
Agent Development Tools

Joanna Bryson1 Keith Decker2 Scott DeLoach3

Michael Huhns4 Michael Wooldridge5

1 Department of Computer Science
Massachusetts Institute of Technology, Cambridge, MA 00000
joanna@ai.mit.edu

2 Department of Computer and Information Sciences
University of Delaware, Newark, DE 19716-2586
decker@cis.udel.edu

3 Department of Electrical and Computer Engineering, Air Force Institute of Technology
2950 P Street, Wright-Patterson AFB, OH 45433-7765
scott.deloach@afit.edu

4 Electrical and Computer Engineering Department
University of South Carolina, Columbia, SC 29208
huhns@ece.sc.edu

5 Department of Computer Science
University of Liverpool Liverpool L69 7ZF, UK
m.j.wooldridge@csc.liv.ac.uk

1 Introduction

This panel (and a corresponding paper track) sought to examine the state of the art (or
lack thereof) in tools for developing agents and agent systems. In this context, ”tools”
include complete agent programming environments, testbeds, environment simulators,
component libraries, and specification tools. In the past few years, the field has gone
from a situation where almost all implementations were created from scratch in general
purpose programming languages, through the appearance of the first generally avail-
able public libraries (for example, the venerable Lockeed “KAPI” (KQML API) of the
mid-90’s [9]), to full-blown GUI-supported development environments. For example,
http://www.agentbuilder.com/AgentTools/ lists 25 commercial and 40
academic projects, many of which are publically available. The sheer number of projects
brings up many questions beyond those related to the tools themselves, and we put the
following to our panel members:

– What are useful metrics or simply feature classes for comparing and contrasting
agent development tools or methodologies (especially features that are unique to
agent systems)?

– How does a tool suggest/support/enforce a particular design methodology, theory
of agency, architecture, or agent language?

– Why, as more and more development tools and methodologies become available,
do most systems still seem to be developed without any specialised tools?



– What are the differences in development tools oriented toward the research commu-
nity versus the agent application community, and are we already seeing a significant
lag between theory and practice?

– Are there obvious development tools, that are unique to agent-based system devel-
opment, that have yet to be built?

– Given the resources available to the average basic researcher, what do you think
can be done to improve reuse of agent infrastructure / software?

– Is there any evidence that agent development tools actually increase programmer
productivity and/or the quality of the resulting systems?

– What do you see as the largest time-sink (wasted time) in your research and in
the agent software you have developed? (e.g., having to write one’s own compiler
would be a waste of time.)

– What infrastructure have you succeeded in reusing? Why do you think you were
able to do this?

– What (if any) stumbling blocks have you encountered in distributing your technol-
ogy, e.g., legal, platform dependence, etc.

– What do you see as the current infrastructure limitations in establishing large agent
communities for real world applications?

2 Statement by Mike Wooldridge

Historically, the main obstacle to be overcome in developing multi-agent systems has
been one ofinfrastructure. By this, I mean that in order to reach a state where two agents
can communicate, (let alone cooperate, coordinate, negotiate, or whatever), there needs
to be an underlying, relatively robust communications infrastructure that the agents can
make use of. Moreover, simply providing such an infrastructure is not usually enough;
as Gasser and colleagues suggested as long ago as 1987, there also needs to be some
way of visualising and monitoring ongoing communication in the system [3]. Until very
recently, the provision of such an infrastructure represented a significant challenge for
multi-agent system developers. In addition,

As an example of this, back in the late 1980s, we developed a multi-agent sys-
tem platform calledMADE (the Multi-Agent Development Environment) [14].MADE

allowed agents implemented using several differentAI -oriented languages (LISP, PRO-
LOG, andPOP-11) to communicate using performatives such asrequest andinform ,
provided some simple tools to monitor and track the behaviour of the system, and pro-
vided support for distributing agents across a local area network.MADE was imple-
mented inC, on Sun 3/50 and Sun 3/60UNIX workstations. Agents inMADE wereUNIX

processes, (which rather limited the number of agents it was possible to run at any one
time), and communication between agents was handled using a mixture ofUNIX SVID

interprocess communication mechanisms (for communication between agents on the
same physical machine), and sockets (for communication between different machines).
Our experience withMADE was that handling communications, and the problems of
handling a system composed of multiple processes, took up the vast majority of our
time. We implemented a stream of utilities that were intended to help us launch our
agents, and even such apparently trivial tasks as stopping the system were complicated



by the distributed, multi-process nature of the system. In addition, the cost of computer
hardware at the time meant that developing a multi-agent system was an expensive pro-
cess.

