
State Checksum and Its Role in System Stabilization

Chin-Tser Huang
Dept of Computer Science and Engineering
University of South Carolina at Columbia

huangct@cse.sc.edu

Mohamed G. Gouda
Department of Computer Sciences
The University of Texas at Austin

gouda@cs.utexas.edu

Abstract

Although a self-stabilizing system that suffers from
a transient fault is guaranteed to converge to a
legitimate state after a finite number of steps, the
convergence can be slow if the harmful effects of the
fault are allowed to propagate into many processes in
the system. Moreover, some safety properties of the
system may be violated during the convergence. To
address these problems, we propose in this paper the
concept of a state checksum -- a redundancy that can
be added to the state of a self-stabilizing system so that
some classes of faults become visible to the system, and
the system can limit the propagation of their harmful
effects, and maintain its safety properties during the
convergence. To make these concepts concrete, we
discuss the case study of a token ring and show how to
use fault-detecting and fault-correcting checksums to
detect visible faults, limit the propagation of their
harmful effects, and ensure that the safety properties of
the ring are maintained during the convergence from
these faults.

1. Introduction

Assurance is an increasingly desirable requirement
in system design. The objective of system assurance is
to provide the guarantee that the system can recover
from or tolerate the occurrence of heterogeneous
classes of faults. Self-stabilization, which was first
introduced by Dijkstra in 1974 [5], is one way to
provide system assurance. A self-stabilizing system is
designed in such a way that starting from any arbitrary
state, it is guaranteed that the system will converge to a
legitimate state after a finite number of steps without
any interference from a centralized supervisor. This
also means that a self-stabilizing system that suffers
from any transient fault is guaranteed to converge to a
legitimate state after a finite number of steps.
However, even with such desirable property, a self-

stabilizing system still has the following two
shortcomings when it is recovering from a fault. First,
if the harmful effects of the fault are allowed to
propagate into many processes in the system, then the
convergence can be complicated and slow. Second,
some safety properties of the system may be violated
during the period of convergence.

In this paper, we propose to add some redundancy
called state checksums to a self-stabilizing system to
overcome the aforementioned two shortcomings. A
state checksum can make some classes of faults
“visible” to the system as follows: if a process in a
system suffers from a visible fault, then its state
checksum becomes inconsistent with its state that is
corrupted by the fault. Therefore, the process that
suffers from a visible fault and all of its neighboring
processes can detect the occurrence of the visible fault
from the inconsistency between the state checksum and
the corrupted state value of this process, and can
contain the harmful effects of the fault in this process
until the corrupted state value is corrected.

Arora and Kulkarni ever proposed the concept of
multitolerance in [2], which provides a theoretical
basis for designing systems that can tolerate different
classes of faults in different ways. As a matter of fact,
the addition of state checksums to a self-stabilizing
system is aimed to make the system multitolerant in
the following way. On one hand, if the fault that occurs
to the system is visible to the state checksum, then the
process that is suffering from the fault will detect the
occurrence of the fault, and will correct the corrupted
state value before it is accessed by other neighboring
processes. On the other hand, if the fault is not visible
to the state checksum, then the system can still
converge to a legitimate state via self-stabilization,
although the two aforementioned shortcomings may
still exist.

The rest of this paper is organized as follows. In
Section 2, we explain the concept of state checksum in
some detail. In the next four sections, we illustrate the

use of state checksums using the case study of
stabilizing token ring proposed by Dijkstra in [5]. We
first review the original stabilizing token ring in
Section 3, then show how to apply fault-detecting state
checksums on the token ring in Section 4, how to
remove harmful effects of visible faults on the token
ring in Section 5, and how to apply fault-correcting
state checksums on the token ring in Section 6. We
draw some concluding remarks in Section 7.

2. State Checksum

Before getting into the details of state checksum, we
first give an overview of the model we use in this
paper. A system is composed of a number of processes
that are connected in a directed graph. A state of a
system is defined by one value for each variable in
each process in the system. A local state of a process is
defined by one value for each variable in the process.
The legitimate states of a self-stabilizing system can be
defined as satisfying the following two conditions. The
first is the closure property: if the system is currently
in a legitimate state, then executing any enabled action
will bring the system to another legitimate state. The
second is the convergence property: starting from any
arbitrary state, any execution of a sequence of actions
will bring the system to a legitimate state in finite
number of steps [1].

