
Fates: A Granular Approach to Real-Time
Anomaly Detection

Jeff Janies, Chin-Tser Huang
Department of Computer Science and Engineering

University of South Carolina
janies@cse.sc.edu, huangct@cse.sc.edu

Abstract— Anomaly-based intrusion detection systems
have the ability of detecting novel attacks, but in real-time
detection, they face the challenges of producing many false
alarms and failing to contend with the high speed of
modern networks due to their computationally demanding
algorithms. In this paper, we present Fates, an anomaly-
based NIDS designed to alleviate the two challenges. Fates
views the monitored network as a collection of individual
hosts instead of as a single autonomous entity and uses
dynamic, individual threshold for each monitored host,
such that it can differentiate between characteristics of
individual hosts and independently assess their threat to the
network. Each packet to and from a monitored host is
analyzed with an adaptive and efficient charging scheme
that considers the packet’s type, number of occurrences,
source, and destination. The resulting charge is applied to
the individual hosts’ threat assessment, providing
pinpointed analysis of anomalous activities. We use various
datasets to validate Fates’s ability to distinguish scanning
behavior from benign traffic in real time.

Index Terms—Network-based Intrusion Detection
System, Anomaly-based Detection

I. INTRODUCTION
An anomaly-based Network-based Intrusion Detection

System (NIDS) works on the assumption that malicious
network traffic is distinguishable from normal network traffic,
as discussed in [3]. These systems attempt to quantify the
protected network’s “normal” network traffic and report
deviations from this norm. Anomaly-based detection has
attracted major research interest, since it has the ability to
detect novel attack strategies often missed by signature-based
methods such as Bro [16] or Snort [21]. By understanding and
defining what is “normal” in a network, deviations from this
norm indicate activities that require further investigation. This
method of detection maintains the same level of sensitivity in
the presence of novel and classic attack strategies.

Although the capabilities of anomaly-based detection are
consistent, this method presents two unique challenges. First,
since network traffic can vary wildly and certain traffic patterns
are unpredictable, anomaly-based NIDSs run the risk of
producing many false positive and false negative alarms. A
false positive is when an NIDS flags benign (though possibly
odd) traffic as malicious. Conversely, a false negative is when
an NIDS flags malicious traffic as being benign. Second, since
modeling the behavior of a network is complex many proposed

systems use computationally demanding algorithms for
analysis. Although such algorithms provide the most promise
for detection of malicious activity, they run the risk of being
too slow to be effective in modern networks, which already
achieve speeds of 1000Mbps (for a complete discussion of this,
please refer to [23]).

The system presented here is an anomaly-based NIDS,
Fates, which attempts to alleviate the challenges discussed
above while maintaining the advantage of detecting novel
attacks. Fates views the network as a collection of individual
hosts as opposed to an autonomous entity. By making such a
fundamental view change, Fates has the ability to differentiate
between characteristics of individual hosts and independently
assess their threat to the network. Packets to and from a
monitored host are analyzed with an adaptive and efficient
charging scheme that considers the packet’s type, number of
occurrences, source, and destination. The resulting charge is
applied to the individual hosts’ threat assessment, providing
pinpointed analysis of anomalous activities.

II. RELATED WORKS
Most current real-time, anomaly-based NIDSs utilize

entropy analysis and signal detection techniques. In [25], [5],
[1] and [22] two entropy approaches and one signal detection
approach are discussed respectively. Zachary et al. [25] use an
entropy analysis that is tunable to large-scale networks. In the
presence of robust scanning this approach proves to be
effective. For instance, in a deployment demonstration this
approach detected the beginning of a Code Red attack [2]. The
early warning of this attack allowed the administrators to
minimize the impact of the attack, but the exact nature of the
attack was unknown until administrators conducted further
investigation of network activities. Similar to this approach,
Feinstein et al. [5] uses a chi-squared approach to distinguish
DDoS attacks from other attack strategies and properly notifies
the administrator of the existence of the attack. Alternately,
Barford et al. [1] and Thareja [22] propose a distributed signal
detection approach to characterize network anomalies. In this
approach, normal network traffic is viewed as noise. Using
wavelet analysis, the method removes this “noise” in an effort
to expose the underlying anomalous activity that would
otherwise be indistinguishable. Both of the above approaches
are scalable to large-scale networks because they generalize the
monitored network to a single entity with a quantifiable
“health”. It is the aim of these approaches to gain a global
perspective by viewing the network in a broad sense. However,
the effectiveness of the approaches specified above may be