In the past decade, three things have happened to change this situation fundamen-
tally:

– The first is that computer power today is considerably cheaper than it was even a
decade ago.

– The second is that, whereas in the late 1980s comparatively few computers had net-
work connections, today it is rather rare to find computers that arenotnetworked.

– The third is that high-power communications and programming environments are
available much more cheaply and widely than they were previously (I am thinking
here of, for example, the Java language and its associated packages, as well as
communication frameworks such asCORBA andRMI).

This means that many of the infrastructure hurdles that were in place a decade ago are
no longer present: any medium powerPCsold today has the software and the processing
capability to run a respectably sized multi-agent system. There are also many powerful,
freely available software platforms for implementing sophisticated agent systems, and
these can be leveraged to develop agent systems in a time scale that was unthinkable
even five or six years ago.

Looking to the future, perhaps the most important trend I anticipate is that the “non-
agent” part of computing (in which I include the object-oriented world) will gradually
expand to encompass more and more agent features. There are several good examples
of this already. Sun’s Jini system is a good example of this; the ability of software
components to advertise their capabilities to other components, as provided by Jini,
was until recently the province of the agent community. Another good example is the
reflectionAPI provided by the Java language, which allows objects to reflect on their
capabilities; again, this type of behaviour, which is now provided in the Java language
for free, would until recently have been regarded as an agent-like feature. In much the
same way, we can expect software development platforms and tools to provide ever
more “agent-like” features, thus blurring the line between what is an what is not an
agent even more (as if the line needed more blurring).

3 Statement by Joanna Bryson

I am not an expert in agent toolsets — I’ve had only a little experience using other peo-
ple’s, and I haven’t yet publicly released one of my own. However, I am very concerned
with issues of design, methodology, and productivity, and Ihavehad experience with a
number of excellent software toolsets. I know what I’m looking for, and the majority of
my contribution to this panel was a discussion on why haven’t I found it?

The title of my section was “Why aren’t toolsets (architectures, methodologies)
used?” And here are a few of the answers I and we came up with.

First, my main theme is,Tools need to be needed.This is partly an issue of education
for users. People who don’t understand a problem won’t recognize its solution. How-
ever, it is also an issue of design for the tool sets. Tools that don’t address frequently
occuring problems in clear ways can’t be useful.



Another problem:Needs change.Our field moves very quickly. Ultimate consumer
demand changes, applications change, methodological insights happen. Consequently,
tools need to be easy to update and extend. Also, we should expect that throwing out
old toolsets should happen regularly. This means that for tools to be useful, they have to
be quick to write, quick to learn, and they should be have developers dedicated to their
continuous updating and support.

Productivity has to matter.You wouldn’t think this would be a problem, but it is.
Of course, productivity matters ultimately, but it also has to matter in the heads of
decision makers. Money budgeters have to think buying tools is worthwhile. This means
software people have to tell them that with decent tools, they can be three to ten times
more productive, so tool budgets should be considered part of man-power budgets. How
much would you pay to have an excellent programmer than a pretty good one? And
don’t forget the lessons of the Mythical Man-Month (Brooks 1975). It’s better to have
a few excellent programmers than a lot of pretty good ones, because there’s a lot of
inefficiency in making teams.

Unfortunately,programmers themselves don’t always value learning and using tools.
If this is due to experience, then that’s a different problem, probably the next one. But
I’m still complaining about people not recognizing that you have to take time to save
time, or spend money to save money. Time budgeters have to think learning tools is
worthwhile. Getting stuff done well and quickly has to matter more than product loy-
alty or inertia.

Finally,Tool developers have to do good work.We need to know what’s already out
there. We need to understand and minimize the costs of transitioning to our tools. No
one should design a tool set that hasn’t tried to use at least two of the sets that are already
out there. And any developer needs to know the work habits and latent knowledge of
their target users.

Being on this panel made me very aware that both quality of toolsandgetting people
to use tools are enormous problems. If you don’t see the problems with your own tool-
bench, try using someone elses, and then see how many problems you share. Common
problems are: poor accessibility, poor documentation, no source code, no examples, not
facilitating users to help each other (how hard is it to set up a mailing list?) But on the
other hand, many products get these things right. In the mainstream, I would swear by
Center Line C/C++ (formerly Saber), PARC Place Smalltalk VisualWorks80, NextStep
(ObjectiveC), and to a lesser extent Harlequin LispWorks. These guys all made excel-
lent mainstream programming tool sets, and they are all struggling or bankrupt. Why???
Because Microsoft antitrust action came too late? In an incredible coincidence, none of
them could run a business? Or is there something fundamental lacking in corporate
culture that can’t recognize, value or use good tool sets?

