
Only the data types match. Let v3 = number of
properties with a datatype-match.

After we find all the possible matching models in
the above order, we can calculate the similarity value v
between the property lists as

v = (v1* w1 + v2 * (w2 + w2’ * f1) + v3 * (w3 + w3’ *
f2))/n1

where:
- the value range of v is from 0 to 1;
- wi (i from 1 to 3) is the weight assigned to each

matching model. We use 1.0 for total-match, 0.8
for name-match, and 0.2 for datatype-match;

- wi’(i from 2 to 3) is the correcting weight assigned
to the matching models of name-match and
datatype-match. We use 0.2 and 0.1 respectively.

4.2.2. Relationships among Concepts. Given any two
ontology concepts, we can have the following five
mutually exclusive relationships between them:

 subclass, denoted by ⊆
 superclass, denoted by ⊇
 equivalentclass, denoted by ≡
 sibling, denoted by ≈ and
 other, denoted by ≠

OWL Full provides eleven relationship axioms [3]:
subClassOf, equivalentClass, disjointWith,
sameIndividualAs, differentFrom, subPropertyOf,

equivalentProperty, inverseOf, transitiveProperty,
functionalProperty, and inverseFunctionalProperty.
The first three axioms will be used as follows.

The subClassOf axiom will represent subclass-
superclass relationship. The equivalentClass axiom
will be used for specifying the equivalentclass
relationship. As for sibling relationship, there is no
direct support from OWL axioms. However, the
disjointWith axiom is a good choice, given the
condition that each ontology is reasonably designed.
That is, we make an assumption that under a same
parent class, all the siblings within the same level will
be disjoint with each other. Otherwise, a new
superclass should be added for those siblings with
intersection.

4.3. Reasoning Rules

PUZZLE uses three domain-independent rules,
each regarding the relationship among ontology
concepts, to incorporate the reasoning into our system.
As mentioned in Section 3, the merging of two
ontologies is basically the relocation of every concept
from one ontology into the other one. By the use of
reasoning rules, new information about the relocation
of a concept is inferred. This self-learning greatly
increases the accuracy of our system. In that sense, our
system is a self-adaptive one. In addition, these rules
are applied to concepts from different ontologies.
Therefore, we refer to them as inter-ontology
reasoning. As mentioned before, a concept’s
relationships with others play an important role in
relocating itself into suitable place(s). This role is not
reflected in the form of formula, but we embody it via
the reasoning rules discussed in this section.

Suppose we have three ontologies A, B, and C, each
of which is designed according to the OWL Full
specification. Furthermore, let n(A), n(B), and n(C) be
the sets of concepts in A, B, and C respectively, with
ni(A), nj(B), and nk(C) be the individual concept for
each set (i from 1 to |n(A)|, j from 1 to |n(B)| , and k
from 1 to |n(C)|), and P(ni(A)), P(nj(B)), and P(nk(C))
be the property list for each individual concept.

Consider the property lists P(ni(A)) and P(nj(B)), let
si and sj be the set size of these two lists. There are four
mutually exclusive possibilities for the relationship
between P(ni(A)) and P(nj(B)):

 P(ni(A)) and P(nj(B)) are consistent with each other
if and only if

i. Either si = sj or |si – sj|/(si + sj)≤ 0.1, and
ii. vcontextual ≥ threshold
We denote the corresponding concepts ni(A) and
nj(B) by ni(A) ⎯→← p nj(B);

 P(ni(A)) is a subset of P(nj(B)) if and only if
i. si ≤ sj, and

ii. vcontextual ≥ threshold
We denote the corresponding concepts ni(A) and
nj(B) by ni(A) ⎯→⎯p nj(B);

 P(ni(A)) is a superset of P(nj(B)) if and only if
i. si ≥ sj, and

ii. vcontextual ≥ threshold
We denote the corresponding concepts ni(A) and
nj(B) by ni(A) ⎯⎯← p nj(B);

 Other.

Rules 1 and 2 consider two ontologies, A and B.

[Rule 1] This rule straightforwardly states that the
superclass/subclass relationship of a class is
transferable to its equivalent class(es).
- Preconditions:

ni(A) ≡ nk(B) and (ni(A) ⊆ nj(A) or ni(A) ⊇ nj(A))
- Conclusion:

nk(B) ⊆ nj(A) or nk(B) ⊇ nj(A)
[Rule 2] If two classes share the same parent(s),

then their relationship is one of: equivalentclass,
superclass, subclass, and sibling. For example, if we
know that two classes have similar names and similar
property lists, we still cannot conclude that they must
be equivalent to each other, considering the possibility
of the existence of badly designed ontologies.
However, if we also know that these two classes have
the same parent(s), then the probability of them being
equivalent will increase markedly.
- Preconditions:

ni1(A) ⊇ ni2(A) and nk1(B) ⊇ nk2(B) and
ni1(A) ≡ nk1(B) and

1. ni2(A) ⎯→← p nk2(B) and (the names of ni2(A)
and nk2(B) have either an exact-match, or a
leading-match with vlinguistic ≥ threshold)

2. ni2(A) ⎯→⎯p nk2(B) and the name of nk2(B) is a
sub-match of the name of ni2(A)

3. ni2(A) ⎯⎯← p nk2(B) and the name of nk2(B) is a
super-match of the name of ni2(A)

4. None of above three holds
- Conclusion:

1. ni2(A) ≡ nk2(B)
2. ni2(A) ⊇ nk2(B)
3. ni2(A) ⊆ nk2(B)
4. ni2(A) ≈ nk2(B)

Rule 3 considers three ontologies, A, B, and C.

