

1

Abstract— Static data redundancy has been proven useful in

providing fault tolerance and load balancing, but it may not
provide enough assurance on the continuous availability of
mission cr itical data in the presence of a determined adversary
which locates all the static redundant copies and shuts them down
using DoS attacks. In this paper, we propose a roaming data
redundancy scheme to address this problem. This scheme requires
that if a cer tain percentage of static redundant copies of the
cr itical data has already been shut down, then a small number of
roaming redundant copies will be stored in randomly selected
hosts that are changed per iodically. Simulation results show that
this scheme can effectively mitigate the impacts of DoS attacks
and host failures to ensure continuous availability of cr itical data,
with better efficiency compared to the static data redundancy
scheme.

Index Terms—Data Redundancy, Assurance, Availability,
Denial-of-Service Attacks.

I. INTRODUCTION

Data redundancy in host-based services is widely used for
the purposes of fault tolerance and load balancing. In general,
replications of the target data are made and stored on hosts
other than the original source. When the original source is
down, the target data can be recovered from the redundant
copy. Moreover, access to the target data may also be provided
via the redundant copies, thus distributing the load from the
original source. However, data redundancy does not provide
complete assurance, because it is possible that the original
source and the hosts that keep the redundant copies are down
at the same time. If the data in question is mission critical, then
it is desirable to provide greater assurance of the continuous
availability of the critical data.

Consider the following scenario in which a specialized host
in a military network is responsible for the update and
maintenance of one type of critical data. (For example, this
host is attached to a special sensing device, or this host is
superior to other hosts in its computing power.) The clients,
soldiers in this example, need continuous access to the critical
data, as this critical data is essential for the clients to obtain

timely awareness of the situation and perform their tasks
properly. However, if the server that is responsible for the
critical data is shut down by a Denial-of-Service (DoS) attack,
then the critical data is no longer available to the clients.

One solution to provide assurance on availability of the
critical data is by using static data redundancy. In this case,
multiple hosts in the network are selected to keep a redundant
copy of the critical data. If the specialized server of this
critical data is shut down by a system failure or a DoS attack,
then the clients can still get access to the critical data through
the hosts that keep the redundant copies. However, if the hosts
that keep the redundant copy of the critical data are also down
because a determined adversary locates these hosts (via
observing ongoing traffic or sending fake inquiries) and
launches more DoS attacks against these hosts, then again the
critical data become unavailable to the clients. In order to
provide greater assurance, it is tempting to store larger number
of redundant copies in the network, such that the adversary
does not have enough power to shut down all of the redundant
copies simultaneously. However, this scheme may incur too
much overhead because it needs to update many redundant
copies when the original copy is updated. In addition, if more
redundant copies of the critical data is stored in more hosts,
then the risk of critical data leakage due to physical
compromise also increases.

In this paper, we propose a novel roaming data redundancy
scheme to provide greater assurance in critical data services. In
this solution, when a certain portion (say two thirds) of static
redundant copies has already been shut down, a small number
of the remaining hosts in the network are selected to keep a
roaming redundant copy of the critical data. Periodically, the
roaming redundant copies are updated by the critical data
server and moved to another randomly selected host(s). An
adversary may launch in parallel a number of DoS attacks on
several random hosts in the network, but if at least one host
that keeps a copy of the critical data (either original copy or
redundant copy) is not attacked, then the clients can still get
access to the critical data. If the original source of critical data
is down for an extended time, the alive redundant copies will
keep roaming to avoid the attack. This solution is generic in
itself and is applicable to mobile networks and static networks
alike.

