

On Capturing and Containing E-mail Worms

Chin-Tser Huang* Nathan L. Johnson* Jeff Janies* Alex X. Liu†
* Department of Computer Science and Engineering † Department of Computer Sciences
 University of South Carolina The University of Texas at Austin

{huangct, johnso66, janies}@cse.sc.edu alex@cs.utexas.edu

Abstract

Capturing an e-mail worm and containing its
propagation as early as possible is desirable in order to
provide better protection for the networks and hosts
against severe damage that may be caused by the worm.
In this paper, we propose a new approach that makes use
of the propagating nature of e-mail worms. This
approach inserts into each client’s address book a dummy
e-mail address that is not used by any registered user of
the local domain, such that we can be confident that any
e-mail destined to this dummy e-mail address is generated
by an e-mail worm. The captured signatures can then be
used to construct a user blacklist and a signature blacklist
to contain the propagation of this e-mail worm. We also
discuss how e-mail worms can attempt to bypass the
dummy e-mail address, and propose countermeasures
against these attempts. Our prototype implementation
shows that this approach is easily deployable and is
effective in containing e-mail worms.

1. Introduction

A worm is a piece of executable code that can infect
other hosts in a network that are susceptible to infection
due to the vulnerability of some software currently
running on them. After successfully infecting some
susceptible hosts, the worm further propagates itself to
other uninfected, susceptible hosts from the infected hosts.
Worms pose a significant threat to all kinds of Internet
applications as they are capable of generating a huge
amount of traffic to congest networks and disable database
servers. A worm carrying malicious payload may cause
further problems, including breaking or compromising
infected hosts.

We can divide worms into different types according to
their ways of propagation. Among all types of worms, two
types are especially rampant and thus deserve more
attention. The first type is called scanning worms. A
scanning worm looks for susceptible hosts by scanning the
target port(s) of other hosts over the network. The
scanning worm can propagate itself to an uninfected,

susceptible host without the interference of a user.
Examples of scanning worms include Code-Red [6] and
Slammer [5]. The second type is called e-mail worms,
which is the subject of this paper. An e-mail worm needs
the help of unwitting users to propagate to other hosts.
Usually an e-mail worm is launched when a user
unwittingly opens the attachment of an infected e-mail.
When the worm program is executed, it searches the host
for the address book file and other files of certain types
that contain e-mail addresses, and then spreads by sending
infected e-mails to the e-mail addresses it finds. Examples
of e-mail worms include SoBig [20] and MyDoom [21].

It is desirable to capture an e-mail worm as early as
possible, so that we can get clues about how to fix the
vulnerability exploited by this e-mail worm. It is equally
important to contain an e-mail worm as much as possible,
so that we can quarantine infected user accounts and e-
mails to keep them from further infecting other e-mail
accounts. However, current network intrusion detection
systems (NIDS) either are unable to detect the
propagation of an e-mail worm in a timely fashion, or fail
to distinguish between the e-mails generated by worms
and normal e-mails although an anomalously large amount
of e-mails has been detected. The inability of NIDS to
detect worms often leaves network administrators helpless
under a large-scale outbreak.

In this paper, we propose a new approach that captures
and contains an e-mail worm once the worm infects any
user account in the local domain. Our approach exploits
the propagating nature of worms to differentiate e-mails
generated by worms from normal e-mails. We insert a
dummy e-mail address into the address book file stored in
each user account on the local domain; this dummy e-mail
address is guaranteed to be unused by any legitimate user
of the local domain, and is changed periodically to beat
the possible evolution of e-mail worms. A dedicated
dummy client is deployed to observe any e-mail destined
to this dummy e-mail address. Once the dummy client
finds any e-mail delivered to this dummy e-mail address,
we know that this e-mail is generated by an e-mail worm
because no legitimate user uses this dummy e-mail
address. Therefore, we not only detect that a user account
is infected by an e-mail worm, but also capture the

signature of the e-mail worm in the message received by
the dummy account. We show through our analysis and
simulation that this approach is easy to deploy, and is
effective in containing e-mail worms.

