

Abstract— Most wireless ad hoc sensor networks are
susceptible to routing level attacks, in which an adversary
masquerades as a legitimate node to convince neighboring
nodes that it is the “logical” next hop or is on a “better”
path for forwarding packets, and arbitrarily drops the
packets forwarded by neighboring nodes. In this paper, we
propose a secure unicast messaging protocol (SUMP) for
wireless ad hoc sensor networks to mitigate the threat of
routing level attacks. SUMP groups nodes into levels based
on hop count to provide hop-by-hop group authentication
using Merkel hash trees. This method allows for varied
levels of security in accordance with a node’s hop count
from the base station and secure, directed unicast
communications from the base station to individual nodes.
Unlike other sensor network security protocols that require
the storage of parent node information, a sensor node
running SUMP does not store parent node information,
therefore preventing an adversary from gaining
information of other nodes from a compromised node.

I. INTRODUCTION
A typical wireless ad hoc sensor network consists of a

number of sensor nodes and a base station. Each sensor node is
a small, cheap device that is programmed to collect certain
types of data, for example temperature, humidity, and light.
The base station is an aggregation point for collected data and is
viewed as the human interface into the network. The sensor
nodes are typically constrained by limited battery power, small
memory, and low computational ability. On the other hand, the
base station is assumed to have greater memory and processing
power, and does not have the constraints of the sensor nodes.

With their low cost and scalability, wireless ad hoc sensor
networks have found a variety of applications. For instance, in
the military, such networks are used in target tracking,
perimeter monitoring, and battlefield survey. Commercial
applications of these networks include inventory control and
building systems monitoring. However, the constraints on the
sensor nodes, plus the open nature of communications in a
wireless ad hoc sensor network, make securing networks of this
type a challenging task.

A manifest vulnerability of many wireless ad hoc sensor
networks is a class of attacks called routing level attacks. In a
routing level attack, an adversary masquerades as a legitimate
node to convince neighboring nodes to forward their packets to
it, and then arbitrarily drops the packets forwarded by

neighboring nodes. This class of attacks can potentially strand
many well-behaved nodes and cause large holes in the sensing
environment. Furthermore, by the compromise of individual
nodes the adversary is able to develop hit lists of other nodes in
the network, since most ad hoc sensor network protocols
require a node to store the ID of its parent node. Two examples
of routing level attacks, namely black hole attacks and
wormhole attacks [5], are discussed below.

A black hole attack is launched when a node (either
compromised or an adversary masquerading as a legitimate
node) convinces neighboring nodes that it is the “logical” next
hop for forwarding packets. The malicious node then arbitrarily
drops the packets forwarded by neighboring nodes. In the case
of multi-hop networks, the impact of such an attack is a hole in
the sensing area as nodes begin to forward packets astray from
their intended destination. This attack also has the potential to
strand large areas of the network that are geographically distant
from the malicious node by pulling messages from their
intended paths.

A wormhole attack attempts to convince nodes to use a
malicious path through legitimate means. In some wireless ad
hoc sensor network protocols, for instance SPINS [12], when a
message is sent from the base station, an intermediate node will
forward the message with its identification information
attached to the message. A receiving node records the
identification information, regards the forwarding node as its
parent, and proceeds to accept messages only from this parent.
This provides an efficient method to prevent arbitrary
rebroadcast of messages. In a wormhole attack an adversary
with fast forwarding capabilities can quickly forward a
message to nodes in the network. Fast forwarding is
accomplished through the collusion of multiple units with fast
out-of-band communication or a strongly powered device with
a larger range of communication positioned between the base
station and its target nodes. Once the target nodes are
convinced that the adversary node is on a “better” path to the
base station, all communications of the target nodes are
attracted to the adversary node. An adversary can selectively
forward information in an effort to disrupt the sensing
environment.

