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Abstract 
 

Although a self-stabilizing system that suffers from 
a transient fault is guaranteed to converge to a 
legitimate state after a finite number of steps, the 
convergence can be slow if the harmful effects of the 
fault are allowed to propagate into many processes in 
the system. Moreover, some safety properties of the 
system may be violated during the convergence. To 
address these problems, we propose in this paper the 
concept of a state checksum -- a redundancy that can 
be added to the state of a self-stabilizing system so that 
some classes of faults become visible to the system, and 
the system can limit the propagation of their harmful 
effects, and maintain its safety properties during the 
convergence. To make these concepts concrete, we 
discuss the case study of a token ring and show how to 
use fault-detecting and fault-correcting checksums to 
detect visible faults, limit the propagation of their 
harmful effects, and ensure that the safety properties of 
the ring are maintained during the convergence from 
these faults.  
 
1. Introduction 
 

Assurance is an increasingly desirable requirement 
in system design. The objective of system assurance is 
to provide the guarantee that the system can recover 
from or tolerate the occurrence of heterogeneous 
classes of faults. Self-stabilization, which was first 
introduced by Dijkstra in 1974 [5], is one way to 
provide system assurance. A self-stabilizing system is 
designed in such a way that starting from any arbitrary 
state, it is guaranteed that the system will converge to a 
legitimate state after a finite number of steps without 
any interference from a centralized supervisor. This 
also means that a self-stabilizing system that suffers 
from any transient fault is guaranteed to converge to a 
legitimate state after a finite number of steps. 
However, even with such desirable property, a self-

stabilizing system still has the following two 
shortcomings when it is recovering from a fault. First, 
if the harmful effects of the fault are allowed to 
propagate into many processes in the system, then the 
convergence can be complicated and slow. Second, 
some safety properties of the system may be violated 
during the period of convergence.  

In this paper, we propose to add some redundancy 
called state checksums to a self-stabilizing system to 
overcome the aforementioned two shortcomings. A 
state checksum can make some classes of faults 
“visible” to the system as follows: if a process in a 
system suffers from a visible fault, then its state 
checksum becomes inconsistent with its state that is 
corrupted by the fault. Therefore, the process that 
suffers from a visible fault and all of its neighboring 
processes can detect the occurrence of the visible fault 
from the inconsistency between the state checksum and 
the corrupted state value of this process, and can 
contain the harmful effects of the fault in this process 
until the corrupted state value is corrected.  

Arora and Kulkarni ever proposed the concept of 
multitolerance in [2], which provides a theoretical 
basis for designing systems that can tolerate different 
classes of faults in different ways. As a matter of fact, 
the addition of state checksums to a self-stabilizing 
system is aimed to make the system multitolerant in 
the following way. On one hand, if the fault that occurs 
to the system is visible to the state checksum, then the 
process that is suffering from the fault will detect the 
occurrence of the fault, and will correct the corrupted 
state value before it is accessed by other neighboring 
processes. On the other hand, if the fault is not visible 
to the state checksum, then the system can still 
converge to a legitimate state via self-stabilization, 
although the two aforementioned shortcomings may 
still exist.  

The rest of this paper is organized as follows. In 
Section 2, we explain the concept of state checksum in 
some detail. In the next four sections, we illustrate the 



use of state checksums using the case study of 
stabilizing token ring proposed by Dijkstra in [5]. We 
first review the original stabilizing token ring in 
Section 3, then show how to apply fault-detecting state 
checksums on the token ring in Section 4, how to 
remove harmful effects of visible faults on the token 
ring in Section 5, and how to apply fault-correcting 
state checksums on the token ring in Section 6. We 
draw some concluding remarks in Section 7. 
 
2. State Checksum 
 

Before getting into the details of state checksum, we 
first give an overview of the model we use in this 
paper. A system is composed of a number of processes 
that are connected in a directed graph. A state of a 
system is defined by one value for each variable in 
each process in the system. A local state of a process is 
defined by one value for each variable in the process. 
The legitimate states of a self-stabilizing system can be 
defined as satisfying the following two conditions. The 
first is the closure property: if the system is currently 
in a legitimate state, then executing any enabled action 
will bring the system to another legitimate state. The 
second is the convergence property: starting from any 
arbitrary state, any execution of a sequence of actions 
will bring the system to a legitimate state in finite 
number of steps [1]. 