The remainder of this paper is organized as follows. In
Section 2, we survey previous works that are related to
worm detection, capture, and containment. In Section 3,
we present the architecture of our approach. In Section 4,
we discuss ways that an e-mail worm can attempt to
bypass the dummy e-mail address, and propose
countermeasures against these attempts. In Section 5, we
discuss the maintenance of the two blacklists for
containing captured e-mail worms. In Section 6, we
discuss the results of our prototype implementation.
Finally, we conclude our presentation and discuss future
works in Section 7.

2. Related Works

The current practice of detecting self-propagating
worms is through the use of NIDS. A NIDS is responsible
for observing network traffic and will raise alarms or take
corrective actions when an intrusion or an anomalous
condition is detected. As shown by [4], there are two
major approaches of NIDS: signature/misuse and anomaly
detection. NIDSs that are based on signatures look for
activities that match known attack signatures stored in
their databases; examples of them include Snort [10] and
BRO [9]. NIDSs that are based on anomaly detection look
for deviations from pre-established statistical profiles of
normal network traffic; examples include [1] and [2].
However, both approaches have limitations. The
limitation of a signature-based approach is that it cannot
detect novel intrusions. The limitation of an anomaly-
based detection approach is that it is difficult to construct
a stable statistic profile of the ever-changing network
traffic, and hence false positive and false negative alarms
are raised frequently. Moreover, it is difficult for the two
approaches to adequately capture the signature of the
worm.

There are studies targeting the detection, modeling,
treatment, and containment of scanning worms
[7][11][12][13][14][17]. However, these studies do not fit
well into the case of e-mail worms because unlike
scanning worms that propagate themselves as fast as the
environment allows, e-mail worms need to wait for
unwitting users to open infected e-mails. There are studies
investigating the fundamentals of e-mail worms. Wong et
al. [15] study the behavior and characteristics of e-mail
worms by analyzing network traffic traces. Xiong [16]
proposes a chain tracing scheme for detection and
containment of e-mail worms. Zou et al. [18] model the
behavior of e-mail users by considering e-mail checking
time and the probability of opening attachments, and

simulated e-mail worm propagation on different
topologies.

In [7], the authors report that there are three potential
strategies to mitigate the threat of worms: prevention,
treatment, and containment. According to the analysis of
the authors, containment is the most viable among the
three strategies. Our approach serves as a foundation for
efficiently containing the spread of worms, because the
worm signature captured by our approach can be used to
construct appropriate blacklists which can contain the
worm in the local network and also be passed to the
managers of other networks.

It is instructive to compare our approach with the
Honeynet Project [19]. A Honeynet is a network of one or
more honeypots. A honeypot is a host that is meant for an
attacker to easily break into, and usually contains some
deceptively precious resources or sensitive data so that it
appears attractive to potential attackers. Once an attacker
enters a honeypot, information on attacks and threats can
be gained through logging and analyzing extensive
interaction with the attacker. A Honeynet organizes
several honeypots into a network so that more types of
information regarding attackers can be collected. The
approach of a honeypot or Honeynet is a non-intrusive
approach, because honeypot hosts wait for visits by
attackers and do not send packets into the network. By
contrast, our approach, although also non-intrusive, is
more active than Honeynet, because we induce an e-mail
worm that has infected one user account in the local
domain to spread itself to the dummy e-mail account, in
order to distinguish infected e-mails from all other
legitimate e-mails, and capture the worm’s signature in the
dummy account.

3. Capturing E-mail Worm with Dummy
Address

The first and foremost problem encountered by an e-
mail worm capturing mechanism is how to distinguish
between legitimate and infected e-mails. The propagation
of an e-mail worm usually has anomalous characteristics,
for example transmission of an exorbitantly large amount
of e-mails from infected hosts [3][15]. A widely adopted
approach is to extract common signatures from these e-
mails that can be used to distinguish future e-mails
propagated by the same worm. However, it will take some
time for a detection system to observe the anomalously
large amount of e-mails. Furthermore, even if the
observed amount of e-mails is anomalous, it may be
benign.

This problem can be alleviated by the introduction of
an e-mail account that receives only e-mails generated by
worms. In this case, we are confident that an e-mail worm
is captured once this account receives an e-mail, without

any labor of distinction between legitimate and infected e-
mails. Such a solution can be realized as follows. The e-
mail server generates a dummy e-mail address that is not
used by any user in the local domain. When an e-mail
client connects to the e-mail server, the server requests to
insert the dummy e-mail address into the client user’s
address book.