Despite the susceptibility of wireless ad hoc sensor networks
to routing level attacks, research in securing this type of
network has primarily focused on the development of secure,
lightweight protocols that satisfy only confidential
communication and integrity of messages with little regard to

SUMP: A Secure Unicast Messaging Protocol for
Wireless Ad Hoc Sensor Networks

Jeff Janies, Chin-Tser Huang, Nathan L. Johnson
Department of Computer Science and Engineering

University of South Carolina
{janies, huangct, johnso66}@cse.sc.edu

the threat of routing level attacks. A popular approach is
dividing the network into groups, or clusters, as discussed in
[2], [3], [4], [7], [11], and [14]. These clusters are generally
formed according to locality and require the addition of group
and pairwise keys to be used by associated nodes. Furthermore,
these approaches require a differentiation of authority where
one node, known as the cluster head, has an additional
responsibility: it functions as a local aggregation point for all
data readings from nodes in the cluster. A node reports its
readings to the cluster head, and the cluster head is responsible
for forwarding those readings to the base station. Thus, the
amount of data transfers is reduced significantly, but
communications among cluster heads are vulnerable to both
black hole and wormhole attacks.

Securing by groups is not the only approach. Perrig et al. [12]
propose a method based solely on membership to the network.
All nodes are treated as members to a single group. There are
two major components in this approach: The Secure Network
Encryption Protocol (SNEP) and µTesla. SNEP provides
security for unicast packets from the base station to a given
node and requires loose time synchronization between the two.
State information is maintained by each node and the base
station. µTesla provides security for broadcasts, through the use
of delayed key distribution and one-way hash functions. Both
components provide integrity but are also vulnerable to routing
level attacks.

In this paper, we discuss the design and implementation of a
novel protocol named Secure Unicast Messaging Protocol
(SUMP). There are three goals in the design of SUMP: mitigate
the threats of routing level attacks, limit the amount of
knowledge that an adversary gains by compromising a node,
and provide a level-wise grouping of nodes in contrast to the
locality-wise grouping approach used in other works.
Mitigating routing level attacks in the network provides
survivability and reliability in hostile environments. By
limiting the amount of information stored on a node and
handling routing decisions at the base station, SUMP has the
advantage of providing the current global view of the network
to the base station. The level-wise grouping approach allows
for varied degree of security according to the “need” of a node.
For example, we note that nodes that are closer to the base
station are more likely to be mediating for other nodes that are
farther from the base station. Therefore, it represents a greater
risk if the nodes closer to the base station are compromised or
masqueraded, and greater care is needed for securing the
communications of these nodes.

II. ENVIRONMENTAL ASSUMPTIONS
SUMP makes the following seven environmental

assumptions:
1) There are no compromised nodes in the network

during the initialization of the network.
2) A collision avoidance scheme exists in the

initialization phase of the network.
3) The base station cannot be compromised.
4) The base station is not resource constrained.

5) A node’s individual key and ID information are
modifiable before deployment.

6) The base station is aware of all nodes in the network
prior to deployment.

7) Nodes are fixed in location.
The first two assumptions are only restrictive for a fixed

amount of time. As in [14], it is assumed that the minimum
amount of time required to compromise a node is Tmin and the
amount of time required to initialize the network is Tinit. Our
approach fixes the initialization time prior to deployment of
nodes such that Tmin >Tinit. Therefore, it is assumed that there
are no compromises during the initialization of the network.
Since initialization is fixed in time, collision could cause loss of
data. With a simple yet efficient collision avoidance algorithm
this loss can be mitigated. The second assumption is strict and
is provided for ease of discussion. In implementation it is
assumed that nodes have unique delays between transmissions.
This assumption, though less strict than the second assumption,
aids in collision avoidance and results in negligible overhead.

The third and fourth assumptions are key assumptions. In
SUMP the base station maintains global information about the
network, makes routing decisions, flags compromised nodes,
and assesses connectivity of all nodes. The base station is
assumed to be uncompromisable, since it is the human interface
into the network and presumably not accessible by an
adversary. However, this assumption does not limit the
possibility of an adversary intercepting or modifying incoming
and outgoing communications to and from the base station.

The fifth and sixth assumptions only apply in so far as the
base station being able to uniquely identify the nodes that are
potentially present in the network and record their key
information. Location information is not provided, and no
knowledge of connectivity is known prior to deployment.
Similar assumptions are found in [6], [7], [12], and [14].

The seventh assumption limits the scope of the paper to
wireless ad hoc sensor networks consisting of non-mobile
nodes. It is assumed that nodes will be deployed in areas that
are not easily accessible and left for the duration of sensing.
Therefore, routes in the network are static.