State checksum is a redundancy that is added to
every process in a system such that starting from a
legitimate state of the system, if the local state of one
process is corrupted by some classes of faults, the state
checksum of this process will become inconsistent
with the corrupted local state of this process, thus the
fault can be detected by checking the local state against
the state checksum. These classes of faults that can be
detected with a state checksum are called visible faults.
In contrast, if the local state of one process is corrupted
by some other classes of faults, the state checksum of
this process may remain consistent with the corrupted
state, thus the fault cannot be detected by checking the
local state against the state checksum. These classes of
faults that cannot be detected with a state checksum are
called invisible faults.

The purpose of using state checksums is two-fold.
First, state checksums can be used to contain the
“harmful effects” of visible faults. The state checksum
of a process indicates whether this process is suffering
from a visible fault or not. Therefore, by checking the
state checksum of a neighboring process, a process can
judge whether its neighboring process is currently
suffering from a visible fault or not, and if so, can
avoid accessing the variables of its neighboring process
before the values of its corrupted variables are

corrected. In this way, the visible fault will not
propagate into other processes and the harmful effects
of the visible fault, if any, will be contained in the
processes that suffer from the visible fault. Second,
state checksums can lead the system to fast
convergence from visible faults. Although a self-
stabilizing system can converge to a legitimate state by
itself, the convergence will become faster with the help
of state checksums because the fault does not
propagate to make the situation complicated.

In this paper, we are concerned about two types of
state checksums: fault-detecting and fault-correcting.
Fault-detecting state checksums can be used to detect
faults that are visible to them so that these faults will
not propagate into other processes and the harmful
effects of these faults will be contained. An example of
adding fault-detecting checksum to a process is by
adding one parity bit to represent the number of 1’s in
all bits of an important variable: for an important
variable x, if the total number of 1’s in all bits of x is
odd, then the parity bit is set to 1; otherwise the parity
bit is set to 0. If a fault corrupts an odd number of bits
in variable x, then the parity bit will become
inconsistent with variable x, and thus this fault is
visible. On the other hand, if a fault corrupts an even
number of bits in variable x, then the parity bit remains
consistent with variable x, and thus this fault is
invisible. The parity of variable x can be computed
using a parity function PRT. More specifically, for a
variable x and its parity bit c,

PRT(x) ≠ c if a visible fault occurs to variable x,
PRT(x) = c if no fault occurs to variable x or an

invisible fault occurs to variable x

Fault-correcting state checksums contain extra
information such that it not only can be used to detect
visible faults, but can also be used to correct the
variables that are corrupted by visible faults to their
original values. An example of adding fault-correcting
checksum to a process is by using redundant variables
to store the value of an important variable: for an
important variable x, introduce two more variables y
and z of the same size as x. When the process needs to
update the value of variable x, it will write the new
value to y and z at the same time. When the process
needs to access the value of variable x, then instead of
just reading the value of x, it will use a majority
function MJR to read all three of x, y, and z, and return
the majority value at every bit position. More
specifically,

MJR(x, y, z) = for the ith bit, where 1 ≤ i ≤ number
of bits in variable x,
ith bit = 1 if at least two of ith bit in x,
ith bit in y, and ith bit in z are 1,

ith bit = 0 otherwise

From the definition of the majority function MJR, it
can be seen that if at every bit position at most one of
x, y, and z is corrupted, then the fault is visible and the
function MJR returns the correct value regardless of
any corrupted bit in x, y, or z. In this case, we can say
that the corruption is indeed masked by the majority
function because the majority function always returns
the correct value. We can also say that the system that
uses the majority function snap-stabilizes [4] when
suffering from visible faults, because the system in fact
remains in a legitimate state. However, if at any bit
position at least two of x, y, and z are corrupted, then
the fault is invisible and the system has to converge
through stabilization.

3. A Stabilizing Token Ring

In this section, we give a review of the classic
example of stabilizing token ring proposed by Dijkstra
in [5]. We first present a protocol of the token ring
using a variation of Abstract Protocol Notation
introduced in [7]. Then, in the subsequent three
sections, we will modify the protocol to illustrate the
different uses of state checksums.