State checksum is a redundancy that is added to 
every process in a system such that starting from a 
legitimate state of the system, if the local state of one 
process is corrupted by some classes of faults, the state 
checksum of this process will become inconsistent 
with the corrupted local state of this process, thus the 
fault can be detected by checking the local state against 
the state checksum. These classes of faults that can be 
detected with a state checksum are called visible faults. 
In contrast, if the local state of one process is corrupted 
by some other classes of faults, the state checksum of 
this process may remain consistent with the corrupted 
state, thus the fault cannot be detected by checking the 
local state against the state checksum. These classes of 
faults that cannot be detected with a state checksum are 
called invisible faults.   

The purpose of using state checksums is two-fold. 
First, state checksums can be used to contain the 
“harmful effects” of visible faults. The state checksum 
of a process indicates whether this process is suffering 
from a visible fault or not. Therefore, by checking the 
state checksum of a neighboring process, a process can 
judge whether its neighboring process is currently 
suffering from a visible fault or not, and if so, can 
avoid accessing the variables of its neighboring process 
before the values of its corrupted variables are 

corrected. In this way, the visible fault will not 
propagate into other processes and the harmful effects 
of the visible fault, if any, will be contained in the 
processes that suffer from the visible fault. Second, 
state checksums can lead the system to fast 
convergence from visible faults. Although a self-
stabilizing system can converge to a legitimate state by 
itself, the convergence will become faster with the help 
of state checksums because the fault does not 
propagate to make the situation complicated. 

In this paper, we are concerned about two types of 
state checksums: fault-detecting and fault-correcting. 
Fault-detecting state checksums can be used to detect 
faults that are visible to them so that these faults will 
not propagate into other processes and the harmful 
effects of these faults will be contained. An example of 
adding fault-detecting checksum to a process is by 
adding one parity bit to represent the number of 1’s in 
all bits of an important variable: for an important 
variable x, if the total number of 1’s in all bits of x is 
odd, then the parity bit is set to 1; otherwise the parity 
bit is set to 0. If a fault corrupts an odd number of bits 
in variable x, then the parity bit will become 
inconsistent with variable x, and thus this fault is 
visible. On the other hand, if a fault corrupts an even 
number of bits in variable x, then the parity bit remains 
consistent with variable x, and thus this fault is 
invisible. The parity of variable x can be computed 
using a parity function PRT. More specifically, for a 
variable x and its parity bit c, 

PRT(x) ≠ c if a visible fault occurs to variable x, 
PRT(x) = c if no fault occurs to variable x or an 

invisible fault occurs to variable x 

Fault-correcting state checksums contain extra 
information such that it not only can be used to detect 
visible faults, but can also be used to correct the 
variables that are corrupted by visible faults to their 
original values. An example of adding fault-correcting 
checksum to a process is by using redundant variables 
to store the value of an important variable: for an 
important variable x, introduce two more variables y 
and z of the same size as x. When the process needs to 
update the value of variable x, it will write the new 
value to y and z at the same time. When the process 
needs to access the value of variable x, then instead of 
just reading the value of x, it will use a majority 
function MJR to read all three of x, y, and z, and return 
the majority value at every bit position. More 
specifically,  

MJR(x, y, z) = for the ith bit, where 1 ≤ i ≤ number 
of bits in variable x, 
ith bit = 1 if at least two of ith bit in x, 
ith bit in y, and ith bit in z are 1, 



ith bit = 0 otherwise 

From the definition of the majority function MJR, it 
can be seen that if at every bit position at most one of 
x, y, and z is corrupted, then the fault is visible and the 
function MJR returns the correct value regardless of 
any corrupted bit in x, y, or z. In this case, we can say 
that the corruption is indeed masked by the majority 
function because the majority function always returns 
the correct value. We can also say that the system that 
uses the majority function snap-stabilizes [4] when 
suffering from visible faults, because the system in fact 
remains in a legitimate state. However, if at any bit 
position at least two of x, y, and z are corrupted, then 
the fault is invisible and the system has to converge 
through stabilization. 

 
3. A Stabilizing Token Ring 
 

In this section, we give a review of the classic 
example of stabilizing token ring proposed by Dijkstra 
in [5]. We first present a protocol of the token ring 
using a variation of Abstract Protocol Notation 
introduced in [7]. Then, in the subsequent three 
sections, we will modify the protocol to illustrate the 
different uses of state checksums.  