limited by the following two reasons. First, quantifying a
network’s “health” in a single numerical value does not provide
granularity. For example, in the presence of scanning activity,
the scan is detectable, but to find the source of the scanning,
further analysis is required. Second, excluding parallel-
computing, real-time processing is not possible in “fast”
networks due to the amount of processing load required.
Combined, these two reasons suggest that a granular approach
with lightweight computation loads is an appropriate next step
in advancing anomaly-based intrusion detection to a feasible,
economic solution to modern network security.

In an effort to provide both the granularity and the
economy of operations that are required in modern networks,
Jung et al. [9] propose a Threshold Random Walk (TRW)
scheme, which assesses the health of the network based on a
probabilistic analysis of a packet’s likelihood of successful
delivery. In this approach, a single packet does not result in the
labeling of a host as benign or malicious, but analyses of
subsequent packets originating from the host add to the
assessment to provide an adequate view of the host’s current
state. The system maintains a likelihood ratio for each host
until the value falls below a lower threshold (indicating a
benign host) or increases above an upper threshold (indicating
scanning behavior). This approach has the advantage of being
lightweight while providing the ability to distinguish between
scanning and benign behavior.

Weaver et al. [23] propose an approximation cache
approach, which incorporates a simplified TRW scheme. In
this approach, the system subdivides a network into
autonomous regions. The system examines all hosts within a
region in accordance to the host’s connection history with other
hosts. The health of a host is represented by a single integer
value, which indicates the number of unacknowledged
connection attempts that a host makes. If this value exceeds a
predefined threshold, the system disallows any new connection
attempts.

Although both [9] and [23] utilize a granular view of the
network, they both fail to capitalize on its ability to distinguish
between varying traffic needs. For instance, it is obvious that a
web server and a standard workstation computer would have
different network traffic loads and, therefore, a network
administrator should not generalize them to have similar traffic
patterns, as discussed in [19]. However, since the thresholds in
both [9] and [23] are static and global, these systems are unable
to adequately represent a network of diverse traffic needs.

This research extends the approaches discussed in [9] and
[23] by incorporating dynamic, individual thresholds for each
monitored host. As a result, the simple calculations used to
assess the charge for a host provides a method by which to
assess individual host’s health with little regard to other hosts
in the network. Moreover, in doing so, we are able to keep the
processing load economical and thus meet the high speed
requirements of modern networks.

III. OVERVIEW OF FATES SYSTEM
The Fates of Greek Mythology are three goddesses:

Clotho the Weaver, Lachesis the Apportioner, and Atropos the
Cutter of Thread. They determine the life of mortals by
examining the world as a woven tapestry. With each person
representing a thread used in the tapestry, the three goddesses
see the tapestry as a collection of individual threads. Likewise,

Fates examines the network as a collection of individual
entities and does so using three subsystems: a sniffer (Clotho),
a measuring unit (Lachesis), and an alarm unit (Atropos). The
sniffer, Clotho, is a passive listener that records packets as
they enter and leave the network. Similar mechanisms are used
in [6], [7], [9], [11], [12], [13], and [23].

In order to appropriately model traffic and support this
differentiation between hosts, the Fates system utilizes prior
knowledge of the network topology and event management to
initialize the system. This is similar to an approach discussed
by Jung et al. [8] to aid in distinguishing between flash crowds
and DDoS attacks. The Fates system utilizes rudimentary
knowledge of the network topology, i.e. the IP addresses
present in the network. Fates regards each IP address or range
of addresses as a separate unit with its own threshold and
scoring. By doing so, Fates provides the ability to differentiate
between various traffic needs for a variety of hosts that may be
present on a subnet. The Fates system can support any number
of protected hosts and any degree of granularity.

