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Abstract— Static data redundancy has been proven useful in 

providing fault tolerance and load balancing, but it may not 
provide enough assurance on the continuous availability of 
mission cr itical data in the presence of a determined adversary 
which locates all the static redundant copies and shuts them down 
using DoS attacks. In this paper, we propose a roaming data 
redundancy scheme to address this problem. This scheme requires 
that if a cer tain percentage of static redundant copies of the 
cr itical data has already been shut down, then a small number of 
roaming redundant copies will be stored in randomly selected 
hosts that are changed per iodically. Simulation results show that 
this scheme can effectively mitigate the impacts of DoS attacks 
and host failures to ensure continuous availability of cr itical data, 
with better  efficiency compared to the static data redundancy 
scheme.  
 

Index Terms—Data Redundancy, Assurance, Availability, 
Denial-of-Service Attacks. 
 

I. INTRODUCTION 

Data redundancy in host-based services is widely used for 
the purposes of fault tolerance and load balancing. In general, 
replications of the target data are made and stored on hosts 
other than the original source. When the original source is 
down, the target data can be recovered from the redundant 
copy. Moreover, access to the target data may also be provided 
via the redundant copies, thus distributing the load from the 
original source. However, data redundancy does not provide 
complete assurance, because it is possible that the original 
source and the hosts that keep the redundant copies are down 
at the same time. If the data in question is mission critical, then 
it is desirable to provide greater assurance of the continuous 
availability of the critical data. 

Consider the following scenario in which a specialized host 
in a military network is responsible for the update and 
maintenance of one type of critical data. (For example, this 
host is attached to a special sensing device, or this host is 
superior to other hosts in its computing power.) The clients, 
soldiers in this example, need continuous access to the critical 
data, as this critical data is essential for the clients to obtain 

 
 

 

timely awareness of the situation and perform their tasks 
properly. However, if the server that is responsible for the 
critical data is shut down by a Denial-of-Service (DoS) attack, 
then the critical data is no longer available to the clients. 

One solution to provide assurance on availability of the 
critical data is by using static data redundancy. In this case, 
multiple hosts in the network are selected to keep a redundant 
copy of the critical data. If the specialized server of this 
critical data is shut down by a system failure or a DoS attack, 
then the clients can still get access to the critical data through 
the hosts that keep the redundant copies. However, if the hosts 
that keep the redundant copy of the critical data are also down 
because a determined adversary locates these hosts (via 
observing ongoing traffic or sending fake inquiries) and 
launches more DoS attacks against these hosts, then again the 
critical data become unavailable to the clients. In order to 
provide greater assurance, it is tempting to store larger number 
of redundant copies in the network, such that the adversary 
does not have enough power to shut down all of the redundant 
copies simultaneously. However, this scheme may incur too 
much overhead because it needs to update many redundant 
copies when the original copy is updated. In addition, if more 
redundant copies of the critical data is stored in more hosts, 
then the risk of critical data leakage due to physical 
compromise also increases.  

In this paper, we propose a novel roaming data redundancy 
scheme to provide greater assurance in critical data services. In 
this solution, when a certain portion (say two thirds) of static 
redundant copies has already been shut down, a small number 
of the remaining hosts in the network are selected to keep a 
roaming redundant copy of the critical data. Periodically, the 
roaming redundant copies are updated by the critical data 
server and moved to another randomly selected host(s). An 
adversary may launch in parallel a number of DoS attacks on 
several random hosts in the network, but if at least one host 
that keeps a copy of the critical data (either original copy or 
redundant copy) is not attacked, then the clients can still get 
access to the critical data. If the original source of critical data 
is down for an extended time, the alive redundant copies will 
keep roaming to avoid the attack. This solution is generic in 
itself and is applicable to mobile networks and static networks 
alike. 
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There are four goals in the design of the roaming data 
redundancy scheme. Firstly and foremost, we aim to keep the 
critical data constantly available. We achieve this by 
periodically changing the locations of redundant copies, such 
that the adversary cannot easily locate a host that keeps a 
redundant copy and then shut it down by launching a DoS 
attack. Secondly, we want to prevent the adversary from 
misleading the hosts about the content of the critical data and 
the locations of redundant copies by modifying a message or 
replaying an old message. This goal is achieved through public 
key encryption and sequence numbers. Thirdly, we want to 
periodically update the redundant copies to keep them closely 
consistent with the original critical data. It is advantageous but 
hard to always keep the redundant copy exactly the same as the 
original critical data if the original copy is updated frequently. 
However, keeping an approximate redundant copy of the 
critical data is better than no copy at all in the presence of 
serious DoS attacks. Fourthly, we aim to reduce the storage 
requirement on hosts other than the original source of the 
critical data. This goal is achieved by storing just a small 
number of roaming redundant copies. By doing this, we also 
save the overhead of updating the redundant copies. 