Consider n processes that are indexed from 0 to n-1 
and are placed in a ring; i.e. for process i, 0 ≤ i ≤ n-1, 
the left neighbor of process i is process (i-1) mod n, 
and the right neighbor of process i is process (i+1) mod 
n. Each process has a variable x whose range is from 0 
to n-1. With the exception of process 0, each process i, 
1 ≤ i ≤ n-1, has one action whose guard is whether the 
value of its variable x.i is not equal to the value of its 
left neighbor’s variable x.(i-1). If the guard is true, then 
the action is enabled: process i executes its critical 
section and then sets x.i to be equal to the value of x.(i-
1). For process 0, it has one action whose guard is 
whether the value of its variable x.0 is equal to the 
value of process (n-1)’s variable x.(n-1). If the guard is 
true, then the action is enabled: process 0 executes its 
critical section and then sets its variable x.0 to (x.0 + 1) 
mod n. Process 0 and processes 1..n-1 can be defined 
as follows. 
 
process 0 
var x.0 : 0..n-1 
begin 

x.0 = x.(n-1) → critical section; 
x.0 := x.0 +n 1 

end 
 
process i : 1..n-1 
var x.i : 0..n-1 
begin 

x.i ≠ x.(i-1) → critical section; 
x.i := x.(i-1) 

end 
 
The legitimate states of the token ring can be 

defined as follows: in a legitimate state there exists an 
i, where 0 ≤ i ≤ n-1, such that for every j ≤ i, x.j = x.0, 
and for every j > i, x.j = (x.0 – 1) mod n. The closure 
and convergence properties of this system are as 
follows. First, the execution of an enabled action in a 
legitimate state will bring the token ring into another 
legitimate state. Second, regardless of the initial state, 
the token ring is guaranteed to enter a legitimate state 
after a finite number of steps. These properties can be 
easily verified from the protocol.  

Note that one important property of the token ring is 
that it satisfies mutual exclusion. It can be seen in that 
in each legitimate state there is only one enabled action 
in all the processes, which means at any time only one 
process can be executing its critical section. If process i 
is the one which is executing its critical section, then 
after process i finishes the execution of its action, the 
action in process (i + 1) mod n is enabled and process 
(i + 1) mod n gets the right to execute its critical 
section. This is why it is called a token ring. 

It has been verified that in the worst case it can take 
up to O(n2) for the token ring to converge to a 
legitimate state. A proof can be found in [6]. 
 
4. The Token Ring with Detecting 
Checksums 
 

Although a self-stabilizing system that suffers from 
a fault can always converge to a legitimate state 
through stabilization, the convergence can be very 
slow. This is because the faults are allowed to 
propagate into many other processes, which can make 
the convergence complicated. In order to limit the 
propagation of the faults, fault-detecting checksums 
can be added to a self-stabilizing system. 

For example, consider the scenario in which each 
variable x in processes 0..n-1 in the token ring has the 
value 0. This is a legitimate state of the token ring. 
Suppose the variable x.1 in process 1 is corrupted by a 
fault and its value becomes 4. The action in process 2 
becomes enabled and the corrupted value 4 is copied 
into variable x.2. This corrupted value can keep 
propagating into processes 3, 4, and so on. Although 
process 1 can later correct the value of x.1 by copying 
from the value of x.0, it will take several steps for 
subsequent processes to correct all the propagated 
values. If there are more faults, the convergence can 
become more complicated. 



To limit the propagation of the faults in the token 
ring, we can add to each process i, where 1 ≤ i ≤ n-1, a 
parity bit c that represents the parity of variable x. 
When process i, where 1 ≤ i ≤ n-1, finds that parity bit 
c.i is inconsistent with variable x.i, process i detects 
that a visible fault has occurred to variable x.i. To 
overcome this fault, process i should recover the value 
of x.i by copying the value of x.(i-1) from its neighbor 
process (i-1). On the other hand, process i, where 2 ≤ i 
≤ n-1, will check whether the parity bit c.(i-1) is 
consistent with x.(i-1), to avoid copying the value of a 
corrupted x.(i-1) and let this corrupted value propagate 
into x.i. Every time process i, 1 ≤ i ≤ n-1, copies the 
value of x.(i-1) into x.i, it will reset the parity bit c.i to 
make it consistent with x.i. For process 0, it will also 
check whether the parity bit c.(n-1) is consistent with 
x.(n-1), to avoid copying the value of a corrupted x.(n-
1) and let this corrupted value propagate into x.0. Note 
that we do not add a parity bit to process 0 to avoid the 
deadlock in which each process is suffering from a 
visible fault. Process 0, process 1, and processes 2..n-1 
in the token ring can be modified to include the fault-
detecting checksum as follows.  
 
