
  
 

Abstract— Most wireless ad hoc sensor networks are 
susceptible to routing level attacks, in which an adversary 
masquerades as a legitimate node to convince neighboring 
nodes that it is the “logical” next hop or is on a “better” 
path for forwarding packets, and arbitrarily drops the 
packets forwarded by neighboring nodes. In this paper, we 
propose a secure unicast messaging protocol (SUMP) for 
wireless ad hoc sensor networks to mitigate the threat of 
routing level attacks. SUMP groups nodes into levels based 
on hop count to provide hop-by-hop group authentication 
using Merkel hash trees. This method allows for varied 
levels of security in accordance with a node’s hop count 
from the base station and secure, directed unicast 
communications from the base station to individual nodes.  
Unlike other sensor network security protocols that require 
the storage of parent node information, a sensor node 
running SUMP does not store parent node information, 
therefore preventing an adversary from gaining 
information of other nodes from a compromised node.  

I. INTRODUCTION 
A typical wireless ad hoc sensor network consists of a 

number of sensor nodes and a base station. Each sensor node is 
a small, cheap device that is programmed to collect certain 
types of data, for example temperature, humidity, and light. 
The base station is an aggregation point for collected data and is 
viewed as the human interface into the network. The sensor 
nodes are typically constrained by limited battery power, small 
memory, and low computational ability. On the other hand, the 
base station is assumed to have greater memory and processing 
power, and does not have the constraints of the sensor nodes.  

With their low cost and scalability, wireless ad hoc sensor 
networks have found a variety of applications. For instance, in 
the military, such networks are used in target tracking, 
perimeter monitoring, and battlefield survey. Commercial 
applications of these networks include inventory control and 
building systems monitoring. However, the constraints on the 
sensor nodes, plus the open nature of communications in a 
wireless ad hoc sensor network, make securing networks of this 
type a challenging task. 

A manifest vulnerability of many wireless ad hoc sensor 
networks is a class of attacks called routing level attacks. In a 
routing level attack, an adversary masquerades as a legitimate 
node to convince neighboring nodes to forward their packets to 
it, and then arbitrarily drops the packets forwarded by 

neighboring nodes. This class of attacks can potentially strand 
many well-behaved nodes and cause large holes in the sensing 
environment. Furthermore, by the compromise of individual 
nodes the adversary is able to develop hit lists of other nodes in 
the network, since most ad hoc sensor network protocols 
require a node to store the ID of its parent node. Two examples 
of routing level attacks, namely black hole attacks and 
wormhole attacks [5], are discussed below. 

A black hole attack is launched when a node (either 
compromised or an adversary masquerading as a legitimate 
node) convinces neighboring nodes that it is the “logical” next 
hop for forwarding packets. The malicious node then arbitrarily 
drops the packets forwarded by neighboring nodes. In the case 
of multi-hop networks, the impact of such an attack is a hole in 
the sensing area as nodes begin to forward packets astray from 
their intended destination. This attack also has the potential to 
strand large areas of the network that are geographically distant 
from the malicious node by pulling messages from their 
intended paths.  

A wormhole attack attempts to convince nodes to use a 
malicious path through legitimate means. In some wireless ad 
hoc sensor network protocols, for instance SPINS [12], when a 
message is sent from the base station, an intermediate node will 
forward the message with its identification information 
attached to the message. A receiving node records the 
identification information, regards the forwarding node as its 
parent, and proceeds to accept messages only from this parent. 
This provides an efficient method to prevent arbitrary 
rebroadcast of messages. In a wormhole attack an adversary 
with fast forwarding capabilities can quickly forward a 
message to nodes in the network. Fast forwarding is 
accomplished through the collusion of multiple units with fast 
out-of-band communication or a strongly powered device with 
a larger range of communication positioned between the base 
station and its target nodes. Once the target nodes are 
convinced that the adversary node is on a “better” path to the 
base station, all communications of the target nodes are 
attracted to the adversary node. An adversary can selectively 
forward information in an effort to disrupt the sensing 
environment.  