[Rule 3] If two classes from two ontologies have no
direct relationships between them, we consider a third
ontology to see if it can provide a semantic bridge

between the original two. In theory, the more
ontologies the semantic bridge comprises, the more
likely we can succeed in discovering the hidden
relationships that are not obvious originally.
Essentially, the idea of a semantic bridge is
implemented via this rule.
- Preconditions:

ni1(A) ≡ nj1(C) and nj2(C) ≡ nk2(B) and
nk1(B) ⊆ nk2(B) and nj1(C) ⊆ nj2(C) and

1. ni1(A) ⎯→← p nk1(B) and (the names of ni1(A)
and nk1(B) have either an exact-match, or a
leading-match with vlinguistic ≥ threshold)

2. ni1(A) ⎯→⎯p nk1(B) and the name of nk1(B) is
a sub-match of the name of ni1(A)

3. ni1(A) ⎯⎯← p nk1(B) and the name of nk1(B) is
a super-match of the name of ni1(A)

4. None of the above three holds
- Conclusion:

1. ni1(A) ≡ nk1(B)
2. ni1(A) ⊇ nk1(B)
3. ni1(A) ⊆ nk1(B)
4. ni1(A) ≈ nk1(B)

5. Experiments and Discussion of Results

In this section we describe a set of experiments
conducted with the purpose of evaluating the ability of
PUZZLE to generate a correctly merged ontology. We
collected a set of ontologies and evaluated PUZZLE
in terms of precision, recall, and merging convergence.
We discuss the results obtained.

5.1. Experimental Setup

 Test ontologies
A collection of sixteen ontologies for the domain of
“Building” were constructed by graduate students in
computer science at our university and used for
evaluating the performance of PUZZLE. The
characteristics of these ontology schemas are
summarized as: having between 10 and 15 concepts
with 19 to 38 properties and 31 to 49 relationships
among the concepts.

5.2. Experimental Results and Analysis

Our experiments simulate having sixteen agents,
each of which has a local ontology and is willing to
communicate with the other agents. They try to align
their local ontologies to form a merged one.

5.2.1. Evaluation of the Resultant Ontology. To
decide whether a correctly merged ontology is
obtained, we asked two ontology experts to carry out a
manual mapping and we compared their results with
ours. Both precision and recall measurements are
applied in the evaluation during the process of merging
ontologies one at a time. The evaluation result is
shown in Figure 2. Notice that this result is not
statistically valid but indicative. Both measurements
reflect a promising result, except when we merged the
third and the ninth ontologies. We checked the original
ontologies and found out that a reason for the
unsatisfactory result is due to unreasonably designed
ontologies. For example, in one of the ontologies,
“HumanBeing” and “InsectSpecie” are the only
properties of the concept “LivingThing”.

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Number of Ontologies Merged

P
r
e
c
is

i
o
n

a
n
d
 R

e
c
a
l
l

Precision of Equivalent Concepts Recall of Equivalent Concepts

Figure 2. Precision and recall measurements of

the resultant ontology

5.2.2. Analysis of Merging Convergence. One
hypothesis is that as each additional ontology is
merged into a consensus one, there should be fewer
new items (concept, relationship, or property) added to
the consensus. To test this hypothesis, the following
experiment has been conducted. We calculated the
number of newly discovered information when the
first, second, fifth, tenth, twelfth, thirteenth, and
fifteenth ontologies were merged. Figure 4 shows the
results of this experiment, which verifies the
hypothesis.

Out of the 16 ontologies we had available for our
experiments, we considered all possible combinations
of the order by which they could be merged, in order
to remove any bias that might be introduced by the
presence of unusual ontology samples. This is a huge
number; for example, there are 1680 combinations
when the second ontology is to be merged, and 25000
for the fifth one. It is impossible to try all these orders.
Our solution is that if the population size is less than or
equal to 30 we try all possible orders, otherwise we
randomly choose a sample space of size 30.

A monotonically decreasing pattern is shown in
Figure 3. As the number of ontologies already merged
increases, the number of concepts, relationships, and
properties learned from additional ontologies

decreases. We believe that the number of new items
will eventually converge to zero, although the sixteen
ontologies we have available for this experiment are
not enough to verify this belief.