Roaming Data Redundancy for Assurance in
Critical Data Services

Chin-Tser Huang, Alexander B. Alexandrov, Prasanth Kalakota

Department of Computer Science and Engineering
University of South Carolina

{ huangct, alexand2, kalakota} @cse.sc.edu

2

There are four goals in the design of the roaming data
redundancy scheme. Firstly and foremost, we aim to keep the
critical data constantly available. We achieve this by
periodically changing the locations of redundant copies, such
that the adversary cannot easily locate a host that keeps a
redundant copy and then shut it down by launching a DoS
attack. Secondly, we want to prevent the adversary from
misleading the hosts about the content of the critical data and
the locations of redundant copies by modifying a message or
replaying an old message. This goal is achieved through public
key encryption and sequence numbers. Thirdly, we want to
periodically update the redundant copies to keep them closely
consistent with the original critical data. It is advantageous but
hard to always keep the redundant copy exactly the same as the
original critical data if the original copy is updated frequently.
However, keeping an approximate redundant copy of the
critical data is better than no copy at all in the presence of
serious DoS attacks. Fourthly, we aim to reduce the storage
requirement on hosts other than the original source of the
critical data. This goal is achieved by storing just a small
number of roaming redundant copies. By doing this, we also
save the overhead of updating the redundant copies.

The remainder of this paper is organized as follows. In
Section II, we survey previous works that are related to the
application of data redundancy for the purpose of fault
tolerance. In Section III, we discuss the assumptions we make
about the critical data service and the adversary in this work.
In Section IV, we present the roaming data redundancy scheme
and its two major components, namely the redundant data
moving protocol and the redundant data discovery protocol. In
Section V, we use simulation results to evaluate the
performance of our scheme. Finally, we conclude and discuss
future works in Section VI.

II. RELATED WORKS

Although much work has been done in both data
redundancy and distributed fault tolerance in the presence of
DoS attacks, we only describe here work that is directly related
to our roaming data redundancy scheme.

In the pStore framework [1] files are shared in a peer-to-
peer fashion to create a secure backup system that supports
versioning and takes advantage of similar chunks of
information between different versions of the same file or
different files. Although the approach supports distributed
fault tolerance, it does not distinguish between critical data and
non-critical data and concentrates mainly on data storage gains
when similar data is backed up on multiple computers.
Furthermore, once the system converges, the backup data does
not change location and it is easy for an attacker to locate the
keeper of the backup data and launch a DoS attack against it.

IP hopping [5] protects a public server by physically
changing its IP address when the server is under attack. All
legitimate clients follow the server through contacting the local
DNS server which always keeps the current IP address of the
server. While this approach may delay a DoS attack, it suffers
from filtering out legitimate client requests during the
migration period. Furthermore, a persistent adversary can

always resolve the current IP through the DNS server and can
resume the attack.

Both TCP-Migrate [9] and the Migratory-TCP [11]
describe a framework for terminating a live connection at
either ends and reincarnating it with all state information intact
at another location. Although they help fault tolerance and
mobility, they necessitate certain changes in the TCP/IP
protocol and thus cannot be readily deployed in existing
environments.

Contrary to IP hopping, [7] physically roam a single server
for the purpose of frustrating any possible attacker. Time is
divided into epochs and only legitimate clients can follow the
current server while the remaining machines will just drop all
requests or collect information about the attack for later
analysis and incorporation into a site-specific Intrusion
Detection System (IDS). However their experimental results
show an increase of about 14% in average response time
during an attack-free environment due to the migration of the
active TCP connection between static clients and constantly
migrating server. Our main goal is keeping critical data
available at all times and using proactive server roaming does
not achieve this goal. Depending on the epoch length, it might
be possible to take down the current active server, effectively
achieving a successful DoS attack before the epoch expires
and the server migrates. Additionally, this approach does not
provide for fault tolerance since no running replicas of the data
are kept – all the servers maintain the same data and no data is
transferred between two distinct servers.

The roaming honeypot framework proposed in [6] keeps n
out of m servers active at any specific time, rendering the
remaining m - n servers acting as honeypots. The current n
active servers can be contacted through an Access Gateways
Overlay Network. Only the legitimate clients know about the
existence of this network and the attackers select at random a
server to attack without having any way to distinguish between
a legitimate server and a honeypot. Although this approach
achieves fault tolerance, it physically moves servers and does
not replicate data. Our approach assumes a small number of
redundant copies in existence at any given time, providing
both high level of assurance of availability and a limited level
of load balancing.