The communication between an e-mail server and an e-
mail client normally takes the following steps: the client
opens a TCP connection to the server, the server
optionally requests the client to provide username and
password for authentication, and the client downloads e-
mails from the server or uploads outgoing e-mails to the
server. In our scheme, a step of dummy address update is
added after user authentication and before mail transfer:
the server retrieves the current dummy e-mail address and
sends it to the client, and the client acknowledges the
update after the dummy address is inserted into the user’s
address book. Note that for this scheme to be effective, no
e-mail can be transferred until the dummy address is
inserted into the client user’s address book, because an
infecting e-mail worm must propagate itself to the dummy
address in order to be detected. The message sequence
between the e-mail server and a client is shown in Figure
1.

An e-mail client daemon is set up for the dummy
account. This daemon remains up permanently, so that if
any e-mail destined to the dummy address is received at
the e-mail server, this daemon can be notified and pick up
the e-mail immediately. Thus, the capture of the worm
occurs at the time of delivery.

Mail transfers

User authentication

TCP/IP connection
establishment

Client

Acknowledgment of the
dummy address update

Current dummy address

Retrieve
current
dummy
address

Update
dummy
address

Server

Figure 1 The communication between e-mail server
and client has an additional step of dummy address
update. This step falls between user authentication
and mail transfer.

4. Attacks on the Dummy Address

Even if the dummy e-mail address is inserted into each
client’s address book, an e-mail worm can attempt to
bypass the dummy address while infecting other e-mail
addresses. In this section, we discuss some possible
attacks aimed to bypass the dummy address, and propose
countermeasures against these attacks.

An e-mail worm can arbitrarily bypass some e-mail
addresses discovered in the address book of an infected
account. If the dummy e-mail address is bypassed, then
the worm will not send an infected e-mail to the dummy
account and thus escape the capture. A countermeasure is
to generate the dummy address in a random fashion, so
that the dummy address is inserted into a random location
in an alphabetically ordered address book. If the address
book of a client is not alphabetically ordered, then the e-
mail server requests the e-mail client to insert the dummy
address into a random location in its address book. By
doing such, the probability that an e-mail worm can avoid
the dummy address by arbitrarily bypassing some e-mail
addresses is small.

A more sophisticated e-mail worm can bypass those e-
mail addresses that appear to be random combination of
letters and numbers. A countermeasure to this attack is to
make the dummy address indistinguishable from a normal
e-mail address. A widely accepted e-mail account naming
convention is to append some 2- or 3-digit number to a
proper name [22]. This naming convention can be applied
in the generation of the dummy address, by randomly
choosing a name from a predefined list and appending a
random 2- or 3-digit number to the chosen name. This
random generation scheme makes it difficult for an e-mail
worm to distinguish between normal e-mail addresses and
the dummy address.

An even more sophisticated e-mail worm may “evolve”
by storing the number of times it encounters the same e-
mail address along its propagation, and bypass the e-mail
addresses that it has seen more than thr times, where thr is
a predetermined threshold. If the dummy address is
inserted in all local domain users’ address book, then
there is a chance that this evolving e-mail worm will see
the dummy address more than thr times during its
propagation and will bypass the dummy address. A
countermeasure to this attack is to change the dummy e-
mail address periodically. Since an e-mail client always
inserts the current dummy e-mail address into a user’s
address book before downloading or sending out e-mails
for the user, it is guaranteed that the e-mail server and
client are synchronized in the current dummy e-mail
address.

An alternate method of attack requires the use of
outside e-mail servers. In this method the infecting worm
also carries a light weight SMTP server to be installed on

the victim system. This SMTP server can connect to other
previously discovered or malicious e-mail servers.
Therefore, an infected system has the ability to propagate
further infection without the use of the client’s designated
e-mail server. In essence, a client of the protected e-mail
server can become infected and use alternate servers to
propagate infected e-mails. This approach has limited
effect on circumventing our method of detection since an
e-mail destined for a client of the protected server must
pass through the protected server. If the infector attempts
to communicate with the dummy address the source e-mail
address and the e-mail signature are recorded. Even if the
malicious SMTP server randomly generates an alternate
source address for the infecting agent prior to attempting
delivery of the mail, the mail’s signature is added to a
blacklist and further attempted infections with the same
signature are prevented. This method does not prevent the
spread of the worm outside the network, in this case, but
clients using our e-mail server are still protected from
infection. Similar to [13], clients outside the protected
domain are beyond our concern.