Despite the susceptibility of wireless ad hoc sensor networks 
to routing level attacks, research in securing this type of 
network has primarily focused on the development of secure, 
lightweight protocols that satisfy only confidential 
communication and integrity of messages with little regard to 
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the threat of routing level attacks. A popular approach is 
dividing the network into groups, or clusters, as discussed in 
[2], [3], [4], [7], [11], and [14]. These clusters are generally 
formed according to locality and require the addition of group 
and pairwise keys to be used by associated nodes.  Furthermore, 
these approaches require a differentiation of authority where 
one node, known as the cluster head, has an additional 
responsibility: it functions as a local aggregation point for all 
data readings from nodes in the cluster. A node reports its 
readings to the cluster head, and the cluster head is responsible 
for forwarding those readings to the base station. Thus, the 
amount of data transfers is reduced significantly, but 
communications among cluster heads are vulnerable to both 
black hole and wormhole attacks. 

Securing by groups is not the only approach. Perrig et al. [12] 
propose a method based solely on membership to the network. 
All nodes are treated as members to a single group. There are 
two major components in this approach: The Secure Network 
Encryption Protocol (SNEP) and µTesla. SNEP provides 
security for unicast packets from the base station to a given 
node and requires loose time synchronization between the two. 
State information is maintained by each node and the base 
station. µTesla provides security for broadcasts, through the use 
of delayed key distribution and one-way hash functions. Both 
components provide integrity but are also vulnerable to routing 
level attacks.  

In this paper, we discuss the design and implementation of a 
novel protocol named Secure Unicast Messaging Protocol 
(SUMP). There are three goals in the design of SUMP: mitigate 
the threats of routing level attacks, limit the amount of 
knowledge that an adversary gains by compromising a node, 
and provide a level-wise grouping of nodes in contrast to the 
locality-wise grouping approach used in other works. 
Mitigating routing level attacks in the network provides 
survivability and reliability in hostile environments. By 
limiting the amount of information stored on a node and 
handling routing decisions at the base station, SUMP has the 
advantage of providing the current global view of the network 
to the base station. The level-wise grouping approach allows 
for varied degree of security according to the “need” of a node. 
For example, we note that nodes that are closer to the base 
station are more likely to be mediating for other nodes that are 
farther from the base station. Therefore, it represents a greater 
risk if the nodes closer to the base station are compromised or 
masqueraded, and greater care is needed for securing the 
communications of these nodes. 

II. ENVIRONMENTAL ASSUMPTIONS 
SUMP makes the following seven environmental 

assumptions: 
1) There are no compromised nodes in the network 

during the initialization of the network. 
2) A collision avoidance scheme exists in the 

initialization phase of the network. 
3) The base station cannot be compromised. 
4) The base station is not resource constrained. 

5) A node’s individual key and ID information are 
modifiable before deployment. 

6) The base station is aware of all nodes in the network 
prior to deployment. 

7) Nodes are fixed in location. 
The first two assumptions are only restrictive for a fixed 

amount of time. As in [14], it is assumed that the minimum 
amount of time required to compromise a node is Tmin and the 
amount of time required to initialize the network is Tinit. Our 
approach fixes the initialization time prior to deployment of 
nodes such that Tmin >Tinit. Therefore, it is assumed that there 
are no compromises during the initialization of the network. 
Since initialization is fixed in time, collision could cause loss of 
data. With a simple yet efficient collision avoidance algorithm 
this loss can be mitigated. The second assumption is strict and 
is provided for ease of discussion. In implementation it is 
assumed that nodes have unique delays between transmissions. 
This assumption, though less strict than the second assumption, 
aids in collision avoidance and results in negligible overhead. 