III. THE SECURE UNICAST MESSAGING PROTOCOL
Similar to other wireless ad hoc sensor network protocols,

SUMP classifies network entities into two types: the base
station and sensor nodes. The base station maintains network
information and is responsible for making decisions regarding
message propagation. The sensor nodes gather readings and
maintain a limited amount of information about the network.
Due to the constraints on power, memory, and computational
ability, sensor nodes provide only the most rudimentary of error
checking. A sensor node does not keep any information about
parent or child relationships with other nodes, which prevents
an adversary from exploiting such a relationship to mount
routing level attacks. Since the base station is responsible for
routing decisions, there is little that an adversary can do to
affect the route of a message at the node level. The base station
is assumed to be uncompromisable according to Assumption 3,
therefore an adversary cannot gain routing information from

the base station. Furthermore, the route specified by the base
station must be followed explicitly in order for the message to
be authenticated correctly by the destination, as discussed in
Section III.B.

The SUMP protocol consists of two phases of operation:
initialization and messaging. Each phase supports different
primitives and local storage requirements. The purpose of the
initialization phase is to provide the base station with
knowledge of individual node connectivity, density of
distribution (with regards to connectivity, not locality), and
establishment of paths. The messaging phase is the normal
mode of operation used for data collection and dissemination.

The base station and nodes maintain information about the
network that is specific to their individual view of the network
structure. The base station’s view of the network is global, and
it maintains two primary structures: the node structure and the
group structure. The node structure contains a list of all paths to
each node, each node’s distance in hops from the base station
(called hop count), ID, and individual key. The group structure
maintains information about all groups in the network in a
linked list of group elements. A group element contains
information about the group including a listing of all nodes’
IDs, the distance from the base station to the group (called the
level), and methods used for group membership authentication.
A sensor node only maintains its own key information and
group membership information.

The X-bow Motes™ are used for a prototype
implementation of SUMP. With the current generation of
Motes, certain implementation parameters must be observed.
These parameters do not restrict the adversary or reduce the
generality in any way, but are added for ease of development
and explanation. First, all IDs, authentication values, and hash
values used are 16-bit integers. Second, the length of the
symmetric key of a node is 32 bits. Third, due to the limited
packet length allowed by TinyOS [15], SUMP supports up to
10 hops of authenticated routing and approximately 1024
nodes. Fourth, there is a fixed time for initialization which
starts when a node receives the hello message. The value used
for this time is known prior to deployment. Furthermore, the
space used to store this value is not considered when referring
to overall memory requirement since this space is reclaimed
after initialization. Finally, a Message Type byte is used to
distinguish between message types: hello messages, hello reply
messages, base station to node (outbound) messages, hop count
change messages, root change messages, key change messages,
and change hop count and key messages. Each of these
message types represents a unique message type for operation
in the current implementation. For the sake of brevity, only the
first 4 messages are discussed in this paper.

Since it is already shown by Perrig et al. [12] that RC5 and
MD5 are appropriate for use in networks of this design, this
implementation does not include an implementation of RC5
and MD5. Instead, RC5-CBC encryption (with a 32-bit block
size) is assumed. MD5 is used to generate hash values and
checksums. For outbound messages a checksum is calculated
from the message and the ID of the destination node. Therefore,
the destination node is the only node that can verify the

integrity of the message. Both outbound messages and the use
of their checksums are described in subsequent sections.
Checksum values are limited to 8 bits, and since the length of
hash values generated by MD5 is much larger than the value
used, it is assumed that only a subset of the resulting bits are
used.

A. Initialization
The initialization method in SUMP uses breadth first search

that is similar to the method discussed by Zhu et al. in [14].
However, in SUMP the base station is the only entity that
initiates the search. The initialization phase in SUMP is divided
into two steps: path establishment and verification. In the path
establishment step, hop count and paths from the base station to
a node are discovered. A node either waits to receive a hello
message or forwards hello replies. In the verification step, the
base station updates nodes that received an incorrect hop count
due to discrepancies in the communication range. Such
discrepancies arise when one node has a larger communication
range than another. For example, node A has the ability to hear
the communications from node B, but A’s communication
range is less than that of B’s. When node A attempts to reply to
node B, B is out of range of node A. Therefore, node A is
unaware that node B is unable to receive communications from
A. Thus, A and B have different views of their connectivity.