Figure 3. Merging convergence experiment

6. Conclusion and Future Work

Ontology matching is an important foundation in
the Semantic Web interoperation. In this paper, we
present the PUZZLE system, a schema-based
approach combined with inter-ontology reasoning,
which self-learns to merge/align ontologies for
applications within a single domain. This completely
automated matching is carried out at the schema level,
without a previous agreement over the different
terminology semantics. PUZZLE considers both
linguistic and contextual features of an ontology
concept, integrates heuristic reasoning with several
matching techniques, and incorporates inter-ontology
reasoning to implement the idea of semantic bridge.
PUZZLE provides a solid base for the seamless
integration of Web services. A set of experiments
showed a promising result from this system.

Several remaining tasks are envisioned. We plan to
adopt machine learning techniques to obtain more
accurate results; take into consideration other
relationships such as partOf, hasPart, causeOf, and
hasCause; integrate the OWL Validator into our
system; analyze the time complexity of the algorithm;
and test our system against other state-of-art ones in
ontology matching, by using more general ontology
libraries.

References

[1] M.P. Singh, and M.N. Huhns, Service-Oriented
Computing Semantics, Processes, Agents, 1st edn. Wiley,
Chichester, England, 2005.
[2] L. Stephens, A. Gangam, and M.N. Huhns, “Constructing
Consensus Ontologies for the Semantic Web: A Conceptual
Approach”, World Wide Web Journal, Vol. 7, No. 4, Kluwer

Academic Publishers, Norwell, MA, USA, 2004, pp. 421-
442.
[3] W3C, “OWL Web Ontology Language Reference”,
http://www.w3.org/TR/owl-ref, 2004.
[4] A.G. Miller, “WordNet: A Lexical Database for English”,
Communications of the ACM, Vol. 38, No. 11, ACM Press,
New York, NY, USA, 1995, pp. 39-41.
[5] S. Castano, A. Ferrara, S. Montanelli, and G. Racca,
“Matching Techniques for Resource Discovery in
Distributed Systems Using Heterogeneous Ontology
Descriptions”, Proceedings of the International Conference
on Information Technology: Coding and Computing
(ITCC04), Vol. 1, IEEE Computer Society Press, Washington
DC, USA, 2004, pp. 360-366.
[6] A. Doan, J. Madhavan, R. Dhamankar, P. Domingos, and
A. Halevy, “Learning to match ontologies on the Semantic
Web”, The VLDB Journal (2003), Vol. 12, Springer-Verlag,
New York, NY, USA, 2003, pp. 303-319.
[7] F. Giunchiglia, P. Shvaiko, and M. Yatskevich, “S-
Match: an algorithm and an implementation of semantic
matching”, Proceedings of the 1st European Semantic Web
Symposium, Vol. 3053, Springer-Verlag, New York, NY,
USA, 2004, pp. 61-75.
[8] S. Melnik, H. Garcia-Molina, and E. Rahm, “Similarity
Flooding: A Versatile Graph Matching Algorithm and its
Application to Schema Matching”, Proceedings of the 18th
International Conference on Data Engineering, IEEE
Computer Society Press, Washington DC, USA, 2002.
[9] N.F. Noy, and M.A. Musen, “PROMPT: Algorithm and
Tool for Automated Ontology Merging and Alignment”,
Proceedings of the17th National Conference on Artificial
Intelligence (AAAI 2000), AAAI Press, Menlo Park, CA,
USA, 2000.
[10] E. Rahm, and P.A. Bernstein, “A survey of approaches
to automatic schema matching”, The VLDB Journal (2001),
Vol. 10, Springer-Verlag, New York, NY, USA, 2001, pp.
334-350.
[11] H. Do, and E. Rahm, “COMA – A system for flexible
combination of schema matching approaches”, Proceedings
of the 28th VLDB Conference, Springer-Verlag, New York,
NY, USA, 2002.
[12] J. Madhavan, P.A. Bernstein, and E. Rahm, “Generic
Schema Matching with Cupid”, Proceedings of the 27th
VLDB Conference, Springer-Verlag, New York, NY, USA,
2001.
[13] JWNL, “Java WordNet Library – JWNL 1.3”,
http://sourceforge.net/projects/jwordnet/, 2003.
[14] A. Williams, A. Padmanabhan, and M.B. Blake, “Local
Consensus Ontologies for B2B-Oriented Service
Composition”, Proceedings of the second international joint
conference on Autonomous agents and multiagent systems,
Session: Ontologies, ACM Press, New York, NY, USA,
2003, pp. 647-654.
[15] R.L. Zavala Gutiérrez, and M.N. Huhns, “On Building
Robust Web Service-Based Applications”, Extending Web
Services Technologies: The Use of Multi-Agent Approaches,
Kluwer Academic Publishing, Norwell, MA, USA, 2004.

0

2

4

6

8

10

12

14

16

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Number of Ontologies Already Merged

Number of Concepts Discovered

Number of Relationships Discovered

Number of Properties Discovered

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