The third and fourth assumptions are key assumptions.  In 
SUMP the base station maintains global information about the 
network, makes routing decisions, flags compromised nodes, 
and assesses connectivity of all nodes.  The base station is 
assumed to be uncompromisable, since it is the human interface 
into the network and presumably not accessible by an 
adversary. However, this assumption does not limit the 
possibility of an adversary intercepting or modifying incoming 
and outgoing communications to and from the base station. 

The fifth and sixth assumptions only apply in so far as the 
base station being able to uniquely identify the nodes that are 
potentially present in the network and record their key 
information. Location information is not provided, and no 
knowledge of connectivity is known prior to deployment. 
Similar assumptions are found in [6], [7], [12], and [14]. 

The seventh assumption limits the scope of the paper to 
wireless ad hoc sensor networks consisting of non-mobile 
nodes.  It is assumed that nodes will be deployed in areas that 
are not easily accessible and left for the duration of sensing. 
Therefore, routes in the network are static.  

III. THE SECURE UNICAST MESSAGING PROTOCOL 
Similar to other wireless ad hoc sensor network protocols, 

SUMP classifies network entities into two types: the base 
station and sensor nodes. The base station maintains network 
information and is responsible for making decisions regarding 
message propagation. The sensor nodes gather readings and 
maintain a limited amount of information about the network. 
Due to the constraints on power, memory, and computational 
ability, sensor nodes provide only the most rudimentary of error 
checking. A sensor node does not keep any information about 
parent or child relationships with other nodes, which prevents 
an adversary from exploiting such a relationship to mount 
routing level attacks. Since the base station is responsible for 
routing decisions, there is little that an adversary can do to 
affect the route of a message at the node level.  The base station 
is assumed to be uncompromisable according to Assumption 3, 
therefore an adversary cannot gain routing information from 



  
 

the base station. Furthermore, the route specified by the base 
station must be followed explicitly in order for the message to 
be authenticated correctly by the destination, as discussed in 
Section III.B.    

The SUMP protocol consists of two phases of operation: 
initialization and messaging. Each phase supports different 
primitives and local storage requirements. The purpose of the 
initialization phase is to provide the base station with 
knowledge of individual node connectivity, density of 
distribution (with regards to connectivity, not locality), and 
establishment of paths. The messaging phase is the normal 
mode of operation used for data collection and dissemination.  

The base station and nodes maintain information about the 
network that is specific to their individual view of the network 
structure.  The base station’s view of the network is global, and 
it maintains two primary structures: the node structure and the 
group structure. The node structure contains a list of all paths to 
each node, each node’s distance in hops from the base station 
(called hop count), ID, and individual key. The group structure 
maintains information about all groups in the network in a 
linked list of group elements. A group element contains 
information about the group including a listing of all nodes’ 
IDs, the distance from the base station to the group (called the 
level), and methods used for group membership authentication.  
A sensor node only maintains its own key information and 
group membership information.    

The X-bow Motes™ are used for a prototype 
implementation of SUMP. With the current generation of 
Motes, certain implementation parameters must be observed. 
These parameters do not restrict the adversary or reduce the 
generality in any way, but are added for ease of development 
and explanation. First, all IDs, authentication values, and hash 
values used are 16-bit integers. Second, the length of the 
symmetric key of a node is 32 bits. Third, due to the limited 
packet length allowed by TinyOS [15], SUMP supports up to 
10 hops of authenticated routing and approximately 1024 
nodes. Fourth, there is a fixed time for initialization which 
starts when a node receives the hello message. The value used 
for this time is known prior to deployment. Furthermore, the 
space used to store this value is not considered when referring 
to overall memory requirement since this space is reclaimed 
after initialization. Finally, a Message Type byte is used to 
distinguish between message types: hello messages, hello reply 
messages, base station to node (outbound) messages, hop count 
change messages, root change messages, key change messages, 
and change hop count and key messages.  Each of these 
message types represents a unique message type for operation 
in the current implementation. For the sake of brevity, only the 
first 4 messages are discussed in this paper. 