5. Maintaining Blacklists for E-mail Worm
Containment

E-mail worm signatures captured at the dummy
account are used to construct blacklists for the purpose of
containment. An e-mail that matches an entry in the
blacklists is placed in a quarantine process and cannot be
delivered until it is proven to be clean. In our scheme we
maintain two blacklists: a User blacklist and a Signature
blacklist. The maintenance of the two blacklists is

summarized in Table 1.

5.1. User Blacklist

Every entry in the User blacklist includes the e-mail
address, IP address of a blacklisted user, and a list of used
signatures associated with this user. If an e-mail destined
to the dummy address is received by the server and the
sender of this e-mail is not blacklisted, then the e-mail
address and IP address of this e-mail’s sender is added to
the User blacklist and the signature of this e-mail is added
to the used signatures associated with this user. If an e-
mail is sent by a blacklisted user, then the signature of the
e-mail is added to the used signatures list associated with
the blacklisted user if the signature is not yet blacklisted.

A user should not be blacklisted forever. A blacklisted
user should be allowed to gain his/her rights back if it can
be verified that the user’s account is no longer infected.
This is realized as follows. Each used signature is
associated with a time-to-live value. Periodically each
used signature is checked: if there is new occurrence of a
used signature then its time-to-live value is set to its
maximum value; otherwise its time-to-live is reduced by
one. A used signature is removed when its time-to-live is
down to 0. If no used signatures associated with a user are
contained in the Signature blacklist, then the user is
removed from the User blacklist.

5.2. Signature Blacklist

Every entry in the Signature blacklist includes a vector

of attributes and their corresponding values, and a threat

 Blacklists of users and signatures

Infected Lists Each entry contains Actions to apply

User user (String)
used signatures (List)

1. Add senders of e-mails destined to the dummy address to the User blacklist
2. Add new signatures of e-mails sent by a blacklisted user to the used

signatures list associated with the user and set time-to-live to maximum
3. Periodically reduce the time-to-live of each user’s used signatures and

remove a used signature whose time-to-live is down to 0
4. Remove user from blacklist if none of its used signatures are blacklisted

Signature signature (List)
threat score (int)

1. Add new signature of an e-mail destined to dummy address to the Signature
blacklist and initialize its threat score to P

2. Increase threat score of a matched signature by P if the received e-mail is
destined to dummy address

3. Increase threat score of a matched signature by 1 if the received e-mail is not
destined to dummy address

4. Decrease threat score of each signature by 1 periodically
5. Remove a signature from the list if its threat score is below 1

Table 1 Two blacklists for containment of e-mail worms.

score. Possible signature attributes include subject line,
packet size, hash of message payload, and source IP
address. If a received e-mail is destined to the dummy
address but its signature has not been blacklisted, then the
signature of this e-mail is added to the Signature blacklist
and its threat score is initialized to P, where P is a
predefined penalty for a confirmed infected e-mail and
must be larger than 1. If a received e-mail is destined to
the dummy e-mail address and matches a blacklisted
signature, then the threat score of the signature is
increased by P. If a received e-mail is not destined to the
dummy e-mail address but matches a blacklisted
signature, then the threat score of the signature is
increased by 1. Note that the two cases are treated
differently, because an e-mail destined to the dummy
address must be an infected one, but an e-mail not
destined to the dummy address should be regarded as
potentially infected.

A potentially infected signature should not be
blacklisted forever, especially if it is blacklisted because
its sender is blacklisted. This is realized by a redemption
mechanism as follows: If tlife has passed, where tlife is an
average period of time between the receipts of two
legitimate e-mails, since last update of the threat score of
a signature, then the threat score is decreased by 1. If a
signature has a threat score below 1, then the signature is
removed from the list.

Note that because of the redemption mechanism in
both User and Signature blacklists, a legitimate user is
able to redeem itself from the User blacklist quickly
should it send an e-mail to the dummy address by mistake.