process 0 
var x.0 : 0..n-1 
begin 

x.0 = x.(n-1)  ∧  c.(n-1) = PRT(x.(n-1)) → 
critical section; 
x.0 := x.0 +n 1 

end 
 
process 1 
var x.1 : 0..n-1, 
 c.1 : 0..1 
begin 

x.1 ≠ x.0  ∨  c.1 ≠ PRT(x.1) →  
critical section; 
x.1 := x.0; 
c.1 := PRT(x.1) 

end 
 
process i : 2..n-1 
var x.i : 0..n-1, 
 c.i : 0..1 
begin 

(x.i ≠ x.(i-1)  ∨  c.i ≠ PRT(x.i))  ∧  c.(i-1) = 
PRT(x.(i-1)) → 

critical section; 
x.i := x.(i-1); 
c.i := PRT(x.i) 

end 
 

We have seen in the last section that the stabilizing 
token ring can converge from an arbitrary state to a 
legitimate state in O(n2) steps. By contrast, if fault-
detecting checksums are added to the processes in the 
token ring and all the faults suffered by the processes 
in the token ring are visible faults, then the token ring 
can converge fast to a legitimate state in just O(k) 
steps, where k is the number of processes that suffer 
from a visible fault. This is because in the case of the 
token ring with detecting checksums, the faults do not 
propagate into other processes, and each of the 
processes suffering from the fault just needs to execute 
its action once to correct its corrupted state. However, 
if any one of these faults is an invisible fault, then this 
invisible fault may propagate into other processes, and 
the token ring may still have to converge through 
stabilization. 
 
5. Removing the Harmful Effects of Visible 
Faults 
 

Although fault-detecting state checksums can be 
used to detect visible faults and let the system converge 
fast to a legitimate state, the visible faults may have 
some harmful effects that cannot be cured even if the 
system converges to a legitimate state. In this case, it is 
desirable that additional cares are taken to remove the 
harmful effects caused by visible faults during the 
period of convergence. 

For example, in the protocol of the token ring with 
detecting checksum presented in the last section, 
multiple processes may be executing their critical 
sections at the same time if multiple processes suffer 
from visible faults at the same time. This will violate 
the mutual exclusion property of the token ring. 

To ensure that the mutual exclusion property is not 
violated, we can replace the “critical section” statement 
in each process i, where 1 ≤ i ≤ n-1, by the following 
“if .. then .. fi” statement: 

 
if   x.i = x.(i-1) -n 1  ∧  c.i = PRT(x.i) → 

critical section 
fi 

 
With this replacement, a process will first check 

whether it is suffering from a visible fault before 
executing its critical section. Therefore, although 
multiple processes may be executing their actions at 
the same time, it is guaranteed that only one process, 
which is a process not suffering from any visible fault, 
will be executing its critical section. 
 



6. The Token Ring with Detecting and 
Correcting Checksums 
 

We have shown that with fault-detecting checksums 
added to the processes in a self-stabilizing system, 
convergence from visible faults will become faster and 
safety properties of the system will be maintained. 
However, there is no guarantee that the corrupted 
variables will be restored to the values that they held 
prior to the corruption when the system converges to a 
legitimate state. If in some cases it is desired that each 
corrupted variable should be corrected to the value 
held prior to the corruption, then correcting checksums 
should to be used. 

For example, consider the scenario in which each 
variable x in processes 0..n-1 in the token ring has the 
value 0. This is a legitimate state of the token ring. 
Suppose the variable x.0 in process 0 is corrupted by a 
fault and its value becomes 3, and the variable x.1 in 
process 1 is corrupted by a fault and its value becomes 
1. The detecting checksum in process 1 can be used to 
detect the fault (because the total number of 1’s in x 
becomes odd from even) and the token ring can later 
converge to a legitimate state, in which each variable x 
in processes 0..n-1 in the token ring has the value 3. 
However, this value is not the same value held by each 
variable x prior to the occurrence of the fault. 

To get the correct value of x.0 that is corrupted by a 
visible fault, we can introduce two redundant variables 
y.0 and z.0 into process 0 to store the value of x.0. To 
represent numbers from 0 to n-1, each of x.0, y.0, and 
z.0 needs to be log n  bits long. The majority function 
MJR introduced in Section 2 can be applied on x.0, 
y.0, and z.0 to return a result that is also log n bits 
long. This result contains the majority value at every 
bit position. The protocol in the last section needs to be 
modified as follows. For process 0, the guard of its 
action becomes whether the value of MJR(x.0, y.0, z.0) 
is equal to the value of x.(n-1), and whether the parity 
bit c.(n-1) is consistent with x.(n-1). If the guard is 
true, then the action is enabled: process 0 executes its 
critical section and then sets its variables x.0, y.0, and 
z.0 to (x.(n-1) + 1) mod n. For process 1, instead of 
accessing the value of x.0, it will access the value of 
MJR(x.0, y.0, z.0). Note that we only add the fault-
correcting checksum to process 0, because other 
processes can get the correct value from process 0. 
Process 0, process 1, and processes 2..n-1 in the token 
ring can be modified to include the fault-correcting 
checksum as follows. 
 