In addition, a dynamic replica placement for scalable
content delivery using Tapestry is presented in [2]. While this
approach has low requirements on total bandwidth consumed
and needs minimum replicas, it does not consider any defenses
against a DoS attack. Nevertheless, constructing a distribution
tree for more efficient client access service is something we
can incorporate into our model in the future to achieve higher
framework utility.
 It is worthwhile to mention another related mechanism
called frequency hopping [12]. Frequency hopping is an
approach commonly used to secure wireless networks. The
frequency of the wireless media is changed periodically in a
predetermined order that only the sender and the recipient
know, such that it is very hard to eavesdrop on or intercept
data, let alone decrypt the data in transit. Although the idea
used is similar to our approach, [12] shows that the hop
sequences of Frequency Hopping radios can be determined in

3

less than five seconds due to slow hop rate (even Bluetooth is
considered slow at 1600 hops/second), limited number of
different hop patterns, and a beacon that in some
implementations is transmitted each time the network hops to a
new channel. Our approach provides higher security by using
public/private key encryption, as well as new algorithms for
roaming data discovery and roaming data movement. In
addition, our approach can be used over any network media.

III. ASSUMPTIONS

Before we present the roaming data redundancy scheme, we
discuss the assumptions we make about the critical data
service and the adversary. For generality, it is assumed that
there are multiple types of critical data, and that all the
legitimate clients are aware of which type of critical data is
maintained by which host. To protect the privacy and integrity
of critical data and the locations of redundant copies, all the
communications in this scheme are encrypted; unicast
messages are encrypted by appropriate public key that is
distributed to all the critical data service hosts and legitimate
clients through a Public Key Authority, and broadcast
messages are encrypted by a secret key shared among all
legitimate hosts. All the hosts in the critical data service
network are assumed to be trusted, which means that they will
not collude with the adversary by leaking out the private key
or information about the content or location of the critical data.
Due to the nature of public key encryption, it is
computationally impossible for the adversary to break the keys
using statistical analysis.

We assume that the adversary is able to passively observe
the messages exchanged between the nodes in the network;
however, the adversary is unable to see the type and content of
the observed message if the message is encrypted. Still, the
adversary can apply traffic analysis techniques as discussed in
[10] and make a guess on the current operations of the
network. It is assumed that the adversary can apply two types
of active attacks on the messages. First, the adversary can
apply a message modification attack by arbitrarily modifying
the content of a message. Second, the adversary can apply a
message replay attack by making a copy of an observed
message and replaying the copied message at a later time.

For the purpose of evaluation, we assume that the adversary
is aware of the addresses of all the hosts in the network. We
also assume that the adversary is capable of simultaneously
launching m DoS attacks to shut down m hosts in the network
at the same time, where the value of m is larger or equal to the
number of redundant copies plus one (the original source).
Therefore, the adversary is capable of simultaneously shutting
down all the hosts that keep a copy of the critical data.

IV. ROAMING DATA REDUNDANCY

In this section, we present our roaming data redundancy
scheme. This scheme consists of two protocols: the redundant
data moving protocol and the redundant data discovery
protocol. The function of the redundant data moving protocol
is to allow each host to periodically move the redundant copy
of its critical data to a different location. The function of the

redundant data discovery protocol is to allow a host to
discover the location of the redundant copy of one type of
critical data. Each host in the network executes a process of
the redundant data moving protocol and a process of the
redundant data discovery protocol. The redundant data moving
process executes on the top of the redundant data discovery
process, as the redundant data discovery process depends on
the redundant data moving process to provide information
about what redundant copies are currently kept by this host.
Both protocols are designed to incorporate multiple types of
critical data, with each type of critical data maintained by a
different host. Note that as discussed in Section III, all types of
messages exchanged in this protocol are encrypted by the
sending process and decrypted by the receiving process using
public key encryption to protect the privacy and integrity of
critical data and the locations of redundant copies.