The measuring unit, Lachesis, utilizes the granular view
in internal-to-external monitoring. This is achieved with an
internal hosts monitor component (IHM), which uses
connection classification in order to assess the overall “health”
of a specific monitored host.

A. Internal Hosts Monitoring (IHM) Component
The IHM component is the monitor of all user-specified

internal host of the network. This component utilizes both the
a priori IP address information provided at initialization and
current connection state information to produce an analysis of
individual hosts in the network. Prior to active monitoring of
the network, the measuring unit acquires a list of active IP
addresses (or range of addresses) in the monitored subnet and
the minimum thresholds of the host (or range of hosts). The
minimum threshold is the lowest sustainable threshold that
Fates allows the host to have and uses the minimum threshold
to adjust the current threshold of the host.

The IHM component utilizes two structures to represent
the monitored hosts and monitor the traffic of the network: the
IP_List and IP_Packet_Table. IP_List is a binary search tree in
which each element represents a monitored host. An element
of the IP_List contains an IP address (or IP range), the current
threat score (initialized to 0), the average threat score (also
initialized to 0), and a hash table of nodes that are currently in
communication with this monitored host (I/OCache).
I/OCache is an approximation cache of integers with each
integer representing the state of communication between the
monitored host and any host whose IP address hashes to that
location. The IP_Packet_Table is an approximation cache
indexed by a hash of the packet’s payload and contains both a
time-to-live and occurrence counter for each entry.

When IHM processes an IP packet, it first determines if
the upper-layer protocol is connection-oriented, such as
TCP/IP, or connectionless, such as UDP. In the case of a
connection-oriented protocol, the state of the connection is of
primary concern. Since scanning behavior tends to exploit
weaknesses in existing protocol structures, there is very little
that can be taken for granted. For example, in the TCP/IP
protocol a packet with an ACK bit set should only exist in an

established connection. However, as is demonstrated by [10],
a malicious user can use these packets for scanning purposes.
In the case of a connectionless protocol, the number of packets
with duplicate payloads is of importance. The main assertion
of such a practice is that scanning behavior will present itself
in only a finite amount of possible packet payloads. Since
connectionless protocols use only a “best effort” approach for
packet delivery, there should be no duplicate packets of this
type in a short amount of time (i.e. the source does not
retransmit if a packet is lost).

In the case of a TCP packet, the IHM component
determines whether the packet is destined to or originated
from a monitored host and the packet type. This information is
used to modify a given host’s I/OCache entries. If the
destination of the packet is a monitored host, the IHM
component first finds from the IP_List the element
corresponding to the destination address, uses the source IP
address to index into the element’s I/OCache, and then
subtracts one from the I/OCache entry’s current value
(conversely, if the source of the packet is a monitored host,
add one to the corresponding I/OCache entry). The IHM
component then assesses a charge for the packet using the
entry’s resulting value. The formula for calculating this charge
is shown in Table I. If the value of the entry is less than or
equal to zero, the state is set equal to zero and the host is not
assessed a charge, because the host is receiving more
communications than it is transmitting, i.e. not scanning
behavior. If the value of entry is greater than zero, the state is
set equal to the entry’s value. The reason for the multiplication
of the state information by two is to provide a quick jump in
charges in the presence of persistent unacknowledged
outgoing messaging. As will be seen in our experimental
results, this multiplier serves its purpose quite well. Note that
in a standard three-way handshake and packet transmission
(the destination transmits an ACK for each message received)
the monitored host receives a net charge of zero.

TABLE I. FORMULAS FOR PACKET CHARGE

Packet Type Formula
TCP Charge ()1*2 −= state
UDP Charge ()1*2 −= count

In the case of a UDP packet, the packet’s payload is of

importance because there is no connection information
associated with protocol. When the IHM component processes
a UDP packet, it uses the payload of the packet to index the
IP_Packet_Table, increments the entry’s count value by one,
and sets the TTL of the entry to 255. If the source of packet is
a monitored host, the IHM component then assesses the host a
charge. As Table I shows, the charge is simply two times the
count value minus one. Note that an arbitrary non-duplicate
packet would result in no charge.