To end on a positive note, I’d like to suggest we set up an agent toolset comparison
server. This way, for those of us whohaveused more than one agent toolset, if we
stumble on a good one, we can let people know. This might also provide information
for toolmakers: they could see what users valued or disparaged in various toolkits.



4 Statement by Scott DeLoach

Multiagent systems development methodologies and tools to support them are still in
their infancy. While there have been several methods proposed for analyzing, design-
ing, and building multiagent systems, most of these have come out of the academic
community [1, 2, 5–8, 12] and there has not been wide-spread industry support for any
particular approach. Because agents provide a unique perspective on distributed, intel-
ligent systems, our traditional ways of thinking about and designing software do not
fit the multiagent paradigm. These unique characteristics cry out for methodologies,
techniques, and tools to support multiagent systems development. Providing this capa-
bility requires a three part solution: an appropriate agent modeling language, a set of
agent-unique methodologies for analyzing and designing multiagent systems, and a set
of automated tools to support modeling language and methodologies.

Developing an agent modeling language that can capture the wide range of con-
cepts associated with multiagent systems is a challenge at best. One place to start is
with the Unified Modeling Language (UML), which is rapidly becoming the standard
in the analysis and design of object-oriented systems [11]. There are many similarities
including the encapsulation of state and services within a single entity and the passing
of messages between these entities. While much of the syntax of UML can be adapted to
multiagent systems, the semantics would be inherently different. The concept of an ob-
ject class can be equated to an agent class; however, there are many differences. First of
all, classes are not decomposable. They have attributes and methods, but no internal ar-
chitecture that further describes them. Agents, on the other hand, can, and often are, de-
composed into more detailed, often complex, architectures. Also, in object-orientation,
messages almost always become method calls between objects whereas in multiagent
systems there usually are messages that are transmitted between distributed systems
and have all the associated problems. Therefore, multiagent systems must include the
ability to define message passing protocols that include such things as error handling
and timeout conditions.

A concept associated with many of the proposed agent methodologies is the use of
roles and role models. These concepts are lacking in the object-oriented paradigm and
require a special modeling component. An issue related to the modeling language is that
of how to evolve the models of multiagent systems from the requirements specification
into a detailed design. This is the area of agent methodologies. Modeling of agent ca-
pabilities is a start; however, a methodology provides a map that shows the multiagent
system developer how to move from a set of requirements to design to implementation.
Most of the current methodologies focus either on high-level multiagent aspects, such
as the organization and coordination of the agents, or on low-level issues such as how to
develop internal agent reasoning. The key to modeling the internal reasoning of agents
in a multiagent system is that it must be consistent with the external interface defined
at the organizational level. For instance, if the external interface of an agent states that
the agent will respond to a particular message type with either message type A or B, the
internal design of the agent must adhere to this as well. This can be much more com-
plex than it first appears. Since an agent, by popular definition, is autonomous, it must
be able reason about its actions. The problem comes in guaranteeing that the reason-



ing will adhere to the external interface definition. Learning brings with it even more
difficulties in this area.

The last area necessary for advancement of multiagent methodologies and tech-
niques is the tools themselves. Many toolsets have been developed to support the de-
velopment of individual agents as well as multiagent systems [1, 10]. However, most of
these tools are either implementation toolkits or limited tools that support only a par-
ticular agent architecture working within a specific agent environment or framework.
What is needed are tools that support the developer in using an appropriate modeling
language and methodology. Generally, tools that support particular methodologies are
more useful than simple drawing tools. Good methodologies define relationships be-
tween modeling components that can be enforced by a toolset. The methodology should
not only describe the order in which the models should be developed, but should define
how to derive information from one model to the next. While the existence of tools
would greatly increase the ability of developers to design and build multiagent systems,
the development of the languages and methodologies must precede the development of
the tools. Once a language is defined for expressing multiagent designs, development
of rudimentary, drawing level, toolsets can be undertaken. However, it is not until com-
plete multiagent system development methodologies are defined that the power of such
toolsets can be realized. Toolsets can then go far beyond the current crop of tools to
actually help the designer by making suggestions and actually performing many of the
mundane steps while allowing the designer to concentrate on the more critical analysis
and design decisions.