A. Redundant Data Moving Protocol

The redundant data moving protocol consists of n processes
rdm[0..n-1]. Each host participating in the protocol has an
input cd which represents the critical data maintained by this
host. The host for a particular cd is called owner for that
particular cd and only the owner of a cd has the authority to
create redundant copies of it. Each rdm[i] also maintains an
array rd[0..n-1] which represents the redundant copies of other
host cds currently kept by this host. Each rdm[i] maintains an
array sq[0..n-1] that represents the next sequence number to be
used by each process to send the next request message (mov)
to move the cd. Periodically, process rdm[i] randomly selects
the next keeper of its critical data, broadcasts to every other
host a dlt(sq[i], i, tmp) message (where sq[i] is the sequence
number of message sent by rdm[i], i is the index of rdm[i], and
tmp is the index of the current keeper of the redundant copy)
to notify the current keeper to delete the outdated redundant
copy, and unicasts a mov(sq[i], i, kprs, cd) message (where
kprs is a list of next keepers) to each one of the next keepers to
copy or update its critical data. Note that the dlt message is
broadcasted because every time rdm[i] sends out a dlt
message, sq[i] needs to be incremented by 1 in every process
in order to stay synchronized. If process rdm[j] currently keeps
the redundant copy, then rdm[j] will send a dltack message to
rdm[i] to acknowledge the deletion. If process rdm[j] is the
next keeper of redundant copy, then rdm[j] will send a movack
message to rdm[i] to acknowledge the reception of the
redundant copy. If the keeper that is listed first on the keeper
list of a redundant copy does not hear dlt message from the
owner of a critical data after 3 time periods, it assumes the
owner is down and assumes the role of an owner from this
timeframe – it informs the rest of the network it is the new
owner and then chooses hosts to keep redundant copies of the
new critical data it now owns. Similarly, if the keeper that is
listed second on the keeper list of a redundant copy does not
hear dlt message from the owner or the first keeper of a critical
data after 6 time periods, it assumes that both the owner and
the first keeper are down and assumes the role of an owner.

There are five actions in this protocol. In the first action,
the timer expires after T seconds passed since last movement
of redundant copy, and process rdm[i] checks that it is not
waiting for acknowledgment from the last keeper and current

4

keeper of the redundant copy, then rdm[i] randomly selects a
host to keep the critical data next. rdm[i] sends a dlt message
to every other host so that the last keeper can delete its
outdated copy, increments the sequence number sq[i]
associated with its mov message, and sends a mov message to
the next keeper of the redundant copy of that particular cd.
Notice that the dlt message is sent to every other process so
that every other process can update sq[i], and that sq[i] is
incremented after sending the dlt message and before sending
the mov message in order to ensure consistency of sq[i] in
every process.

In the second action, when process rdm[i] receives a dlt
message from another process rdm[j], rdm[i] first checks that
the dlt message is really sent by rdm[j] and is not a replayed
message. Then, rdm[i] checks if rdm[i] itself is currently the
owner of the redundant copy of the critical data maintained by
rdm[j]. If so, rdm[i] deletes the outdated redundant copy and
sends a dltack message to rdm[j]. Otherwise, rdm[i] will just
disregard the message. In both cases, rdm[i] updates the
sequence number of rdm[j] to ensure consistency.

In the third action, when process rdm[i] receives a mov
message from another process rdm[j], rdm[i] first checks that
the mov message is really sent by rdm[j] and is not a replayed
message. Then, rdm[i] checks if rdm[i] is chosen by rdm[j] as
the next keeper of the redundant copy of the critical data
maintained by rdm[j]. If so, rdm[i] stores the redundant copy
included in the mov message and sends a movack message to
rdm[j]. Otherwise, rdm[i] will just disregard the message. In
both cases, rdm[i] updates the sequence number of rdm[j] to
ensure consistency.

In the fourth action, rdm[i] receives dltack from the last
keeper of the redundant copy, so rdm[i] sets waitdlt to false. In
the fifth action, rdm[i] receives movack from the current
keeper of the redundant copy, so rdm[i] sets waitmov to false.
Figure 1 illustrates the basic operations in the redundant data
moving protocol.