Consider n processes that are indexed from 0 to n-1
and are placed in a ring; i.e. for process i, 0 ≤ i ≤ n-1,
the left neighbor of process i is process (i-1) mod n,
and the right neighbor of process i is process (i+1) mod
n. Each process has a variable x whose range is from 0
to n-1. With the exception of process 0, each process i,
1 ≤ i ≤ n-1, has one action whose guard is whether the
value of its variable x.i is not equal to the value of its
left neighbor’s variable x.(i-1). If the guard is true, then
the action is enabled: process i executes its critical
section and then sets x.i to be equal to the value of x.(i-
1). For process 0, it has one action whose guard is
whether the value of its variable x.0 is equal to the
value of process (n-1)’s variable x.(n-1). If the guard is
true, then the action is enabled: process 0 executes its
critical section and then sets its variable x.0 to (x.0 + 1)
mod n. Process 0 and processes 1..n-1 can be defined
as follows.

process 0
var x.0 : 0..n-1
begin

x.0 = x.(n-1) → critical section;
x.0 := x.0 +n 1

end

process i : 1..n-1
var x.i : 0..n-1
begin

x.i ≠ x.(i-1) → critical section;
x.i := x.(i-1)

end

The legitimate states of the token ring can be

defined as follows: in a legitimate state there exists an
i, where 0 ≤ i ≤ n-1, such that for every j ≤ i, x.j = x.0,
and for every j > i, x.j = (x.0 – 1) mod n. The closure
and convergence properties of this system are as
follows. First, the execution of an enabled action in a
legitimate state will bring the token ring into another
legitimate state. Second, regardless of the initial state,
the token ring is guaranteed to enter a legitimate state
after a finite number of steps. These properties can be
easily verified from the protocol.

Note that one important property of the token ring is
that it satisfies mutual exclusion. It can be seen in that
in each legitimate state there is only one enabled action
in all the processes, which means at any time only one
process can be executing its critical section. If process i
is the one which is executing its critical section, then
after process i finishes the execution of its action, the
action in process (i + 1) mod n is enabled and process
(i + 1) mod n gets the right to execute its critical
section. This is why it is called a token ring.

It has been verified that in the worst case it can take
up to O(n2) for the token ring to converge to a
legitimate state. A proof can be found in [6].

4. The Token Ring with Detecting
Checksums

Although a self-stabilizing system that suffers from
a fault can always converge to a legitimate state
through stabilization, the convergence can be very
slow. This is because the faults are allowed to
propagate into many other processes, which can make
the convergence complicated. In order to limit the
propagation of the faults, fault-detecting checksums
can be added to a self-stabilizing system.

For example, consider the scenario in which each
variable x in processes 0..n-1 in the token ring has the
value 0. This is a legitimate state of the token ring.
Suppose the variable x.1 in process 1 is corrupted by a
fault and its value becomes 4. The action in process 2
becomes enabled and the corrupted value 4 is copied
into variable x.2. This corrupted value can keep
propagating into processes 3, 4, and so on. Although
process 1 can later correct the value of x.1 by copying
from the value of x.0, it will take several steps for
subsequent processes to correct all the propagated
values. If there are more faults, the convergence can
become more complicated.

To limit the propagation of the faults in the token
ring, we can add to each process i, where 1 ≤ i ≤ n-1, a
parity bit c that represents the parity of variable x.
When process i, where 1 ≤ i ≤ n-1, finds that parity bit
c.i is inconsistent with variable x.i, process i detects
that a visible fault has occurred to variable x.i. To
overcome this fault, process i should recover the value
of x.i by copying the value of x.(i-1) from its neighbor
process (i-1). On the other hand, process i, where 2 ≤ i
≤ n-1, will check whether the parity bit c.(i-1) is
consistent with x.(i-1), to avoid copying the value of a
corrupted x.(i-1) and let this corrupted value propagate
into x.i. Every time process i, 1 ≤ i ≤ n-1, copies the
value of x.(i-1) into x.i, it will reset the parity bit c.i to
make it consistent with x.i. For process 0, it will also
check whether the parity bit c.(n-1) is consistent with
x.(n-1), to avoid copying the value of a corrupted x.(n-
1) and let this corrupted value propagate into x.0. Note
that we do not add a parity bit to process 0 to avoid the
deadlock in which each process is suffering from a
visible fault. Process 0, process 1, and processes 2..n-1
in the token ring can be modified to include the fault-
detecting checksum as follows.

process 0
var x.0 : 0..n-1
begin

x.0 = x.(n-1) ∧ c.(n-1) = PRT(x.(n-1)) →
critical section;
x.0 := x.0 +n 1

end

process 1
var x.1 : 0..n-1,
 c.1 : 0..1
begin

x.1 ≠ x.0 ∨ c.1 ≠ PRT(x.1) →
critical section;
x.1 := x.0;
c.1 := PRT(x.1)

end

process i : 2..n-1
var x.i : 0..n-1,
 c.i : 0..1
begin

(x.i ≠ x.(i-1) ∨ c.i ≠ PRT(x.i)) ∧ c.(i-1) =
PRT(x.(i-1)) →

critical section;
x.i := x.(i-1);
c.i := PRT(x.i)