The remainder of this paper is organized as follows. In 
Section II, we survey previous works that are related to the 
application of data redundancy for the purpose of fault 
tolerance. In Section III, we discuss the assumptions we make 
about the critical data service and the adversary in this work. 
In Section IV, we present the roaming data redundancy scheme 
and its two major components, namely the redundant data 
moving protocol and the redundant data discovery protocol. In 
Section V, we use simulation results to evaluate the 
performance of our scheme. Finally, we conclude and discuss 
future works in Section VI. 

II. RELATED WORKS 

Although much work has been done in both data 
redundancy and distributed fault tolerance in the presence of 
DoS attacks, we only describe here work that is directly related 
to our roaming data redundancy scheme. 

In the pStore framework [1] files are shared in a peer-to-
peer fashion to create a secure backup system that supports 
versioning and takes advantage of similar chunks of 
information between different versions of the same file or 
different files. Although the approach supports distributed 
fault tolerance, it does not distinguish between critical data and 
non-critical data and concentrates mainly on data storage gains 
when similar data is backed up on multiple computers. 
Furthermore, once the system converges, the backup data does 
not change location and it is easy for an attacker to locate the 
keeper of the backup data and launch a DoS attack against it. 

IP hopping [5] protects a public server by physically 
changing its IP address when the server is under attack. All 
legitimate clients follow the server through contacting the local 
DNS server which always keeps the current IP address of the 
server. While this approach may delay a DoS attack, it suffers 
from filtering out legitimate client requests during the 
migration period. Furthermore, a persistent adversary can 

always resolve the current IP through the DNS server and can 
resume the attack. 

Both TCP-Migrate [9] and the Migratory-TCP [11] 
describe a framework for terminating a live connection at 
either ends and reincarnating it with all state information intact 
at another location. Although they help fault tolerance and 
mobility, they necessitate certain changes in the TCP/IP 
protocol and thus cannot be readily deployed in existing 
environments. 

Contrary to IP hopping, [7] physically roam a single server 
for the purpose of frustrating any possible attacker. Time is 
divided into epochs and only legitimate clients can follow the 
current server while the remaining machines will just drop all 
requests or collect information about the attack for later 
analysis and incorporation into a site-specific Intrusion 
Detection System (IDS). However their experimental results 
show an increase of about 14% in average response time 
during an attack-free environment due to the migration of the 
active TCP connection between static clients and constantly 
migrating server. Our main goal is keeping critical data 
available at all times and using proactive server roaming does 
not achieve this goal. Depending on the epoch length, it might 
be possible to take down the current active server, effectively 
achieving a successful DoS attack before the epoch expires 
and the server migrates. Additionally, this approach does not 
provide for fault tolerance since no running replicas of the data 
are kept – all the servers maintain the same data and no data is 
transferred between two distinct servers. 

The roaming honeypot framework proposed in [6] keeps n 
out of m servers active at any specific time, rendering the 
remaining m - n servers acting as honeypots. The current n 
active servers can be contacted through an Access Gateways 
Overlay Network. Only the legitimate clients know about the 
existence of this network and the attackers select at random a 
server to attack without having any way to distinguish between 
a legitimate server and a honeypot. Although this approach 
achieves fault tolerance, it physically moves servers and does 
not replicate data. Our approach assumes a small number of 
redundant copies in existence at any given time, providing 
both high level of assurance of availability and a limited level 
of load balancing. 