In the case of any other protocol, Fates skips the packet.
It is arguable that ICMP [18] should be processed. However,
since this packet type is connectionless and used for control
messages, there is a risk of skew in processing. For instance,
ping, a widely used mechanism for determining connectivity

of a host, sends echo request messages to a user-specified
destination. These packets are identical with regard to payload,
and therefore, result in the IHM component immediately
flagging any host issuing a ping request as malicious.
Therefore, the ambiguity of circumstance necessitates the
absence of this protocol from analysis.

At the expiration of the time step, the IHM component
assesses the health of all monitored hosts and prepares for the
next time step. First, the IHM component calculates the
cumulative charge for all packets for each host seen during the
current time step, resulting in a threat score for the host. The
IHM component compares the threat score to the current
threshold of the host. If the threat exceeds the current
threshold, the IHM sets the threshold equal to the threat score
and makes a note of the change in a log file. If the threat is less
than the threshold, the IHM component compares the
threshold with the minimum threshold. If the values are equal,
the IHM component takes no action. In all other cases, the
IHM component uses a threshold adjustment scheme. Note
that a threshold is easily increased but further analysis is
required to determine if the threshold should be lowered. The
principle idea is that the component attempts to ascertain an
appropriate upper bound of a host’s activity. A well-behaved
host’s threshold will plateau, but a scanning host’s activity
constantly causes the host’s threshold to increase. After the
IHM component adjusts the thresholds of each host it then
prepares for the next time step by resetting the threat score to
zero, decreasing the TTL of each entry in the I/OCache by
one, and decreasing the TTL of all elements in the
IP_Packet_Table by one. If the TTL of an entry in the
IP_Packet_Table is equal to zero, the IHM component sets the
count of the entry to zero.

B. Aggregation of Readings
In order to address the issue of decreasing threshold, the

IHM component uses the weighted average of previous
readings to understand the current state of the host. The
averaging method used is as follows:

S = Scurrent (1 – α) + Snew (α)
where S is the weighted average score, α is a preset value for
the decay of old readings, Scurrent is the previous weighted
average score, and Snew is the threat of the host in this time
step. This is similar to TCP roundtrip time (RTT) estimation
as discussed in [17], which provides an efficient way to
calculate a weighted average of readings. The formula
encompasses both an implied time-to-live for charges against a
host and a contextual analysis of a network host’s status at
present. In practice, the value of α should range between 0.5
and 0.75.

With this averaging, the IHM component can compare a
host’s current threat level to its previous activity, assess the
duration of anomalous activity, and scale changes to
thresholds. With simple comparisons, the weighted average
provides an analytical tool for assessing the speed at which a
host’s activity is changing. This is useful in assessing cases of
flash crowd and DoS attack, where network activity from one
or many hosts increases rapidly, as discussed in [7]. However,
the IHM component currently limits this analytical tool to

providing a method to interpret network information for tuning
a threshold, as discussed next.

C. Threshold Adjustment
As previously stated the IHM component is quick to raise

a host’s threshold but lowering the threshold requires further
analysis of both current state of the host’s activities and its
previous activity. IHM attempts to find equilibrium for each
host’s activity. Quickly redeeming charges possess two
important risks. First, it provides no stable ground on which to
base assessments about the health of a host. If the threshold is
not allowed to plateau, the system provides no solid ground
upon which an administrator can make decisions. Second,
allowing the threshold to drop quickly could cause the
masking of malicious activity. As will be seen in the next
section, certain normal network activities cause dramatic
changes in the threshold, but the system quickly returns to
normal, while scanning activities cause lasting and continual
changes to the thresholds, resulting in obvious distinctions
from normal host behavior.