6. Implementation and Evaluation

We implement a prototype of our scheme with two
Java Virtual Machine types: e-mail client and e-mail
server. It is assumed that the server only supports IMAP
connections, and it is integrated with an e-mail server. The
server listens for connection attempts. The client functions
much the same as a standard user system of an SMTP
server, with one exception: it must validate its address
book upon access. All communication between the two
virtual machines is through TCP/IP connections, as would
be the case in a real network.

The server machine maintains a complete user list, the
dummy e-mail address, a blacklist for known infected e-
mail addresses, a blacklist for known e-mail worm
signatures, and the dummy address hash. Upon receiving a
connection request the server checks the user name and
password, then updates the client’s address book with the
current dummy e-mail address (for simplicity a text export
of Outlook Express address book is used). After this
process is complete the user’s new e-mails are
downloaded. An SMTP that supports authentication as

defined in [8] should be used for the user to upload
outgoing e-mails in order to thwart address spoofing
attacks. This is similar to the operation of a normal e-mail
server, but when an e-mail worm is found the source
address is added to the user blacklist. No e-mail from a
source on the user blacklist is allowed to be delivered, and
no e-mail matching a known worm signature is allowed to
be delivered. Instead these e-mails are placed in a
quarantine box until further analysis is conducted to verify
whether they are clean.

The signature blacklist is maintained by adding the
signature of the message from a known infected e-mail
address and increasing the threat score of the signature by
one. This threat score is based on the signature and does
not depend on the e-mail address of the infected client.
After a predefined time period, tlife, the threat score of
every signature is reduced by one. If at any time a
signature’s threat score is reduced below one, the
signature is removed from the signature blacklist. When a
blacklisted user uploads its outgoing e-mails a check is
made to see if the blacklisted user has any known
signatures remaining in the signature blacklist. If there are
no signatures remaining in the signature blacklist that
match to the blacklisted user’s outgoing e-mails, then this
user is removed from the user blacklist and is deemed
clean. All e-mails from the user that were previously
quarantined are marked as potentially clean.

The User blacklist is capable of redeeming innocent
clients after a predetermined period of “good behavior”.
This mechanism allows redemption of clients that are
“well-behaved” and prevents a worm from directly
exploiting the Signature blacklist. For example, a
malicious client attempting to cause more damage to the
network mimics the signature of a “well-behaved” client,
but intentionally causes the dummy client to trigger, thus
denying service to a client [13]. For simplicity, during the
parsing of the observed data results of our simulation
tests, the determination of whether a client is legitimate or
infected is based solely on its original status in the e-mail
generators.

In addition to being able to detect and eliminate the
original worms, our scheme detects signatures that are
similar to what may have previously been a worm and
quarantines the messages until the signature and sender
are determined to be uninfected. Due to this method, a
legitimate transfer may be tagged indirectly as infected if
a matching signature is already blacklisted. Legitimate
traffic is often sparse with many different signatures and
redeems itself quickly if mistakenly tagged as infected.
Our results demonstrate this by the infection of a
legitimate sender with a legitimate message that match a
signature of a previous worm that is still blacklisted. Due
to the nature of this method, a user that is blacklisted
indirectly without sending a message to the dummy e-mail
address may only need to stay on the blacklist for a short

period of time before the user is considered clean. The
duration of quarantine gives an administrator considerably
more time to respond to the threat of an e-mail worm
outbreak. Given enough time this system will correct itself
and will not allow the containment scheme to perform a
self-inflicted denial-of-service attack on the
administrator’s own e-mail server.

The client initiates TCP/IP connections with the server.
After establishing a connection the client then transmits
authentication information (username/password). After
receiving confirmation of authorization the client receives
the current dummy e-mail address. The previous dummy
e-mail address in the address book is overwritten, and the
client proceeds to download new messages.

The address book maintained by the client has only one
requirement: the dummy e-mail address must be present.
It is not assumed that only e-mail addresses under the
domain of the simulated server can be in a client’s address
book. On the other hand, the server does not have to
maintain the address books of all users of the system; the
server just maintains the dummy address. The
responsibility of the server is only to provide and ensure
the presence and synchronization of the dummy address in
the client’s address book.