The base station initiates the path establishment step by
issuing a hello message containing a count of 0. The structure
of this hello message is shown in Fig. 1. The count corresponds
to the current hop count from the base station. Nodes do not
respond to any communications until the hello message is
received. Once a node receives the hello message the node will
record the hop count into its memory, increment the hop count
in the hello message, and forward the message. The node then
replies to the base station with a message containing the hop
count recorded and the ID of the node.

8 16 24

Msg Type Count checksum
Figure 1 Hello Message

Following the forwarding of the hello message, the node
enters a reply forwarding state in which it will listen for other
hello replies, whose structure is shown in Fig. 2. When it
receives a hello reply from another node it places the message
in a message buffer, concatenates its own ID to the end of the
message, and retransmits the message. If the node receives a
hello reply message that contains its own ID, it will not
respond. This avoids the formation of infinite routing loops that
deplete resources. A sequence diagram of path establishment is
shown in Fig. 3.

8 16 24 32
Msg Type Count checksum

ID1 ID2

ID5 ID6
ID3 ID4

ID7 ID8
ID9 ID10

Figure 2 Hello Reply Message

Figure 3 Message sequence diagram of path establishment

When the base station receives a reply from a node it finds
the path traversed by this reply based on the ID list found in the
reply message. The path derived from the first reply message
received from a node is stored as the primary path to the node,
and all paths derived from replies received after the first reply
are stored as alternate paths. These alternate paths are used to
reduce packet loss and enhance the survivability of the network
as dynamic events occur.

The path establishment step persists for a preset interval of
time. After the expiration of this period, all nodes and the base
station enter the verification step. In the verification step the
base station compares the node’s recorded hop count with the
length of the first path received in the path establishment step.
If a discrepancy exists the base station rectifies this by sending
a hop count change request encrypted with the individual key of
that node. The hop count change request includes the ID of the
destination node and the hop count value determined by the
base station, as seen in Fig. 4. This ensures that the hop count is
representative of a symmetric path between the base station and
the destination node. In order to assure that these requests are
delivered to their destination every node that overhears a hop
count change forwards the message. If a node receives a hop
count change request intended for it, the node updates its hop
count accordingly.

8 16 24
Msg Type ID Count

Figure 4 Hop Count Change Request
Once verification of appropriate hop count is completed, the

base station groups nodes according to hop count. All nodes of
the same hop count are members of the group with the
corresponding level value. For example, the group

representing level one is comprised of all nodes with a hop
count of one. Once this grouping is completed, the base station
computes the group’s key information and distributes it to all
nodes in the group.

B. Messaging
Hop counts of nodes can be used to generate key material

and determine membership status in the network. The network
in Fig. 5 can be represented in a general tree structure where the
level of a node in the tree corresponds to its hop count, as
shown in Fig. 6. Nodes of the same hop count are treated as a
group. Therefore, nodes are grouped topologically by
connection and not geographically by location.

Figure 5 A sample connected wireless ad hoc sensor

network

Figure 6 Tree structure for authenticated levels

This method lends itself to routing by level, in which only

one node per hop forwards a received message. When a
message is transmitted from the base station to a node, the
primary path to the node is used to ensure that the message is
not arbitrarily rebroadcast throughout the network, thus
conserving network resources while directing communications
towards their ultimate destination. However, in order to prevent
malicious redirection of packets, a group authentication method
is required.

Several group authentication methods are available for
membership testing, but due to the constraints of the sensor
nodes, many of them are not feasible. Benaloh et al. [1] propose
the use of one way accumulators for this method of
authentication, where one key value is stored by a node. In this
method messages are prepended with an authentication value.
This method has the advantage of small size, but is
computationally demanding to compute and verify
membership. Liu et al. [8] propose a key chain commitment

that requires the node to store several key values, increasing the
memory requirement on the nodes.

H(H(ID5).H(ID9))

H(ID5) H(ID9)

Figure 7 Merkle Hash Tree of level 1

 Merkle hash trees, as discussed in [9], exhibit a low
computational cost and storage requirement but still provide
secure group membership authentication. A Merkle hash tree
uses a secure one-way hash function to generate a binary tree in
which the members of the group are represented as the leaf
values. The tree is formed by concatenating the sibling values
and hashing the result to form a parent element of the tree. As
is seen in Fig. 6, the network is divided into levels based on hop
count, and each level represents a group. The group that
represents level 1 consists of nodes 5 and 9. Level 1’s group is
represented as a Merkle hash tree in Fig. 7. In this
representation, the hash values of nodes 5 and 9 form the leaves
of the tree. The remainder of the tree is formed according to the
following three rules. First, the tree is a balanced binary tree.
Second, if an element is a leaf of the tree, then its value is the
hash of a node’s ID. Third, if an element is not a leaf of the tree,
then its value is the result of hashing the concatenation of its
two children elements’ values.