In the IHM component’s threshold adjustment, the
threshold will remain the same until being exceeded by a
host’s score. Once a host’s score exceeds the host’s threshold,
the value of the host’s threshold will increase to the score that
exceeded it. For every time step afterward, if the weighted
average score of the host is lower than the minimum threshold,
then the threshold value decreases by half of the difference
between the minimum threshold and the weighted average
score until it reaches the minimum threshold value. The
formula for this threshold adjustment is as follows:

T = Tcurrent – (Tmin – S) / 2
where Tcurrent is the current threshold value, Tmin is the initial
threshold value of the host, and S is the current score of the
host. After experimentation with the values of S it was found
that this formula has a redemptive quality for a previously ill-
behaved host but requires an adequate number of time steps
before the threshold returns to its minimum value.

IV. EXPERIMENTATION
We test the Fates system on several different datasets in

order to understand how the system functions under
environments with different characteristics. The datasets
presented here are the Slammer simulation package, the
University of South Carolina (USC) Department of Computer
Science and Engineering subnet traffic, and a World of
Warcraft (WOW) [24] traffic set. The Slammer simulation
tests the UDP charging scheme. The USC subnet traffic tests
the TCP/IP charging scheme. The WOW traffic set tests the
false positive rate of the system when presented with traffic
that exhibits packet loss due to congestion at an endpoint. Due
to page limit we will only show the results of Slammer
simulation and USC traffic.

A. Slammer
The Slammer worm [13] was one of the most infectious

worms to plague computer networks. Within three hours of its
introduction, the worm had infected almost all susceptible
computers running an unpatched version of Microsoft SQL

Server (see [13]). In an effort to test Fates, we developed a
simulation package that attempts to simulate the slammer
worm’s infectious nature and provides a good alternative to
real-world data by both being completely modifiable and
lacking the legal entanglements normally associated with the
capture of real-world data.

The simulation package functions as a packet generator
and TCPdump merger. It takes for input a TCPdump of
background, or presumed benign, traffic for input, and merges
the data contained within with simulated results from a
slammer infection. Therefore, the resulting file contains
malicious traffic hidden within the benign and is otherwise
indistinguishable from an actual capture log. We ran this
simulation against the Fates system in an effort to test the
UDP charging scheme. The simulated data consisted of two IP
addresses 192.168.1.101 and 192.168.1.103 that were
monitored for 10 minutes (this time is a bit excessive since the
worm was actually detected in only 30 seconds).
192.168.1.103 is an infected host that is attempting to
propagate the slammer infection and 192.168.1.101 is a host
that is running 20 minutes worth of web traffic, a video
stream, and an ssh connection. For the purposes of this
simulation, the rate at which the worm propagates is one
second. This rate is far slower than the actual Slammer worm,
which only aids in hiding the signature of the worm. However,
as can easily be seen in the graph provided below, Slammer is
not only easily detected, but the well-behaved node’s
threshold remains static throughout the monitoring time.

In Figure 1, the first graph plots charges assessed for each
host by the Fates system, and the second graph is the plot of
the threshold at every time step. As can be seen, the additive
nature of the algorithm does not result in any form of
reduction in charges or the threshold for the infected host.
However, this additive charging also results in no increase in
the charges and threshold of the well behaved host that is
running web traffic. Because of the infected host’s charges,
the threshold constantly increases in a linear fashion
throughout the duration of the experiment.

The trend of the worm to increase a host’s threshold at a
steady rate is a factor of its propagation method as opposed to
the time associated with the propagation. As Figure 2
demonstrates, if the delay between propagation attempts is
limited to three seconds (a value far lower than even TCP/IP
worm propagations), the same trend in behavior is exhibited.
Although the increase is not linear as in the previous example,
we observe a steady increase in the threshold. Another feature
that is apparent in this experiment is a series of peaks in the
cumulative charges of the infected host. This is a direct result
of the duration between successive attempts at propagation.
The lulls result in a steady decrease in current charge for a
malicious packet, but this decrease is mitigated by continued
effort of the host to propagate duplicate malicious packets.