Since it is already shown by Perrig et al. [12] that RC5 and 
MD5 are appropriate for use in networks of this design, this 
implementation does not include an implementation of RC5 
and MD5. Instead, RC5-CBC encryption (with a 32-bit block 
size) is assumed. MD5 is used to generate hash values and 
checksums. For outbound messages a checksum is calculated 
from the message and the ID of the destination node. Therefore, 
the destination node is the only node that can verify the 

integrity of the message. Both outbound messages and the use 
of their checksums are described in subsequent sections.  
Checksum values are limited to 8 bits, and since the length of 
hash values generated by MD5 is much larger than the value 
used, it is assumed that only a subset of the resulting bits are 
used. 

A. Initialization 
The initialization method in SUMP uses breadth first search 

that is similar to the method discussed by Zhu et al. in [14]. 
However, in SUMP the base station is the only entity that 
initiates the search. The initialization phase in SUMP is divided 
into two steps: path establishment and verification. In the path 
establishment step, hop count and paths from the base station to 
a node are discovered. A node either waits to receive a hello 
message or forwards hello replies. In the verification step, the 
base station updates nodes that received an incorrect hop count 
due to discrepancies in the communication range.  Such 
discrepancies arise when one node has a larger communication 
range than another.  For example, node A has the ability to hear 
the communications from node B, but A’s communication 
range is less than that of B’s.  When node A attempts to reply to 
node B, B is out of range of node A.  Therefore, node A is 
unaware that node B is unable to receive communications from 
A.  Thus, A and B have different views of their connectivity.  

The base station initiates the path establishment step by 
issuing a hello message containing a count of 0. The structure 
of this hello message is shown in Fig. 1.  The count corresponds 
to the current hop count from the base station. Nodes do not 
respond to any communications until the hello message is 
received.  Once a node receives the hello message the node will 
record the hop count into its memory, increment the hop count 
in the hello message, and forward the message.  The node then 
replies to the base station with a message containing the hop 
count recorded and the ID of the node.  
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Msg Type Count checksum  
Figure 1  Hello Message 

Following the forwarding of the hello message, the node 
enters a reply forwarding state in which it will listen for other 
hello replies, whose structure is shown in Fig. 2. When it 
receives a hello reply from another node it places the message 
in a message buffer, concatenates its own ID to the end of the 
message, and retransmits the message. If the node receives a 
hello reply message that contains its own ID, it will not 
respond. This avoids the formation of infinite routing loops that 
deplete resources. A sequence diagram of path establishment is 
shown in Fig. 3.   
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ID7 ID8
ID9 ID10  

Figure 2 Hello Reply Message 

 
Figure 3  Message sequence diagram of path establishment 

When the base station receives a reply from a node it finds 
the path traversed by this reply based on the ID list found in the 
reply message. The path derived from the first reply message 
received from a node is stored as the primary path to the node, 
and all paths derived from replies received after the first reply 
are stored as alternate paths. These alternate paths are used to 
reduce packet loss and enhance the survivability of the network 
as dynamic events occur. 

The path establishment step persists for a preset interval of 
time. After the expiration of this period, all nodes and the base 
station enter the verification step. In the verification step the 
base station compares the node’s recorded hop count with the 
length of the first path received in the path establishment step. 
If a discrepancy exists the base station rectifies this by sending 
a hop count change request encrypted with the individual key of 
that node. The hop count change request includes the ID of the 
destination node and the hop count value determined by the 
base station, as seen in Fig. 4.  This ensures that the hop count is 
representative of a symmetric path between the base station and 
the destination node.  In order to assure that these requests are 
delivered to their destination every node that overhears a hop 
count change forwards the message. If a node receives a hop 
count change request intended for it, the node updates its hop 
count accordingly. 
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Figure 4 Hop Count Change Request 
Once verification of appropriate hop count is completed, the 

base station groups nodes according to hop count.  All nodes of 
the same hop count are members of the group with the 
corresponding level value.  For example, the group 

representing level one is comprised of all nodes with a hop 
count of one.  Once this grouping is completed, the base station 
computes the group’s key information and distributes it to all 
nodes in the group. 