As a result of constructing a tree with the above rules the root
value is a representative number of the entire group
membership and with a node’s ID is used to authenticate a
message. The base station maintains a representation of the
entire tree. The root value, height of the tree, and node’s ID are
the only values stored by the node. The tree cannot be
produced unless all node IDs are known. Since nodes do not
store the IDs of other nodes in the network, an adversary cannot
capture a node and reconstruct the membership tree from the
root value.

These trees provide a method in which messages are securely
authenticated by the destination with the addition of h
authentication values, where h is the height of the tree. The
authentication values are the values needed by the node to
reproduce the root value from already known information, i.e.
the sibling values of elements in the path from the node’s
hashed ID to the root of the tree.

Since the path to every node is known and the nodes are
grouped according to hop count, Merkle hash trees provide a
method by which a message is directed hop-by-hop from the
base station towards the destination. The base station
communicates with the node by encrypting messages according
to the established primary path. The base station concatenates
the ID of the destination node to the message and encrypts the
result with the key it shares with the destination node. Then the

authentication values are attached to the beginning of the
message as per the Merkle hash tree algorithm. The base
station then uses the stored primary path to the node to encrypt
the message further. For an intermediate node between the
base station and the destination node the base station encrypts
the entire message with the shared key of the intermediary node
and concatenates the authentication values of intermediate node
with the resulting message. This results in the encapsulation of
the original message, M, in a message to the intermediary node.
For example, if the path from the base station to a node is {5, 3,
2}, the message produced is:

()()






MIDauthValuesEauthValuesE

authValues
E

KK
K .}.2{}.3{

}.5{

223
5

Upon receiving a message of this structure, a node uses its
key to decrypt the message and attempts to authenticate the
message to determine if the message is to be forwarded by the
node. If the node successfully authenticates the message using
the authentication value in the message, it checks if the
decrypted message begins with its ID. If so, the decrypted
message is for the node and will not be retransmitted; otherwise
the node forwards the decrypted message to the next hop. In the
case of the current implementation of SUMP the structure of
outbound messages is as shown in Fig. 8.

8 16 24 32
Msg Type Seq#

checksum CheckSum
Message

Auth 8 Auth 9
Auth 10 Dest ID

Auth 4 Auth 5
Auth 6

Auth 1
Auth 2 Auth 3

Auth 7

Figure 8 Messaging Phase Outbound Message

Regardless of the number of actual authentications needed,
the message size is assumed to be fixed, and therefore,
unneeded or previously processed authentication values are
represented by a zero value. An individual node only uses as
many non-zero auth values as necessary to authenticate a
message for that hop. For instance, if a given level has a
Merkle hash tree of height 2, then only the first two non-zero
auth values are used in authentication. Once used the auth
values are replaced by zeros. If the message is authenticated,
the remaining auth values, message field, and checksum are
decrypted. The resulting packet is forwarded to the next hop.
The sequence number is added to a node’s transmitted list only
if the message is authenticated. This mitigates premature
processing of a message which can result in a breakdown of
communication.

C. Dynamic Node Events
Dynamic node events, such as node joins and node deaths,

are open problems. A reseeding, or addition of more nodes,
represents an interesting challenge to SUMP. It is assumed that
the communication channel is free of malicious activity only
during the initialization phase, and therefore the initialization
method discussed previously is not effective for adding new

nodes to an established network after the expiration of the
initialization phase. Although an initialization key to encrypt
all initialization messages would alleviate this concern, the
secure distribution of such a key is resource consuming.
Therefore, this problem remains open. Node death gives rise to
several questions. How is node death detected? What happens
to nodes that are unable to receive communications from the
base station due to the death of a node? Since a node’s death
may alter the hop count of one or more nodes, does the base
station have to regroup all nodes that had paths containing the
dead node? These questions, among others, present an
interesting challenge to this protocol. Since the base station
maintains a list of alternate paths to a node, communication can
be re-established easily, but the group membership may no
longer be representative of the network. Thus, the node death
problem remains open.