The goal of this design is to demonstrate the capability
of this scheme to quickly detect e-mail worm propagation,
protect clients from further infection, and capture an
instance of the propagating worm. Two experiments are
conducted with e-mail worms originating from inside and
outside the protected network. The first experiment is a
test of the capabilities of the system to detect the
propagation of an e-mail worm that selects the next
address to propagate (from the address book) in a linear
fashion. The second experiment is to test the detection of
an e-mail worm that selects the next address to propagate
in a random fashion.

Server

Client 1
(Infector)

Client 2
(Target)

Infected List:
Mail 2

Mail 2
From:
Client 1
To:
Client 2,
Dummy

Mail 1
From:
Client 2
To:
Client 1

Figure 2 One computer simulates the interaction
between three computers: the e-mail server and two
clients.

The tests run on a single system with several
components running simultaneously: target client, infector
client, e-mail server, dummy daemon, and the data
collector. An outline of this setup is shown in Figure 2.
This setup is designed to be simple but without loss of
generality. The target and infector clients generate traffic
for the e-mail server, the dummy daemon periodically
checks the dummy account, and the data collector dumps
the current state of the e-mail server and the blacklists to a
file for analysis.

The time parameters we use to conduct these tests are
as follows: 0-4 seconds between two consecutive
injections of e-mails from the infected and legitimate e-
mail generators, 2.5 seconds between two consecutive
checks of the dummy e-mail account, 5 seconds between
gathering the current state of the e-mail server, 0.5
seconds for tlife. These time periods are very short, but
they are intentionally chosen to demonstrate that this
method can work in extreme cases where signatures may
possibly be removed from the blacklist before they have a
significant impact on containment. The value of the
predefined penalty P needs to be large enough so that a
confirmed worm signature will not be removed from the
blacklist easily. We set P to 30 in the tests. A static
number of e-mail addresses are used for the infected and
legitimate e-mail generators. The specifics of the e-mail
addresses can be seen in Tables 2 and 3. An infected
address sends out infected e-mails, while a legitimate
address sends out legitimate e-mails. The “mutual”
addresses in Table 2 are the overlap between infected
addresses and legitimate addresses, which means that they
send out both infected and legitimate e-mails.

The results of the experiments are shown in Tables 4
and 5. In the case of an e-mail worm that selects the next
address linearly, the system tags the infected clients with a
success rate always higher than 95%. In the case of an e-
mail worm that selects the next address randomly, the
success rate is always higher than 72%. These results
show that our scheme is effective at tagging infected
clients. Note that the percentage of messages that are
destined to the dummy address is very low, because only
infected clients might send to the dummy address and not
every infected client sends to the dummy address.
However, the system is still able to tag nearly all the
infected clients even though some infected clients do not
hit the dummy address.

 Table 2 Address book statistics for infected and
legitimate clients

Table 3 Sender and signature statistics for infected
and legitimate clients.

Table 4 Simulation results in which the e-mail worm
selects address in a linear fashion.

Sec. Total messages % to dummy % false infected % true infected
15 111 2.6 18.9 100
30 234 2.9 23.3 100
45 378 2.9 38.1 95.2
60 493 3.0 41.8 100
75 614 2.9 42.5 100
90 715 3.0 63.4 100
105 830 3.1 22.3 100

Table 5 Simulation results in which the e-mail worm
selects address in a random fashion.

Sec. Total messages % to dummy % false infected % true infected
15 71 1.4 7.1 100
30 164 3.6 18.9 100
45 246 2.8 6.2 100
60 367 2.7 7.2 72.2
75 434 3.2 20.0 100
90 534 2.8 13.1 100
105 634 3.3 21.6 91.7

7. Concluding Remarks

In this paper, we present a novel approach to capture
the signatures of e-mail worms and contain their
propagation. An unused dummy e-mail address is set up
on the e-mail server and inserted into every client’s
address book, such that we can be confident that any e-
mail destined to this dummy e-mail address is generated
by an e-mail worm. The signatures captured from an e-
mail destined to the dummy address will then be added to
a User blacklist and a Signature blacklist in order to
contain the propagation of this e-mail worm. We have
shown that this approach is easy to implement and deploy
and does not affect normal network traffic in any way. If
implementations of our approach are widely deployed,
there is a good chance that e-mail worms can be detected
and captured at an early stage of their propagation.

In the future, we would like to design a protocol that
can be used among different implementations of our
approach, so that e-mail servers can securely exchange
collected information about e-mail worms with a
centralized monitoring center or with peer e-mail servers,
without being disrupted by impersonation attacks.