B. Messaging 
Hop counts of nodes can be used to generate key material 

and determine membership status in the network. The network 
in Fig. 5 can be represented in a general tree structure where the 
level of a node in the tree corresponds to its hop count, as 
shown in Fig. 6. Nodes of the same hop count are treated as a 
group. Therefore, nodes are grouped topologically by 
connection and not geographically by location. 
 

 
Figure 5 A sample connected wireless ad hoc sensor 

network 

 
Figure 6 Tree structure for authenticated levels 

 
This method lends itself to routing by level, in which only 

one node per hop forwards a received message.  When a 
message is transmitted from the base station to a node, the 
primary path to the node is used to ensure that the message is 
not arbitrarily rebroadcast throughout the network, thus 
conserving network resources while directing communications 
towards their ultimate destination. However, in order to prevent 
malicious redirection of packets, a group authentication method 
is required.  

Several group authentication methods are available for 
membership testing, but due to the constraints of the sensor 
nodes, many of them are not feasible. Benaloh et al. [1] propose 
the use of one way accumulators for this method of 
authentication, where one key value is stored by a node.  In this 
method messages are prepended with an authentication value. 
This method has the advantage of small size, but is 
computationally demanding to compute and verify 
membership.  Liu et al. [8] propose a key chain commitment 



  
 

that requires the node to store several key values, increasing the 
memory requirement on the nodes. 
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Figure 7 Merkle Hash Tree of level 1 

 Merkle hash trees, as discussed in [9], exhibit a low 
computational cost and storage requirement but still provide 
secure group membership authentication.  A Merkle hash tree 
uses a secure one-way hash function to generate a binary tree in 
which the members of the group are represented as the leaf 
values.  The tree is formed by concatenating the sibling values 
and hashing the result to form a parent element of the tree.  As 
is seen in Fig. 6, the network is divided into levels based on hop 
count, and each level represents a group.  The group that 
represents level 1 consists of nodes 5 and 9. Level 1’s group is 
represented as a Merkle hash tree in Fig. 7.  In this 
representation, the hash values of nodes 5 and 9 form the leaves 
of the tree.  The remainder of the tree is formed according to the 
following three rules.  First, the tree is a balanced binary tree. 
Second, if an element is a leaf of the tree, then its value is the 
hash of a node’s ID. Third, if an element is not a leaf of the tree, 
then its value is the result of hashing the concatenation of its 
two children elements’ values. 

As a result of constructing a tree with the above rules the root 
value is a representative number of the entire group 
membership and with a node’s ID is used to authenticate a 
message. The base station maintains a representation of the 
entire tree. The root value, height of the tree, and node’s ID are 
the only values stored by the node.  The tree cannot be 
produced unless all node IDs are known.  Since nodes do not 
store the IDs of other nodes in the network, an adversary cannot 
capture a node and reconstruct the membership tree from the 
root value.   

These trees provide a method in which messages are securely 
authenticated by the destination with the addition of h 
authentication values, where h is the height of the tree.  The 
authentication values are the values needed by the node to 
reproduce the root value from already known information, i.e. 
the sibling values of elements in the path from the node’s 
hashed ID to the root of the tree.   

Since the path to every node is known and the nodes are 
grouped according to hop count, Merkle hash trees provide a 
method by which a message is directed hop-by-hop from the 
base station towards the destination. The base station 
communicates with the node by encrypting messages according 
to the established primary path.  The base station concatenates 
the ID of the destination node to the message and encrypts the 
result with the key it shares with the destination node.  Then the 