process 0 
var x.0 : 0..n-1, 
 y.0 : 0..n-1, 

z.0 : 0..n-1 
begin 

MJR(x.0, y.0, z.0) = x.(n-1)  ∧  c.(n-1) = 
PRT(x.(n-1)) → 

critical section; 
x.0 := x.(n-1) +n 1; 
y.0 := x.(n-1) +n 1; 
z.0 := x.(n-1) +n 1 

end 
 
process 1 
var x.1 : 0..n-1, 
 c.1 : 0..1 
begin 

x.1 ≠ MJR(x.0, y.0, z.0)  ∨  c.1 ≠ PRT(x.1) →  
if   x.1 = MJR(x.0, y.0, z.0) -n 1  ∧  c.1 = 

PRT(x.1) → 
critical section 

fi; 
x.1 := MJR(x.0, y.0, z.0); 
c.1 := PRT(x.1) 

end 
 
process i : 2..n-1 
var x.i : 0..n-1, 
 c.i : 0..1 
begin 

(x.i ≠ x.(i-1)  ∨  c.i ≠ PRT(x.i))  ∧  c.(i-1) = 
PRT(x.(i-1)) → 

if   x.i = x.(i-1) -n 1  ∧  c.i = PRT(x.i) → 
critical section 

fi; 
x.i := x.(i-1); 
c.i := PRT(x.i) 

end 
 
According to the definition of the function MJR, if 

at every bit position at most one of x.0, y.0, and z.0 is 
corrupted, then the fault is visible and the function 
MJR returns the correct value regardless of any 
corrupted bit in x.0, y.0, or z.0. Since the majority 
function returns the correct value, the token ring 
remains in a legitimate state. However, if at any bit 
position at least two of x.0, y.0, and z.0 are corrupted, 
then the fault is invisible and the token ring has to 
converge through stabilization. 
 
7. Concluding Remarks 
 

In this paper, we introduce the concept of state 
checksum and how it can be used to achieve fault 
containment. We use the case study of Dijkstra’s 
stabilizing token ring to illustrate the functions and 
usage of state checksums. The conclusion that can be 



drawn from our presentation of state checksum is as 
follows: if all the faults that the processes in the system 
are suffering from are visible to the state checksum 
used in the system, then the system can converge fast 
to a legitimate state, and all the safety properties are 
maintained during the convergence from these faults. 
However, if any one of these faults is invisible to the 
state checksum used in the system, then the system can 
still converge through stabilization, but the 
convergence can be slow, and the safety properties of 
the system might be violated during the convergence 
from these faults. This way, we make the system 
multitolerant to visible and invisible faults. Indeed, the 
techniques described in this paper can be generalized 
and applied in every stabilizing system to preserve 
stabilization properties of the system when the system 
suffers from visible faults. 

It is worthy to note that the problem of 
multitolerance design in token ring has been 
investigated by Arora and Kulkarni in [2]. However, 
we note that there are three key differences between 
their design and our design. First, their design is based 
on the assumption that corruption of the state of a 
process is detectable, which means that the corrupted 
state is detected by the process itself before any action 
inadvertently accesses that state (however they did not 
specify how the corrupted state is detected). By 
contrast, our design does not require explicit detection 
of the corrupted state, because inconsistency between a 
state and its checksum already indicates that the state is 
corrupted. Second, they introduce two special values ⊥ 
and T to represent corrupted states, while our design 
uses extra variable(s) to store the state checksum. 
Third, their design does not allow self-stabilization, 
while our design allows the system that suffers from 
invisible faults to converge through stabilization. 

An interesting question to ask is that given a system 
equipped with state checksum, if it is already revealed 
to us that the system is currently in a faulty state, can 
we determine whether the fault is visible or invisible to 
the state checksum? The answer is yes, because if the 
state checksum is inconsistent with the state, then the 
fault is visible to the state checksum, and if the state 
checksum is consistent with the state, then the fault is 
invisible. If the fault is visible and the checksum in the 
system is a fault-correcting checksum, then the faulty 
state can be corrected. 
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