In addition, a dynamic replica placement for scalable 
content delivery using Tapestry is presented in [2]. While this 
approach has low requirements on total bandwidth consumed 
and needs minimum replicas, it does not consider any defenses 
against a DoS attack. Nevertheless, constructing a distribution 
tree for more efficient client access service is something we 
can incorporate into our model in the future to achieve higher 
framework utility. 
     It is worthwhile to mention another related mechanism 
called frequency hopping [12]. Frequency hopping is an 
approach commonly used to secure wireless networks. The 
frequency of the wireless media is changed periodically in a 
predetermined order that only the sender and the recipient 
know, such that it is very hard to eavesdrop on or intercept 
data, let alone decrypt the data in transit. Although the idea 
used is similar to our approach, [12] shows that the hop 
sequences of Frequency Hopping radios can be determined in 
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less than five seconds due to slow hop rate (even Bluetooth is 
considered slow at 1600 hops/second), limited number of 
different hop patterns, and a beacon that in some 
implementations is transmitted each time the network hops to a 
new channel. Our approach provides higher security by using 
public/private key encryption, as well as new algorithms for 
roaming data discovery and roaming data movement. In 
addition, our approach can be used over any network media. 

III. ASSUMPTIONS 

Before we present the roaming data redundancy scheme, we 
discuss the assumptions we make about the critical data 
service and the adversary. For generality, it is assumed that 
there are multiple types of critical data, and that all the 
legitimate clients are aware of which type of critical data is 
maintained by which host. To protect the privacy and integrity 
of critical data and the locations of redundant copies, all the 
communications in this scheme are encrypted; unicast 
messages are encrypted by appropriate public key that is 
distributed to all the critical data service hosts and legitimate 
clients through a Public Key Authority, and broadcast 
messages are encrypted by a secret key shared among all 
legitimate hosts. All the hosts in the critical data service 
network are assumed to be trusted, which means that they will 
not collude with the adversary by leaking out the private key 
or information about the content or location of the critical data. 
Due to the nature of public key encryption, it is 
computationally impossible for the adversary to break the keys 
using statistical analysis. 

We assume that the adversary is able to passively observe 
the messages exchanged between the nodes in the network; 
however, the adversary is unable to see the type and content of 
the observed message if the message is encrypted. Still, the 
adversary can apply traffic analysis techniques as discussed in 
[10] and make a guess on the current operations of the 
network. It is assumed that the adversary can apply two types 
of active attacks on the messages. First, the adversary can 
apply a message modification attack by arbitrarily modifying 
the content of a message. Second, the adversary can apply a 
message replay attack by making a copy of an observed 
message and replaying the copied message at a later time. 

For the purpose of evaluation, we assume that the adversary 
is aware of the addresses of all the hosts in the network. We 
also assume that the adversary is capable of simultaneously 
launching m DoS attacks to shut down m hosts in the network 
at the same time, where the value of m is larger or equal to the 
number of redundant copies plus one (the original source). 
Therefore, the adversary is capable of simultaneously shutting 
down all the hosts that keep a copy of the critical data. 

IV. ROAMING DATA REDUNDANCY 

In this section, we present our roaming data redundancy 
scheme. This scheme consists of two protocols: the redundant 
data moving protocol and the redundant data discovery 
protocol. The function of the redundant data moving protocol 
is to allow each host to periodically move the redundant copy 
of its critical data to a different location. The function of the 

redundant data discovery protocol is to allow a host to 
discover the location of the redundant copy of one type of 
critical data. Each host in the network executes a process of 
the redundant data moving protocol and a process of the 
redundant data discovery protocol. The redundant data moving 
process executes on the top of the redundant data discovery 
process, as the redundant data discovery process depends on 
the redundant data moving process to provide information 
about what redundant copies are currently kept by this host. 
Both protocols are designed to incorporate multiple types of 
critical data, with each type of critical data maintained by a 
different host. Note that as discussed in Section III, all types of 
messages exchanged in this protocol are encrypted by the 
sending process and decrypted by the receiving process using 
public key encryption to protect the privacy and integrity of 
critical data and the locations of redundant copies.   