authentication values are attached to the beginning of the 
message as per the Merkle hash tree algorithm.  The base 
station then uses the stored primary path to the node to encrypt 
the message further.  For an intermediate node between the 
base station and the destination node the base station encrypts 
the entire message with the shared key of the intermediary node 
and concatenates the authentication values of intermediate node 
with the resulting message. This results in the encapsulation of 
the original message, M, in a message to the intermediary node.  
For example, if the path from the base station to a node is {5, 3, 
2}, the message produced is: 
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Upon receiving a message of this structure, a node uses its 
key to decrypt the message and attempts to authenticate the 
message to determine if the message is to be forwarded by the 
node.  If the node successfully authenticates the message using 
the authentication value in the message, it checks if the 
decrypted message begins with its ID. If so, the decrypted 
message is for the node and will not be retransmitted; otherwise 
the node forwards the decrypted message to the next hop. In the 
case of the current implementation of SUMP the structure of 
outbound messages is as shown in Fig. 8.   
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checksum CheckSum
Message

Auth 8 Auth 9
Auth 10 Dest ID

Auth 4 Auth 5
Auth 6

Auth 1
Auth 2 Auth 3

Auth 7

 
Figure 8 Messaging Phase Outbound Message 

Regardless of the number of actual authentications needed, 
the message size is assumed to be fixed, and therefore, 
unneeded or previously processed authentication values are 
represented by a zero value. An individual node only uses as 
many non-zero auth values as necessary to authenticate a 
message for that hop.  For instance, if a given level has a 
Merkle hash tree of height 2, then only the first two non-zero 
auth values are used in authentication.  Once used the auth 
values are replaced by zeros. If the message is authenticated, 
the remaining auth values, message field, and checksum are 
decrypted.  The resulting packet is forwarded to the next hop.  
The sequence number is added to a node’s transmitted list only 
if the message is authenticated.  This mitigates premature 
processing of a message which can result in a breakdown of 
communication. 

C. Dynamic Node Events 
Dynamic node events, such as node joins and node deaths, 

are open problems.  A reseeding, or addition of more nodes, 
represents an interesting challenge to SUMP.  It is assumed that 
the communication channel is free of malicious activity only 
during the initialization phase, and therefore the initialization 
method discussed previously is not effective for adding new 



  
 

nodes to an established network after the expiration of the 
initialization phase.  Although an initialization key to encrypt 
all initialization messages would alleviate this concern, the 
secure distribution of such a key is resource consuming.  
Therefore, this problem remains open.  Node death gives rise to 
several questions.  How is node death detected?  What happens 
to nodes that are unable to receive communications from the 
base station due to the death of a node?  Since a node’s death 
may alter the hop count of one or more nodes, does the base 
station have to regroup all nodes that had paths containing the 
dead node? These questions, among others, present an 
interesting challenge to this protocol.  Since the base station 
maintains a list of alternate paths to a node, communication can 
be re-established easily, but the group membership may no 
longer be representative of the network.  Thus, the node death 
problem remains open. 

IV. EVALUATION 
For the purpose of analysis, SUMP is mainly compared to 

SNEP (the unicast protocol presented in [12]).  SNEP is known 
for its efficiency and security in wireless ad hoc sensor 
networks.  The purpose of this exclusive comparison is 
twofold.  First, SNEP is well documented in its weaknesses and 
strengths.  The authors provide extensive analysis of its 
potential and overhead in this specific network environment.  
Second, SNEP and SUMP are designed exclusively for unicast 
messaging and therefore, the comparisons made are fair and 
accurate to the protocols’ design.  

A. Storage Requirements 
The storage requirements of SUMP are comparable to 

SNEP.  As previously mentioned, the ID and Merkle hash tree 
root values are 16 bits in the current implementation, and the 
symmetric key shared with the base station is 32 bits.  The tree 
height is stored as a 16-bit integer, and the hop count is an 8-bit 
integer, resulting in a total storage requirement of 88 bits.  
Although SNEP requires nodes to store only a symmetric key 
and counter, it also requires synchronization between the two 
communicating parties and knowledge of the parent, or next 
hop from the node to the base station.  Therefore, if it is 
assumed that the counter is stored in a 16-bit integer and the key 
size is equivalent, SNEP requires only 48 bits of storage, but 
with only 40 bits of additional storage SUMP does not require 
synchronization or knowledge of the parent.      