5 Conclusion by Keith Decker

Our panelists attacked different areas of the questions surrounding agent development
tools—the “agentization” of traditional software; quality, support and distribution is-
sues; the need for tools to complement a development methodology. Our own experi-
ences with building the DECAF toolkit bears out many of these observations[4]. While
the earliest publically available agent implementation toolkits focussed mostly on pro-
viding increasingly well-thought-out APIs for agent communications, in order to ac-
tually build agents, programmers needed to piece together those APIs to create some
kind of complete agent architecture from scratch. While this made supporting different
research goals easy, it also made it harder for students, multi-agent application program-
mers, or researchers interested in only some agent architectural components to develop
thier ideas quickly and efficiently. From the standpoint of non-researchers or those new
to the field, the focus of an agent toolkit might just as well be on programming agents
and building multi-agent systems, and not on designing new internal agent architectures
from scratch for each project.1 Another important goal for an agent toolkit is to support
that which makes agents different from arbitrary software objects: flexible (reactive,
proactive, and social) behavior [13]. The other goals of toolkits may be to develop a
modular platform suitable for research activities, allow for rapid development of third-
party domain agents, and provide a means to quickly develop complete multi-agent so-

1 Designing new agent architectures is certainly an importantresearchgoal, but fraught with
peril for beginning students and programmers wanting to work with the agent concept.



lutions using combinations of domain-specific agents and standard middle-agents. All
in all, the toolkit should both take advantage of the features of the underlying program-
ming language and provide an efficient framework that adds value for the developer.

References

1. S. DeLoach and M. Wood. Developing multiagent systems with agentTool. InProceedings
of The Seventh International Workshop on Agent Theories, Architectures, and Languages,
July 2000.

2. A. Drogoul and A. Collinot. Applying an agent oriented methodology to the design of
artificial organizations: A case study in robotic soccer.Autonomous Agents and Multi-Agent
Systems, 1(1):113–129, 1998.

3. L. Gasser, C. Braganza, and N. Hermann. MACE: A flexible testbed for distributed AI
research. In M. Huhns, editor,Distributed Artificial Intelligence, pages 119–152. Pit-
man/Morgan Kaufmann, 1987.

4. J. Graham and K.S. Decker. Towards a distributed, environment-centered agent framework.
In N.R. Jennings and Y. Lesperance, editors,Intelligent Agents VI, LNAI-1757, pages 290–
304. Springer Verlag, 2000.

5. C. Iglesias, M. Garijo, and J. Gonzlez. A survey of agent-oriented methodologies. In J. P.
Muller, M. P. Singh, and A. S. Rao, editors,Intelligent Agents V. Agents Theories, Archi-
tectures, and Languages. Springer-Verlag, 1998. Lecture Notes in Computer Science, vol.
1555.

6. C. Iglesias, M. Garijo, J. Gonzlez, and J. Velasco. Analysis and design of multiagent systems
using MAS-CommonKADS. InINTELLIGENT AGENTS IV: Agent Theories, Architectures,
and Languages. Springer Verlag, 1998.

7. E. Kendall, U. Palanivelan, and S. Kalikivayi. Capturing and structuring goals: Analysis
patterns. InProceedings of the Third European Conference on Pattern Languages of Pro-
gramming and Computing, July 1998.

8. D. Kinny, M. Georgeff, and A. Rao. A methodology and modelling technique for systems
of BDI agents. InAgents Breaking Away: Proceedings of the Seventh European Workshop
on Modelling Autonomous Agents in a Multi-Agent World, MAAMAW ’96. Springer-Verlag,
1996. Lecture Notes in Artificial Intelligence, vol. 1038.

9. D. Kuokka and L. Harada. On using KQML for matchmaking. InProceedings of the First
International Conference on Multi-Agent Systems, pages 239–245, San Francisco, June 1995.
AAAI Press.

10. H. Nwana, D. Ndumu, L. Lee, and J. Collis J. ZEUS: A toolkit for building distributed
multi-agent systems.Applied Artificial Intelligence Journal, 13(1):129–185, 1999.

11. J. Odell, H. V. D. Parunak, , and B. Bauer. Representing agent interaction protocols in UML.
In Proceedings of the First International Workshop on Agent-Oriented Engineering, June
2000.

12. M. Wooldridge, N. Jennings, and D. Kinny. The gaia methodology for agent-oriented anal-
ysis and design.Journal of Autonomous Agents and Multi-Agent Systems, 3(3), 2000.

13. M. Wooldridge and N.R. Jennings. Intelligent agents: Theory and practice.The Knowledge
Engineering Review, 10(2):115–152, 1995.

14. M. Wooldridge, G. M. P. O’Hare, and R. Elks. FELINE — a case study in the design and
implementation of a co-operating expert system. InProceedings of the Eleventh European
Conference on Expert Systems and Their Applications, Avignon, France, May 1991.