A. Redundant Data Moving Protocol 

The redundant data moving protocol consists of n processes 
rdm[0..n-1]. Each host participating in the protocol has an 
input cd which represents the critical data maintained by this 
host. The host for a particular cd is called owner for that 
particular cd and only the owner of a cd has the authority to 
create redundant copies of it. Each rdm[i] also maintains an 
array rd[0..n-1] which represents the redundant copies of other 
host cds currently kept by this host. Each rdm[i] maintains an 
array sq[0..n-1] that represents the next sequence number to be 
used by each process to send the next request message (mov) 
to move the cd. Periodically, process rdm[i] randomly selects 
the next keeper of its critical data, broadcasts to every other 
host a dlt(sq[i], i, tmp) message (where sq[i] is the sequence 
number of message sent by rdm[i], i is the index of rdm[i], and 
tmp is the index of the current keeper of the redundant copy) 
to notify the current keeper to delete the outdated redundant 
copy, and unicasts a mov(sq[i], i, kprs, cd) message (where 
kprs is a list of next keepers) to each one of the next keepers to 
copy or update its critical data. Note that the dlt message is 
broadcasted because every time rdm[i] sends out a dlt 
message, sq[i] needs to be incremented by 1 in every process 
in order to stay synchronized. If process rdm[j] currently keeps 
the redundant copy, then rdm[j] will send a dltack message to 
rdm[i] to acknowledge the deletion. If process rdm[j] is the 
next keeper of redundant copy, then rdm[j] will send a movack 
message to rdm[i] to acknowledge the reception of the 
redundant copy. If the keeper that is listed first on the keeper 
list of a redundant copy does not hear dlt message from the 
owner of a critical data after 3 time periods, it assumes the 
owner is down and assumes the role of an owner from this 
timeframe – it informs the rest of the network it is the new 
owner and then chooses hosts to keep redundant copies of the 
new critical data it now owns. Similarly, if the keeper that is 
listed second on the keeper list of a redundant copy does not 
hear dlt message from the owner or the first keeper of a critical 
data after 6 time periods, it assumes that both the owner and 
the first keeper are down and assumes the role of an owner. 

There are five actions in this protocol. In the first action, 
the timer expires after T seconds passed since last movement 
of redundant copy, and process rdm[i] checks that it is not 
waiting for acknowledgment from the last keeper and current 
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keeper of the redundant copy, then rdm[i] randomly selects a 
host to keep the critical data next. rdm[i] sends a dlt message 
to every other host so that the last keeper can delete its 
outdated copy, increments the sequence number sq[i] 
associated with its mov message, and sends a mov message to 
the next keeper of the redundant copy of that particular cd. 
Notice that the dlt message is sent to every other process so 
that every other process can update sq[i], and that sq[i] is 
incremented after sending the dlt message and before sending 
the mov message in order to ensure consistency of sq[i] in 
every process. 

In the second action, when process rdm[i] receives a dlt 
message from another process rdm[j], rdm[i] first checks that 
the dlt message is really sent by rdm[j] and is not a replayed 
message. Then, rdm[i] checks if rdm[i] itself is currently the 
owner of the redundant copy of the critical data maintained by 
rdm[j]. If so, rdm[i] deletes the outdated redundant copy and 
sends a dltack message to rdm[j]. Otherwise, rdm[i] will just 
disregard the message. In both cases, rdm[i] updates the 
sequence number of rdm[j] to ensure consistency. 

In the third action, when process rdm[i] receives a mov 
message from another process rdm[j], rdm[i] first checks that 
the mov message is really sent by rdm[j] and is not a replayed 
message. Then, rdm[i] checks if rdm[i] is chosen by rdm[j] as 
the next keeper of the redundant copy of the critical data 
maintained by rdm[j]. If so, rdm[i] stores the redundant copy 
included in the mov message and sends a movack message to 
rdm[j]. Otherwise, rdm[i] will just disregard the message. In 
both cases, rdm[i] updates the sequence number of rdm[j] to 
ensure consistency. 

In the fourth action, rdm[i] receives dltack from the last 
keeper of the redundant copy, so rdm[i] sets waitdlt to false. In 
the fifth action, rdm[i] receives movack from the current 
keeper of the redundant copy, so rdm[i] sets waitmov to false. 
Figure 1 illustrates the basic operations in the redundant data 
moving protocol. 