B. Communication Overhead 
Communication overhead is comprised of two main 

components: size and frequency.  For the purposes of this 
analysis, size only refers to the additional bytes added to a 
message to provide security.  Obviously SUMP incurs much 
overhead in outbound communications due to the addition of 
the authentication values, which alone require 20 bytes.  In 
comparison, although SNEP requires only 8 bytes of overhead, 
it does not provide any directional information. Due to the 
utilization of directional information SUMP performs better 
then SNEP with regards to frequency of outbound 
communication. In this context frequency refers to the number 
of times that a packet is transmitted beyond what is required for 

the message to be received by the destination node.  In the case 
of outbound communication, SUMP has little additional 
overhead with regard to frequency since the message is 
directed.  SNEP requires all nodes to rebroadcast every 
message in order to ensure that a message is received.  
However, in SNEP the deliverability of the message is 
dependent on proper forwarding by all intermediate nodes. 
Therefore, breakdowns in communication require 
re-establishment of paths. 

C. Resistance to Routing Level Attacks 
SNEP requires nodes to maintain parent information and 

thus is vulnerable to routing level attacks.  SUMP does not 
share this vulnerability. Since no information about a node’s 
parents or children is stored by the node, these forms of attacks 
are limited in impact.  In the case of the black hole attack there 
is no disruption.  In the case of communications from the base 
station to a given node, if a path is compromised the base 
station can use an alternate path. Therefore, SUMP effectively 
eliminates these routing threats. 

D. Weaknesses 
We note that SUMP has two identifiable weaknesses. First, 

outbound messages are limited to 32 bits of data and thus the 
number of messages is potentially increased. This results in 
greater consumption of power to transmit the same amount of 
information.  Second, SUMP limits the sizes of groups. Due to 
the fixed message length, only a limited number of 
authentication values can be included in a message.  

The limit on the size of outbound messages does not hinder 
this method as greatly as would be expected. Due to the limited 
amount of information stored on a node, individual updates 
require very little space. However, the overhead of the security 
implementation does deplete resources. This depletion of 
resources is mitigated by the fact that unicast messages follow 
specific paths and are completely ignored by nodes that are 
unrelated to the communication.   

This implementation of SUMP does not allow for all 
possible network configurations. It can be seen that with the 
mote’s limited packet size and 16-bit authentication values, 
only ten authentication values can be stored in each message. 
Additionally the payload for these messages is limited to 32 
bits. With the introduction of the message type byte in the 
message and the limited storage requirements this size is 
sufficient for maintenance operations such as key update, level 
update, sleep/active update, and group root value update. 

V. CONCLUDING REMARKS 
In this paper, we introduce SUMP, a secure unicast 

messaging protocol for wireless ad hoc sensor networks. 
Security and efficiency are the two emphases in the design of 
SUMP. Through the use of Merkle hash trees, SUMP provides 
security for these networks with survivability. As shown in our 
experiments, SUMP is applicable even on very constrained 
devices such as the X-bow Mote. 

The strengths of SUMP are manifest in the following three 
regards. First, it is demonstrated that SUMP is not susceptible 
to black hole and wormhole attacks that would otherwise allow 



  
 

an adversary to disrupt communication in the network. Second, 
it is shown that very little storage is required by SUMP for 
sensor nodes to securely route outbound messages. Third, 
communication overhead is alleviated by avoiding arbitrary 
rebroadcast of messages.  

Future expansions of this work include the introduction of a 
secure broadcast mechanism that capitalizes on the global 
knowledge maintained by the base station, the development of 
both node-to-node and node-to-base station (inbound) 
communication methods, and the extension of a sleep state to 
save power. It is desirable to develop a lightweight secure 
broadcast protocol in addition to the proposed SUMP, and we 
believe that the global knowledge maintained by the base 
station in SUMP can be exploited to reduce the computational 
cost. Moreover, the group establishment could allow for 
sub-network routing to route messages among nodes in the 
same group and allow for efficient inbound messaging.   