At every time step each node holding critical data
broadcasts dlt message and randomly chooses next n

nodes (mov) to hold the critical data for the next time step.

dlt
dlt

dlt

mov

mov keeper

keeper

owner

Figure 1: Basic operations of redundant data moving protocol.

There are two possible fault situations that deserve more

discussion. First, a message that contains a redundant copy of
critical data is corrupted in transit, either due to modification
by an adversary or transmission error. This will be detected by

the receiving process because if an encrypted message is
corrupted, its fields will become inconsistent after decryption.
According to the protocol a corrupted message will be
discarded for the sake of consistency. Second, the receiving
process may crash due to host failure. This will be detected by
the sending process because no acknowledgment is received.
In either case of message corruption or host failure, we will not
retransmit or find another host to keep a redundant copy.
Instead, the protocol just regards that one redundant copy is
lost in the current period. Note that losing one redundant copy
is okay if there is at least one alive copy of the critical data in
the current period. In Section V we use simulation to show that
our roaming data redundancy scheme is resilient in tolerating
attacks and failures.

B. Redundant Data Discovery Protocol

The redundant data discovery protocol consists of n
processes rdd[0..n-1]. Each process rdd[i] maintains an input
array rd[0..n-1] which is provided by rdm[i] in the redundant
data moving protocol. Similar to the redundant data moving
protocol, each process rdd[i] also maintains an array sq[0..n-1]
that represents the next sequence number to be used by each
process to send the next query (drqst). Each process rdd[i] in
the redundant data discovery protocol can send to every other
process a drqst(sq[i], tgt, i) message, where sq[i] is the
sequence number of drqst message sent by rdd[i], tgt is the
index of the target critical data, and i is the index of rdd[i].
Every time rdd[i] sends out a drqst message, sq[i] needs to be
incremented by 1 in every process in order to stay consistent.
If process rdd[j] currently keeps the redundant copy, then
rdd[j] will send a drply(sq[i], tgt, j) message to rdd[i], where
sq[i] is the corresponding sequence number of rdd[i], tgt is the
index of the target critical data, and j is the index of rdd[j].
The other processes that do not keep the redundant copy will
just disregard the drqst message.

There are three actions in this protocol. In the first action,
process rdd[i] checks that it does not have any pending
request, and then randomly selects a target type of critical data
to request for. If the original source of the target critical data is
down, then rdd[i] must discover the redundant copy by sending
out a drqst message to every other process. A monotonically
increasing sequence number is attached to each drqst message
to counter replay attacks. Therefore, an adversary cannot
replay a legitimate drqst message in the hope to learn the
location of the redundant copy of the requested critical data.

In the second action, when process rdd[i] receives a drqst
message from another process rdd[j], rdd[i] first checks that
the drqst message is really sent by rdd[j] and is not a replayed
message. Then, rdd[i] checks if rdd[i] itself is currently the
keeper of the redundant copy of the requested critical data. If
so, rdd[i] sends a drply message to inform rdd[j] that the
redundant copy of the requested critical data can be accessed
through rdd[i]. Otherwise, rdd[i] will just disregard the
message. In both cases, rdd[i] updates the sequence number of
rdd[j].

In the third action, when process rdd[i] receives a drply
message from another process rdd[j], rdd[i] first checks that
the drply message is really sent by rdd[j] and is not a replayed
message. Then, rdd[i] checks if the drply message is

5

corresponding to the target type of critical data that rdd[i]
requested in the drqst message it sent out. If so, rdd[i] will
proceed to access the critical data through rdd[j]. Otherwise,
rdd[i] will just disregard the message. Figure 2 illustrates the
basic operations in the redundant data discovery protocol.

Every node requesting specific critical data broadcasts drqst
message. All the nodes that contain a replica reply with drply

and the requesting node accesses the nearest copy.

drqst

drqst

drqst

drply

drply

keeper

keeper

client

Figure 2: Basic operations of redundant data discovery protocol.