8. References

[1] A. Gupta and R. Sekar, “An Approach for Detecting Self-
Propagating Email Using Anomaly Detection”, Proceedings of
RAID 2003, Pittsburgh, PA, Sep. 2003.

[2] C. Kruegel and G. Vigna, “Anomaly Detection of Web-
based Attacks”, Proceedings of CCS 2003, Washington, DC,
Oct. 2003.

[3] W. E. Leland, M. S. Taqqu, W. Willinger, D. V. Wilson,
“On the Self Similar Nature of Ethernet Traffic”, Proceedings of
SIGCOMM93, San Francisco, 1993.

[4] J. McHugh, “Intrusion and Intrusion detection”,
International Journal of Information Security, Volume 1 Issue 1
(2001), pp 14-35, 2001.

[5] D. Moore, V. Paxson, S. Savage, C. Shannon, S. Staniford,
and N. Weaver, “Slammer Worm Dissection: Inside the
Slammer Worm”, IEEE Security & Privacy, Vol. 1, No. 4, pp.
33-39, Jul. 2003.

[6] D. Moore, C. Shannon, and J. Brown, “Code-Red: a case
study on the spread and victims of an internet worm”,
Proceedings of the Internet Measurement Workshop 2002,
Marseille, France, Nov. 2002.

[7] D. Moore, C. Shannon, G. M. Voelker, and S. Savage,
“Internet Quarantine: Requirements for Containing Self-
Propagating Code”, Proceedings of IEEE INFOCOM 2003, San
Francisco, CA, Mar. 2003.

[8] J. Myers, “SMTP Service Extension for Authentication,”
RFC 2554, Mar. 1999.

[9] V. Paxson, “BRO: A System for Detecting Network
Intruders in Real Time”, Proceedings of the 7th USENIX
Security Symposium, San Antonio, TX, Jan. 1998.

[10] M. Roesch, “Snort – Lightweight Intrusion Detection for
Networks”, Proceedings of the USENIX LISA ’99 Conference,
November 1999.

[11] S. Sellke, N. B. Shroff, S. Bagchi, “Modeling and
Automated Containment of Worms”, to appear in Proceeding of
International Conference on Dependable Systems and Networks
(DSN), June 2005.

[12] S. Staniford, V. Paxson, N. Weaver, “How to 0wn the
Internet in Your Spare Time”, Proceedings of the 11th USENIX
Security Symposium, 2002.

[13] N. Weaver, S. Staniford, V. Paxson, “Very Fast
Containment of Scanning Worms”, Proceedings of the 13th
USENIX Security Symposium, 2004.

[14] M. M. Williamson, “Throttling Viruses: Restricting
propagation to defeat malicious mobile code”, Proceedings of
18th Annual Computer Security Applications Conference
(ACSAC), December 2002.

[15] C. Wong, S. Bielski, J. M. McCune, C. Wang, “A Study of
Mass-mailing Worms”, Proceedings of the 2004 ACM
workshop on Rapid malcode, Washington DC, October 2004.

[16] J. Xiong, “ACT: attachment chain tracing scheme for email
virus detection and control”, Proceedings of the 2004 ACM
workshop on Rapid malcode, Washington DC, October 2004.

[17] C. C. Zou, W. Gong, D. Towsley, L. Gao, “The Monitoring
and Early Detection of Internet Worms”, to appear in
IEEE/ACM Transactions on Networking, 2005.

[18] C. C. Zou, D. Towsley, W. Gong, “Email worm modeling
and defense”, Proceedings of the 13th International Conference
on Computer Communications and Networks (ICCCN’04),
October 2004.

[19] The Honeynet Project, http://www.honeynet.org/.

[20] Symantec Security Response, W32.Sobig.F@mm,
http://securityresponse.symantec.com/avcenter/venc/data/w32.so
big.f@mm.html

[21] Symantec Security Response, W32.Mydoom.A@mm,
http://securityresponse.symantec.com/avcenter/venc/data/w32.n
ovarg.a@mm.html

[22] “Email Naming Standard for MS Exchange”,
http://intranet.uml.edu/it/email/documents/Email%20Naming%2
0Standard%20for%20MS%20Exchange.pdf