ACKNOWLEDGMENT 
This work is supported in part by an AFRL/DARPA grant 

(FA8750-04-2-0260). The authors thank Dr. John Zachary and 
our colleagues at NIST for their support. 

REFERENCES 
[1] J. Benaloh and M. de Mare. “One Way Accumulators: A 

Decentralized Alternative to Digital Signatures”. In 
Proceedings of Advances in Cryptology 
(EUROCRYPT’93), Vol. 765, Lecture Notes in Computer 
Science, Springer, 1993. 

[2] A. Cerpa and D. Estrin. “ASCENT: Adaptive 
Self-Configuring Sensor Networks Topologies”. Available 
at http://citeseer.ist.psu.edu/559481.html.   

[3] W. Du, J. Deng, Y. Han and P. Varshney. “A Pairwise Key 
Pre-distribution Scheme for Wireless Sensor Networks”. 
In Proc. of the 10th ACM Conference on Computer and 
Communication Security (CCS 03), Washington DC. 2003. 

[4] M. Goodrich, R. Tamassia, and J. Hasic. “An Efficient 
Dynamic and Distributed Cryptographic Accumulator”. In 
Proceedings of the Information Security Conference (ISC 
’02), Vol. 2433, Lecture Notes in Computer Science, 
Springer, 2002. 

[5] C. Karlof and D. Wagner.  “Secure Routing in Wireless 
Sensor Networks: Attacks and Countermeasures”. In Proc. 
of First IEEE International Workshop on Sensor Network 
Protocols and Applications, May 2003. 

[6] D. Liu and P. Ning. “Multi-level µTesla: A Broadcast 
Authentication System for Distributed Sensor Networks”. 
Submitted for review, 2003. 

[7] D. Liu and P. Ning. “Establishing Pairwise Keys in 
Distributed Sensor Networks”. In Proc. of the 10th ACM 
Conference on Computer and Communication Security 
(CCS 03), Washington DC. 2003. 

[8] D. Liu and P. Ning. “Efficient Distribution of Key Chain 
Commitments for Broadcast Authentication in Distributed 
Sensor Networks”. In Proc. of 10th Annual Network and 
Distributed System Security Symposium (NDSS 03), San 
Diego, CA, 2003. 

[9] R. Merkle. “Protocols for Public Key Cryptosystems”. In 
Proceeding of the IEEE Symposium on Security and 
Privacy, 1980. 

[10] MICA2™ Specifications Data Sheet. Document 
6020-0042-04, Available at 
http://www.xbow.com/Products/Product_pdf_files/ 
Wireless_pdf/6020-0042-04_B_MICA2.pdf Rev. B, 
May2003. 

[11] T. Park and K. Shin. “LiSP: A Lightweight Security 
Protocol for Wireless Sensor Networks”.  In Proc. Of the 
ACM Transactions on Embedded Computing Systems, vol. 
3, no. 3, August 2004. 

[12] A. Perrig, R. Szewczyk, V. Wen, D. Culler, and J. Tygar. 
“SPINS: Security Protocols for Sensor Networks”. In 
Proc. of Seventh Annual ACM International Conference of 
Mobile Computing and Neworks (MOBICOM 2001), 
Rome Italy, July 2001. 

[13] F. Stajano and R. Anderson. “The Resurrecting Duckling: 
Security Issues for Ad-hoc Wireless Networks”. AT&T 
Software Symposium, 1999. 

[14] S. Zhu, S. Setia, and S. Jajodia. “LEAP: efficient security 
mechanisms for large-scale distributed sensor networks”. 
In Proc. of the 10th ACM Conference on Computer and 
Communication Security (CCS 03), Washington DC. 2003. 

[15] TinyOS, available at: http://www.tinyos.net. 