B. USC Traffic
Next, we test the Fates system’s capabilities with regard

to TCP/IP scanning methods in a real network environment.
The University of South Carolina’s Department of Computer
Science and Engineering is gracious enough to allow for
managed data collection from their subnet. This network

0

2000

4000

6000

8000

10000

12000

14000

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58
Time Step

Th
re

sh
ol

d

192.168.1.101
192.168.1.103

0

2000

4000

6000

8000

10000

12000

14000

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57
Time Step

C
ur

re
nt

 S
co

re

192.168.1.101
192.168.1.103

Figure 1. Slammer Simulation (with a propagation delay of 1 second)

0

200

400

600

800

1000

1200

1400

1600

1800

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58

Time Step

C
ur

re
nt

 S
co

re

192.168.1.101
192.168.1.103

0

200

400

600

800

1000

1200

1400

1600

1800

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58

Time Step

Th
re

sh
ol

d
192.168.1.101
192.168.1.103

Figure 2. Slammer Simulation (with a propagation delay of 3 seconds)

consists of eight /24 subnets divided over administrative
offices (containing an SMTP server), research labs, and open
public labs. There are approximately one thousand hosts on
the network which is divided into 37 monitored ranges. The
subnets are at most half populated, and the variety of the
traffic present on the systems gives a diverse sensing
environment.

In order to test the ability of the system to detect scanning
behavior in the presence of real-world network traffic, we
employed standard scanning techniques supplied in Nmap [14]
network mapping software that probes for available ports on a
host (or range of hosts). In standard operation, Nmap first
attempts to ping all hosts in the subnet. If a host in the subnet
responds, Nmap runs a user-specified scanning technique on
all active ports for a host. If there is no response from the ping,
Nmap attempts to locate hosts by scanning port 80 for all
possible hosts in the target range. If the scan of port 80 locates
hosts, Nmap runs the user-specified scanning technique on all
ports of the active hosts. This method of host discovery
provides the advantage of time because it limits the number of
hosts that it scans to only those that truly exist.

In order to examine the detection capabilities of the
system the Fates system, we validate results against Snort
[21], a widely utilized and respected NIDS system. The Snort
system utilizes a rule-based analysis of network traffic and is
completely configurable. Our aim is to detect everything that
Snort detects for comparison purpose.

Prior to testing scanning behavior, we establish a baseline
of normal network activity as shown in Figure 3. This base
line reflects the normal activity of the network in absence of
scanning. There are 37 entries in Figure 3, representing the 37
monitored ranges. As is seen in this figure, all entries reach
equilibrium and plateau very quickly. Also, note that the
modifications in the threshold of benign activity result in sharp
jumps as opposed to the steady increases in the Slammer
simulation. The presence of these sharp jumps and plateaus
indicates that the system is adjusting to a current and steady
bandwidth demand, and not to consistent missing behavior.
Therefore, these sharp jumps indicate normal operation and
thus are distinguishable from native scanning behaviors. After
a satisfactory establishment of normal network traffic
modeling, we introduced several scans into the network.
Figures 4, 5, 6, and 7 describe the resulting thresholds present
in the network. The first of these scans is the half-open scan.
As is seen in Figure 4, a steady increase in the threshold is
present. At time step 16, the threshold plateaus. This is a result
of steady connections to active ports, as opposed to connection
attempts to closed ports. However, the scanning activity
presents itself very clearly as compared to the benign traffic
that surrounds it. Next, we ran an ACK scan. As is seen in
Figure 5, this behavior presented itself very clearly also with a
steady increase in the threshold. Even though the increase is
not as much as is seen in the half-open scan, the increase is
observable and distinct from the benign traffic. Then, we ran a
FIN scan, which is demonstrated in Figure 6. Once again, the
scanning entity presented itself in a steady increase. However,
the most interesting part of this graph is not the sharply
increasing threshold of the host conducting a FIN scan but the
second lowest host that is presumably benign. After further
analysis, we determined the behavior to be a RST scan of port
22, SSH, which was an actual attack underway in the network!
Figure 7 is a representation of the behavior.