IV. EVALUATION
For the purpose of analysis, SUMP is mainly compared to

SNEP (the unicast protocol presented in [12]). SNEP is known
for its efficiency and security in wireless ad hoc sensor
networks. The purpose of this exclusive comparison is
twofold. First, SNEP is well documented in its weaknesses and
strengths. The authors provide extensive analysis of its
potential and overhead in this specific network environment.
Second, SNEP and SUMP are designed exclusively for unicast
messaging and therefore, the comparisons made are fair and
accurate to the protocols’ design.

A. Storage Requirements
The storage requirements of SUMP are comparable to

SNEP. As previously mentioned, the ID and Merkle hash tree
root values are 16 bits in the current implementation, and the
symmetric key shared with the base station is 32 bits. The tree
height is stored as a 16-bit integer, and the hop count is an 8-bit
integer, resulting in a total storage requirement of 88 bits.
Although SNEP requires nodes to store only a symmetric key
and counter, it also requires synchronization between the two
communicating parties and knowledge of the parent, or next
hop from the node to the base station. Therefore, if it is
assumed that the counter is stored in a 16-bit integer and the key
size is equivalent, SNEP requires only 48 bits of storage, but
with only 40 bits of additional storage SUMP does not require
synchronization or knowledge of the parent.

B. Communication Overhead
Communication overhead is comprised of two main

components: size and frequency. For the purposes of this
analysis, size only refers to the additional bytes added to a
message to provide security. Obviously SUMP incurs much
overhead in outbound communications due to the addition of
the authentication values, which alone require 20 bytes. In
comparison, although SNEP requires only 8 bytes of overhead,
it does not provide any directional information. Due to the
utilization of directional information SUMP performs better
then SNEP with regards to frequency of outbound
communication. In this context frequency refers to the number
of times that a packet is transmitted beyond what is required for

the message to be received by the destination node. In the case
of outbound communication, SUMP has little additional
overhead with regard to frequency since the message is
directed. SNEP requires all nodes to rebroadcast every
message in order to ensure that a message is received.
However, in SNEP the deliverability of the message is
dependent on proper forwarding by all intermediate nodes.
Therefore, breakdowns in communication require
re-establishment of paths.

C. Resistance to Routing Level Attacks
SNEP requires nodes to maintain parent information and

thus is vulnerable to routing level attacks. SUMP does not
share this vulnerability. Since no information about a node’s
parents or children is stored by the node, these forms of attacks
are limited in impact. In the case of the black hole attack there
is no disruption. In the case of communications from the base
station to a given node, if a path is compromised the base
station can use an alternate path. Therefore, SUMP effectively
eliminates these routing threats.

D. Weaknesses
We note that SUMP has two identifiable weaknesses. First,

outbound messages are limited to 32 bits of data and thus the
number of messages is potentially increased. This results in
greater consumption of power to transmit the same amount of
information. Second, SUMP limits the sizes of groups. Due to
the fixed message length, only a limited number of
authentication values can be included in a message.

The limit on the size of outbound messages does not hinder
this method as greatly as would be expected. Due to the limited
amount of information stored on a node, individual updates
require very little space. However, the overhead of the security
implementation does deplete resources. This depletion of
resources is mitigated by the fact that unicast messages follow
specific paths and are completely ignored by nodes that are
unrelated to the communication.

This implementation of SUMP does not allow for all
possible network configurations. It can be seen that with the
mote’s limited packet size and 16-bit authentication values,
only ten authentication values can be stored in each message.
Additionally the payload for these messages is limited to 32
bits. With the introduction of the message type byte in the
message and the limited storage requirements this size is
sufficient for maintenance operations such as key update, level
update, sleep/active update, and group root value update.

V. CONCLUDING REMARKS
In this paper, we introduce SUMP, a secure unicast

messaging protocol for wireless ad hoc sensor networks.
Security and efficiency are the two emphases in the design of
SUMP. Through the use of Merkle hash trees, SUMP provides
security for these networks with survivability. As shown in our
experiments, SUMP is applicable even on very constrained
devices such as the X-bow Mote.