V. SIMULATION AND EVALUATION

We have developed a simplified model of our roaming data
redundancy scheme in Java and conducted simulation
experiments to study the effects of different parameters on our
scheme. Specifically, we evaluate the tolerance of our scheme
against DoS attacks and host failures. We compare the results
to another scheme in which a large number of static redundant
copies are stored.

Simulation model: We create a simulation model in Java
that implements our model. We start with a simulation
designed to evaluate the tolerance of our scheme against DoS
attacks. Without loss of generality we perform our evaluation
with 1, 2, or 3 servers which hold the roaming redundant
copies. We expect the results to be similar when the number of
redundant copies increases; indeed, similar trend is manifested
in the simulation results. Every time unit the original source
server randomly chooses 1, 2, or 3 servers out of 100 total
servers to keep the redundant copies. Every time unit the
adversary randomly chooses 10, 20, or 30 servers to attack
simultaneously. If all the current roaming redundant copies are
hit by the DoS attacks, then the attack is regarded successful
and we measure the time elapsed in time units. Otherwise, in
the next time unit the original source server again randomly
chooses 1, 2, or 3 servers and the adversary again randomly
chooses 10, 20, or 30 servers to attack. The longer the elapsed
time before the attack succeeds the better the performance is,
since the network proves to be more robust to the attack.

Then, the simulation is extended to evaluate the tolerance
of our scheme against host failures. Every time the original
source server chooses a server to keep a redundant copy, a
random number is used to determine whether this server is up
or crashed. If this server is crashed, then one redundant copy is
considered lost in the current period. If all the current roaming
redundant copies are hit by the DoS attacks or crashed due to
server failure, then the attack is regarded successful and we

measure the time elapsed in time units. Server failure
probability of 5% is used in the simulation, which is already a
very high server failure rate and is not likely to happen often in
reality.

We compare our model with another scheme in which N
static redundant copies are stored in N servers out of a total of
100 servers. At the beginning of the simulation the source
chooses 10, 20, or 30 servers to keep the redundant copies. At
the beginning, the attacker randomly selects 10, 20, or 30
servers to attack. If the adversary hits a server that keeps a
redundant copy, the adversary keeps one attack on that server.
The adversary uses its remaining attacks to keep attacking
until it locates and shuts down all the servers that keep a
redundant copy, and we measure the time elapsed in time
units.

Both models assume either direct or overlay node
connectivity and a constant number of simultaneous DoS
attacks in a single simulation.

Evaluation: Figure 3 shows the statistics of 1000 runs for
our roaming data redundancy model – 1, 2, 3 roaming copies
in 100 total servers under 10, 20, 30 attacks. The results are
compared with the same setup but with 5% host failure
probability. As the number of attacks increases, the average
time needed for the adversary to succeed in its attack
decreases. As we increase the number of roaming copies, the
time needed for the adversary to succeed increases
exponentially. Therefore by increasing the number of roaming
copies by just one, we can achieve exponential increase in the
difficulty for the adversary.

Figure 4 shows the statistics for our comparison model –
10, 20, 30 static copies distributed in 100 total servers. Note
that the number of simultaneous attacks needs to be larger than
the number of static copies in order for the adversary to be
able to successfully shut down all the static copies. While the
increase of the number of static copies increases the time
necessary for a successful attack, the increase is smooth and
the average time needed for a successful attack is apparently
shorter than when 2 or 3 roaming copies are used.

From the figures it is clear that the roaming data
redundancy scheme performs better than N static copies, and
Figure 3 shows that the benefits of using our approach increase
when the number of roaming copies increases, as the average
time needed for the attack to succeed increases by around 10
times with every additional roaming copy.

VI. CONCLUDING REMARKS

In this paper, we point out the need for greater assurance of
the continuous availability of critical data services, and show
that current solutions are not sufficient to provide the desired
level of assurance under serious DoS attacks. We then
introduce a novel roaming data redundancy scheme that aims
to ensure constant availability of critical data by changing the
locations of the redundant copies of critical data periodically.
Simulation results show that with a small number of roaming
redundant copies, the roaming data redundancy scheme
effectively mitigate the impacts of DoS attacks and server
failures, with better efficiency compared to another scheme
that stores many static redundant copies.