USC Thresholds (Clean)

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 106 113 120

Time Step

Th
re

sh
ol

d

Figure 3. USC Traffic Threshold Analysis (clean)

In all of the above examples, the magnitude of benign
traffic does not obscure the scanning behavior. Instead, it
provides comparative information that makes the steady
increase in the threshold obvious to the user. From these
examples we can derive the conclusion that for Fates, standard
scanning behavior is distinguishable from benign activity.

V. CONCLUDING REMARKS
The Fates system exploits the advantages of a granular

view by allowing for precision detection of network activity
while also maintaining an economy similar to [23]. The
system allows for dynamic, self-healing thresholds that allow
for both forgiveness of misconfiguration and scaling to current
network conditions. Furthermore, the Fates system uses simple
calculations, unlike the entropy-based systems, such as [5],
[22], and [25]. As a result, the functionality of the Fates
system is appropriate for real-time detection.

There are still open issues under investigation. First, the
issue of scalability is unresolved. Fates is not intended for
deployment across a diverse /8 network. As such, it is intended
to be a lightweight approach that better serves a small to
medium sized business environment. Second, the output of the
Fates system is comma delineated text files, which both

0

1000000

2000000

3000000

4000000

5000000

6000000

7000000

8000000

9000000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45

Time Step

Th
re

sh
ol

d

Scanning host

Figure 4. USC Traffic Threshold Analysis (half-open scan)

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Time Step

Th
re

sh
ol

d

Scanning host

Figure 5. USC Traffic Threshold Analysis (ACK scan)

0

100000

200000

300000

400000

500000

600000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Time Step

Th
re

sh
ol

d

Scanning host

Figure 6. USC Traffic Threshold Analysis (FIN scan)

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Time Step

Th
re

sh
ol

d

Scanning host

Figure 7. USC Traffic Threshold Analysis (RST scan)

REFERENCES
[1] P. Barford, J. Kline, D. Plonka, A. Ron, “A Signal Analysis of Network

Traffic Anomalies”. In Proceedings of 2nd ACM Internet Measurement
Conference, 2002.

[2] R. Danyliw, A. Householder. “CERT® Advisory CA-2001-19 "Code
Red" Worm Exploiting Buffer Overflow In IIS Indexing Service DLL”.
http://www.cert.org/advisories/CA-2001-19.html.

[3] D. Denning. “An intrusion detection model”. In Proceedings of the 1986
IEEE Symposium on Security and Privacy, pp 119–131, 1986.

[4] Emule. http://www.emule-project.net/home/perl/general.cgi?l=1.
[5] L. Feinstein et al., “Statistical Approaches to DDoS Attack Detection

and Response”. Proc. DARPA Information Survivability Conf. and
Exposition, vol. 1, 2003, IEEE CS Press, pp. 303-314.

[6] H. Hajji, B. Far, J. Cheng. “Detection of Network Faults and
Performance Problems”. In Proceedings of IC2001, 2001.

[7] A. Hussain, J. Heidemann, C. Papadopoulos. “Framework for
Classifying Denial of Service Attacks”. In Proceedings of ACM
SIGCOMM, 2003.

[8] J. Jung, B. Krishnamurthy, M. Rabinovich. “Flash Crowds and Denial of
Service Attacks: Characterization and Implications for CDNs and Web
Sites”. In Proceedings of Int’l World Wide Web Conference, ACM
Press, 2002, pp. 252-262.

[9] J. Jung, V. Paxson, A. Berger, H. Balakrishnan. “Fast Portscan
Detection Using Sequential Hypothesis Testing”. In Proceedings of
2004 IEEE Symposium on Security and Privacy p. 211, 2004.

[10] D. Kewley, J. Lowry, R. Fink, M. Dean. “ Dynamic Approaches to
Thwart Adversary Intelligence Gathering”. Available at
http://www.bbn.com/docs/whitepapers/ DISCEX_DYNAT.pdf.