end

We have seen in the last section that the stabilizing
token ring can converge from an arbitrary state to a
legitimate state in O(n2) steps. By contrast, if fault-
detecting checksums are added to the processes in the
token ring and all the faults suffered by the processes
in the token ring are visible faults, then the token ring
can converge fast to a legitimate state in just O(k)
steps, where k is the number of processes that suffer
from a visible fault. This is because in the case of the
token ring with detecting checksums, the faults do not
propagate into other processes, and each of the
processes suffering from the fault just needs to execute
its action once to correct its corrupted state. However,
if any one of these faults is an invisible fault, then this
invisible fault may propagate into other processes, and
the token ring may still have to converge through
stabilization.

5. Removing the Harmful Effects of Visible
Faults

Although fault-detecting state checksums can be
used to detect visible faults and let the system converge
fast to a legitimate state, the visible faults may have
some harmful effects that cannot be cured even if the
system converges to a legitimate state. In this case, it is
desirable that additional cares are taken to remove the
harmful effects caused by visible faults during the
period of convergence.

For example, in the protocol of the token ring with
detecting checksum presented in the last section,
multiple processes may be executing their critical
sections at the same time if multiple processes suffer
from visible faults at the same time. This will violate
the mutual exclusion property of the token ring.

To ensure that the mutual exclusion property is not
violated, we can replace the “critical section” statement
in each process i, where 1 ≤ i ≤ n-1, by the following
“if .. then .. fi” statement:

if x.i = x.(i-1) -n 1 ∧ c.i = PRT(x.i) →

critical section
fi

With this replacement, a process will first check

whether it is suffering from a visible fault before
executing its critical section. Therefore, although
multiple processes may be executing their actions at
the same time, it is guaranteed that only one process,
which is a process not suffering from any visible fault,
will be executing its critical section.

6. The Token Ring with Detecting and
Correcting Checksums

We have shown that with fault-detecting checksums
added to the processes in a self-stabilizing system,
convergence from visible faults will become faster and
safety properties of the system will be maintained.
However, there is no guarantee that the corrupted
variables will be restored to the values that they held
prior to the corruption when the system converges to a
legitimate state. If in some cases it is desired that each
corrupted variable should be corrected to the value
held prior to the corruption, then correcting checksums
should to be used.

For example, consider the scenario in which each
variable x in processes 0..n-1 in the token ring has the
value 0. This is a legitimate state of the token ring.
Suppose the variable x.0 in process 0 is corrupted by a
fault and its value becomes 3, and the variable x.1 in
process 1 is corrupted by a fault and its value becomes
1. The detecting checksum in process 1 can be used to
detect the fault (because the total number of 1’s in x
becomes odd from even) and the token ring can later
converge to a legitimate state, in which each variable x
in processes 0..n-1 in the token ring has the value 3.
However, this value is not the same value held by each
variable x prior to the occurrence of the fault.

To get the correct value of x.0 that is corrupted by a
visible fault, we can introduce two redundant variables
y.0 and z.0 into process 0 to store the value of x.0. To
represent numbers from 0 to n-1, each of x.0, y.0, and
z.0 needs to be log n bits long. The majority function
MJR introduced in Section 2 can be applied on x.0,
y.0, and z.0 to return a result that is also log n bits
long. This result contains the majority value at every
bit position. The protocol in the last section needs to be
modified as follows. For process 0, the guard of its
action becomes whether the value of MJR(x.0, y.0, z.0)
is equal to the value of x.(n-1), and whether the parity
bit c.(n-1) is consistent with x.(n-1). If the guard is
true, then the action is enabled: process 0 executes its
critical section and then sets its variables x.0, y.0, and
z.0 to (x.(n-1) + 1) mod n. For process 1, instead of
accessing the value of x.0, it will access the value of
MJR(x.0, y.0, z.0). Note that we only add the fault-
correcting checksum to process 0, because other
processes can get the correct value from process 0.
Process 0, process 1, and processes 2..n-1 in the token
ring can be modified to include the fault-correcting
checksum as follows.

process 0
var x.0 : 0..n-1,
 y.0 : 0..n-1,

z.0 : 0..n-1
begin

MJR(x.0, y.0, z.0) = x.(n-1) ∧ c.(n-1) =
PRT(x.(n-1)) →

critical section;
x.0 := x.(n-1) +n 1;
y.0 := x.(n-1) +n 1;
z.0 := x.(n-1) +n 1

end

process 1
var x.1 : 0..n-1,
 c.1 : 0..1
begin

x.1 ≠ MJR(x.0, y.0, z.0) ∨ c.1 ≠ PRT(x.1) →
if x.1 = MJR(x.0, y.0, z.0) -n 1 ∧ c.1 =