6

In the future work, we will incorporate untrusted hosts into
the network to increase the flexibility of our scheme. The
cryptographic accumulator proposed in [3] suggests a scheme
for authenticating data provided by a mirror site, which may be
incorporated into our scheme. Moreover, we will conduct
simulations and experiments to show when is the best time to
start using the roaming data redundancy scheme, and how
frequently the roaming copies should be moved. Furthermore,
we would like to investigate the impacts that the topology of
the critical data service network and the routing algorithm of
the messages have on the overall performance of the roaming
data redundancy scheme.

1

10

100

1000

10000

10 Attacks 20 Attacks 30 Attacks

Number Attacks

T
im

e

1 Roaming Copy w/o Failure

2 Roaming Copies w/o Failure

3 Roaming Copies w/o Failure

1 Roming Copy w/ 5% Failure

2 Roaming Copies w/ 5% Failure

3 Roaming Copies w/ 5% Failure

Figure 3: Time for successful DoS attack, with 1, 2, 3 roaming copies

0

5

10

15

20

25

30

10 Attacks 20 Attacks 30 Attacks

Number of Attacks

Ti
m

e

10 Static Copies

20 Static Copies

30 Static Copies

Figure 4: Time for successful DoS attack, with 10, 20, 30 static copies
respectively

REFERENCES

[1] C. Batten, K. Barr, A. Saraf, S. Trepetin, “pStore: A Secure Peer-to-Peer
Backup System,” MIT LCS Technical Memo 632, 2002.

[2] Y. Chen, R. H. Katz, J. D. Kubiatowicz, “Dynamic Replica Placement
for Scalable Content Delivery” , Proceedings of First International
Workshop on Peer-to-Peer Systems (IPTPS 2002), Cambridge, MA,
March 2002.

[3] M. T. Goodrich, R. Tamassia, “An Efficient Dynamic and Distributed
Cryptographic Accumulator,” Proceedings of the 5th International
Conference on Information Security, September 2002.

[4] M. G. Gouda, Elements of Network Protocol Design, John Wiley &
Sons, New York, NY, 1998.

[5] J. Jones, “Distributed denial of service attacks: Defenses, a special
publication,” Global Integrity, Tech Rep., 2000.

[6] S. M. Khattab, C. Sangpachatanaruk, D. Mossé, R. Melhem, T. Znati,
“Roaming Honeypots for Mitigating Service-Level Denial-of-Service
Attacks,” Proceedings of 24th International Conference on Distributed
Computing Systems, March 2004.

[7] S. M. Khattab, C. Sangpachatanaruk, D. Mossé, T. Znati, “Proactive
Server Roaming for Mitigating Denial-of-Service Attacks” , Annual
Simulation Symposium, 2003.

[8] S. M. Khattab, C. Sangpachatanaruk, D. Mossé, R. Melhem, T. Znati,
“A Simulation Study of the Proactive Server Roaming for Mitigating
Denial of Service Attacks” , Proceedings of the 36th Annual Simulation
Symposium (ANSS’03).

[9] A. C. Snoeren, H. Balakrishnan, and M. F. Kaasoek, “The migrate
approach to Internet mobility,” in Proc. of the Oxygen Student
Workshop, July 2001.

[10] W. Stallings, Cryptography and Network Security: Principles and
Practices, 3rd ed., Prentice Hall, NJ, 2003.

[11] F. Sultan, K. Srinivasan, D. Iyer, and L. Iftode, “Migratory TCP:
Connection migration for service continuity in the Internet,”
Proceedings of the 22nd International Conference on Distributed
Computing Systems (ICDCS), July 2002.

[12] J. Zyren, T. Godfrey and D. Eaton, “Does frequency hopping enhance
security?” , available at
http://www.packetnexus.com/docs/20010419_frequencyHopping.pdf