[11] A. Lakhila, M. Crovella, C. Diot. “Mining Anomalies Using Traffic
Feature Distributions”. In Proccedings of ACM SIGCOMM 2005, 2005.

[12] W. Leland, M. Taqqu, W. Willinger, D. Wilson. “On the Self-Similar
Nature of Ethernet Traffic”. IEEE/ACM Transactions on Networking,
Vol. 2, No. 1, pp. 1-15, 1994.

[13] D. Moore, V. Paxson, S. Savage, S. Staniford, N. Weaver, “Inside the
Slammer Worm”. Available at http://www-
cse.ucsd.edu/~savage/papers/IEEESP03.pdf.

[14] NMap. http://www.insecure.org
[15] R. Pang, V. Yegneswaran, P. Barford, V. Paxson, L. Peterson,

“Characteristics of Internet Background Radiation”. In Proceedings of
4th ACM Internet Measurement Conference, 2004.

[16] V. Paxson. “Bro: A System for Detecting Network Intruders in Real-
Time”. Available at http://bro-ids.org/publications.html.

[17] V. Paxson. “RFC 2988 - Computing TCP's Retransmission Timer”,
Available at http://www.faqs.org/rfcs/rfc2988.html.

[18] J. Postel. “RFC 792 Internet Control Message Protocol”. Available at
http://www.faqs.org/rfcs/rfc792.html.

[19] T. Ptacek. “Insertion, Evasion, and Denial of Service: Eluding Network
Intrusion Detection”. http://secinf.net/info/ids/idspaper/idspaper.html.

[20] Ricochet Team Server Security. “Internet Worms: Self-Spreading
Malicious Programs”. Available at
http://www.mcafee.com/us/local_content/white_papers/
wp_ricochetbriefworms.pdf.

require post processing and are resource consuming. One
possible solution would be to incorporate this system into an
already existing system such as Snort, which has its own
established reporting mechanisms. Although these issues
provide for further avenues of investigation, the fact remains
that the Fates system both adequately interprets current
network conditions and distinguishes between benign traffic
and basic scanning behavior in a user notable manner.

[21] Snort, http://www.snort.org
[22] S. Thareja: “A Real Time Network Traffic Wavelet Analysis”. Master

Thesis, Department of Computer Science and Engineering, University of
South Carolina, 2005.

[23] N. Weaver, S. Staniford, V. Paxson. “Very Fast Containment of
Scanning Worms”. In Proceedings of the 13th USENIX Security
Symposium, pages 29-44, 2004.

[24] World of Warcraft Communicty. http://www.worldofwarcraft.com.
[25] J. Zachary, J. McEachen D. Ettlich. “Conversation Exchange Dynamics

for Real-Time Network Monitoring and Anomaly Detection”. In
Proceedings of IWIA, pp.59-70, 2004. ACKNOWLEDGMENT

This work was supported by an AFRL/DARPA grant
(FA8750-04-2-0260).

http://www.cert.org/advisories/CA-2001-19.html
http://www.bbn.com/docs/whitepapers/%20DISCEX_DYNAT.pdf
http://www-cse.ucsd.edu/%7Esavage/papers/IEEESP03.pdf
http://www-cse.ucsd.edu/%7Esavage/papers/IEEESP03.pdf
http://www.insecure.org/
http://bro-ids.org/publications.html
http://www.faqs.org/rfcs/rfc2988.html
http://www.faqs.org/rfcs/rfc792.html
http://secinf.net/info/ids/idspaper/idspaper.html
http://www.mcafee.com/us/local_content/white_papers/%20wp_ricochetbriefworms.pdf
http://www.mcafee.com/us/local_content/white_papers/%20wp_ricochetbriefworms.pdf
http://www.snort.org/

	I. Introduction
	II. Related Works
	III. Overview of Fates System
	A. Internal Hosts Monitoring (IHM) Component
	B. Aggregation of Readings
	C. Threshold Adjustment

	IV. Experimentation
	A. Slammer
	B. USC Traffic

	V. Concluding Remarks
	Acknowledgment
	References