PRT(x.1) →
critical section

fi;
x.1 := MJR(x.0, y.0, z.0);
c.1 := PRT(x.1)

end

process i : 2..n-1
var x.i : 0..n-1,
 c.i : 0..1
begin

(x.i ≠ x.(i-1) ∨ c.i ≠ PRT(x.i)) ∧ c.(i-1) =
PRT(x.(i-1)) →

if x.i = x.(i-1) -n 1 ∧ c.i = PRT(x.i) →
critical section

fi;
x.i := x.(i-1);
c.i := PRT(x.i)

end

According to the definition of the function MJR, if

at every bit position at most one of x.0, y.0, and z.0 is
corrupted, then the fault is visible and the function
MJR returns the correct value regardless of any
corrupted bit in x.0, y.0, or z.0. Since the majority
function returns the correct value, the token ring
remains in a legitimate state. However, if at any bit
position at least two of x.0, y.0, and z.0 are corrupted,
then the fault is invisible and the token ring has to
converge through stabilization.

7. Concluding Remarks

In this paper, we introduce the concept of state
checksum and how it can be used to achieve fault
containment. We use the case study of Dijkstra’s
stabilizing token ring to illustrate the functions and
usage of state checksums. The conclusion that can be

drawn from our presentation of state checksum is as
follows: if all the faults that the processes in the system
are suffering from are visible to the state checksum
used in the system, then the system can converge fast
to a legitimate state, and all the safety properties are
maintained during the convergence from these faults.
However, if any one of these faults is invisible to the
state checksum used in the system, then the system can
still converge through stabilization, but the
convergence can be slow, and the safety properties of
the system might be violated during the convergence
from these faults. This way, we make the system
multitolerant to visible and invisible faults. Indeed, the
techniques described in this paper can be generalized
and applied in every stabilizing system to preserve
stabilization properties of the system when the system
suffers from visible faults.

It is worthy to note that the problem of
multitolerance design in token ring has been
investigated by Arora and Kulkarni in [2]. However,
we note that there are three key differences between
their design and our design. First, their design is based
on the assumption that corruption of the state of a
process is detectable, which means that the corrupted
state is detected by the process itself before any action
inadvertently accesses that state (however they did not
specify how the corrupted state is detected). By
contrast, our design does not require explicit detection
of the corrupted state, because inconsistency between a
state and its checksum already indicates that the state is
corrupted. Second, they introduce two special values ⊥
and T to represent corrupted states, while our design
uses extra variable(s) to store the state checksum.
Third, their design does not allow self-stabilization,
while our design allows the system that suffers from
invisible faults to converge through stabilization.

An interesting question to ask is that given a system
equipped with state checksum, if it is already revealed
to us that the system is currently in a faulty state, can
we determine whether the fault is visible or invisible to
the state checksum? The answer is yes, because if the
state checksum is inconsistent with the state, then the
fault is visible to the state checksum, and if the state
checksum is consistent with the state, then the fault is
invisible. If the fault is visible and the checksum in the
system is a fault-correcting checksum, then the faulty
state can be corrected.

References

[1] Anish Arora, Mohamed G. Gouda, “Closure and
Convergence: A Foundation of Fault-Tolerant Computing”,
IEEE Transactions on Software Engineering, Vol. 19, No.
11, November 1993.
[2] Anish Arora, Sandeep S. Kulkarni, “Component Based
Design of Multitolerant Systems”, IEEE Transactions on
Software Engineering, Vol. 24, No. 1, January 1998.
[3] Anish Arora, Sandeep S. Kulkarni, “Detectors and
Correctors: A Theory of Fault-Tolerance Components”,
Proceedings of the 18th International Conference on
Distributed Computing Systems, 1998.
[4] Alain Bui, Ajoy K. Datta, Franck Petit, Vincent Villain,
“State-Optimal Snap-Stabilizing PIF in Tree Networks”,
Proceedings of the Fourth Workshop on Self-Stabilizing
Systems, 1999.
[5] Edsger W. Dijkstra, “Self-stabilizing Systems in Spite of
Distributed Control”, Communications of the ACM, Vol. 17,
No. 11, November 1974.
[6] Shlomi Dolev, Self-Stabilization, MIT Press, 2000.
[7] Mohamed G. Gouda, Elements of Network Protocol
Design, John Wiley & Sons, 1998.