The strengths of SUMP are manifest in the following three
regards. First, it is demonstrated that SUMP is not susceptible
to black hole and wormhole attacks that would otherwise allow

an adversary to disrupt communication in the network. Second,
it is shown that very little storage is required by SUMP for
sensor nodes to securely route outbound messages. Third,
communication overhead is alleviated by avoiding arbitrary
rebroadcast of messages.

Future expansions of this work include the introduction of a
secure broadcast mechanism that capitalizes on the global
knowledge maintained by the base station, the development of
both node-to-node and node-to-base station (inbound)
communication methods, and the extension of a sleep state to
save power. It is desirable to develop a lightweight secure
broadcast protocol in addition to the proposed SUMP, and we
believe that the global knowledge maintained by the base
station in SUMP can be exploited to reduce the computational
cost. Moreover, the group establishment could allow for
sub-network routing to route messages among nodes in the
same group and allow for efficient inbound messaging.

ACKNOWLEDGMENT
This work is supported in part by an AFRL/DARPA grant

(FA8750-04-2-0260). The authors thank Dr. John Zachary and
our colleagues at NIST for their support.

REFERENCES
[1] J. Benaloh and M. de Mare. “One Way Accumulators: A

Decentralized Alternative to Digital Signatures”. In
Proceedings of Advances in Cryptology
(EUROCRYPT’93), Vol. 765, Lecture Notes in Computer
Science, Springer, 1993.

[2] A. Cerpa and D. Estrin. “ASCENT: Adaptive
Self-Configuring Sensor Networks Topologies”. Available
at http://citeseer.ist.psu.edu/559481.html.

[3] W. Du, J. Deng, Y. Han and P. Varshney. “A Pairwise Key
Pre-distribution Scheme for Wireless Sensor Networks”.
In Proc. of the 10th ACM Conference on Computer and
Communication Security (CCS 03), Washington DC. 2003.

[4] M. Goodrich, R. Tamassia, and J. Hasic. “An Efficient
Dynamic and Distributed Cryptographic Accumulator”. In
Proceedings of the Information Security Conference (ISC
’02), Vol. 2433, Lecture Notes in Computer Science,
Springer, 2002.

[5] C. Karlof and D. Wagner. “Secure Routing in Wireless
Sensor Networks: Attacks and Countermeasures”. In Proc.
of First IEEE International Workshop on Sensor Network
Protocols and Applications, May 2003.

[6] D. Liu and P. Ning. “Multi-level µTesla: A Broadcast
Authentication System for Distributed Sensor Networks”.
Submitted for review, 2003.

[7] D. Liu and P. Ning. “Establishing Pairwise Keys in
Distributed Sensor Networks”. In Proc. of the 10th ACM
Conference on Computer and Communication Security
(CCS 03), Washington DC. 2003.

[8] D. Liu and P. Ning. “Efficient Distribution of Key Chain
Commitments for Broadcast Authentication in Distributed
Sensor Networks”. In Proc. of 10th Annual Network and
Distributed System Security Symposium (NDSS 03), San
Diego, CA, 2003.

[9] R. Merkle. “Protocols for Public Key Cryptosystems”. In
Proceeding of the IEEE Symposium on Security and
Privacy, 1980.

[10] MICA2™ Specifications Data Sheet. Document
6020-0042-04, Available at
http://www.xbow.com/Products/Product_pdf_files/
Wireless_pdf/6020-0042-04_B_MICA2.pdf Rev. B,
May2003.

[11] T. Park and K. Shin. “LiSP: A Lightweight Security
Protocol for Wireless Sensor Networks”. In Proc. Of the
ACM Transactions on Embedded Computing Systems, vol.
3, no. 3, August 2004.

[12] A. Perrig, R. Szewczyk, V. Wen, D. Culler, and J. Tygar.
“SPINS: Security Protocols for Sensor Networks”. In
Proc. of Seventh Annual ACM International Conference of
Mobile Computing and Neworks (MOBICOM 2001),
Rome Italy, July 2001.

[13] F. Stajano and R. Anderson. “The Resurrecting Duckling:
Security Issues for Ad-hoc Wireless Networks”. AT&T
Software Symposium, 1999.

[14] S. Zhu, S. Setia, and S. Jajodia. “LEAP: efficient security
mechanisms for large-scale distributed sensor networks”.
In Proc. of the 10th ACM Conference on Computer and
Communication Security (CCS 03), Washington DC. 2003.

[15] TinyOS, available at: http://www.tinyos.net.