 

At every time step each node holding critical data 
broadcasts dlt message and randomly chooses next n 

nodes (mov) to hold the critical data for the next time step.
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Figure 1: Basic operations of redundant data moving protocol. 

 
There are two possible fault situations that deserve more 

discussion. First, a message that contains a redundant copy of 
critical data is corrupted in transit, either due to modification 
by an adversary or transmission error. This will be detected by 

the receiving process because if an encrypted message is 
corrupted, its fields will become inconsistent after decryption. 
According to the protocol a corrupted message will be 
discarded for the sake of consistency. Second, the receiving 
process may crash due to host failure. This will be detected by 
the sending process because no acknowledgment is received. 
In either case of message corruption or host failure, we will not 
retransmit or find another host to keep a redundant copy. 
Instead, the protocol just regards that one redundant copy is 
lost in the current period. Note that losing one redundant copy 
is okay if there is at least one alive copy of the critical data in 
the current period. In Section V we use simulation to show that 
our roaming data redundancy scheme is resilient in tolerating 
attacks and failures. 

B. Redundant Data Discovery Protocol 

The redundant data discovery protocol consists of n 
processes rdd[0..n-1]. Each process rdd[i] maintains an input 
array rd[0..n-1] which is provided by rdm[i] in the redundant 
data moving protocol. Similar to the redundant data moving 
protocol, each process rdd[i] also maintains an array sq[0..n-1] 
that represents the next sequence number to be used by each 
process to send the next query (drqst). Each process rdd[i] in 
the redundant data discovery protocol can send to every other 
process a drqst(sq[i], tgt, i) message, where sq[i] is the 
sequence number of drqst message sent by rdd[i], tgt is the 
index of the target critical data, and i is the index of rdd[i]. 
Every time rdd[i] sends out a drqst message, sq[i] needs to be 
incremented by 1 in every process in order to stay consistent. 
If process rdd[j] currently keeps the redundant copy, then 
rdd[j] will send a drply(sq[i], tgt, j) message to rdd[i], where 
sq[i] is the corresponding sequence number of rdd[i], tgt is the 
index of the target critical data, and j is the index of rdd[j]. 
The other processes that do not keep the redundant copy will 
just disregard the drqst message.  

There are three actions in this protocol. In the first action, 
process rdd[i] checks that it does not have any pending 
request, and then randomly selects a target type of critical data 
to request for. If the original source of the target critical data is 
down, then rdd[i] must discover the redundant copy by sending 
out a drqst message to every other process. A monotonically 
increasing sequence number is attached to each drqst message 
to counter replay attacks. Therefore, an adversary cannot 
replay a legitimate drqst message in the hope to learn the 
location of the redundant copy of the requested critical data. 

In the second action, when process rdd[i] receives a drqst 
message from another process rdd[j], rdd[i] first checks that 
the drqst message is really sent by rdd[j] and is not a replayed 
message. Then, rdd[i] checks if rdd[i] itself is currently the 
keeper of the redundant copy of the requested critical data. If 
so, rdd[i] sends a drply message to inform rdd[j] that the 
redundant copy of the requested critical data can be accessed 
through rdd[i]. Otherwise, rdd[i] will just disregard the 
message. In both cases, rdd[i] updates the sequence number of 
rdd[j]. 

In the third action, when process rdd[i] receives a drply 
message from another process rdd[j], rdd[i] first checks that 
the drply message is really sent by rdd[j] and is not a replayed 
message. Then, rdd[i] checks if the drply message is 



 
 

5 

corresponding to the target type of critical data that rdd[i] 
requested in the drqst message it sent out. If so, rdd[i] will 
proceed to access the critical data through rdd[j]. Otherwise, 
rdd[i] will just disregard the message. Figure 2 illustrates the 
basic operations in the redundant data discovery protocol. 

 

Every node requesting specific critical data broadcasts drqst
message. All the nodes that contain a replica reply with drply

and the requesting node accesses the nearest copy.
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Figure 2: Basic operations of redundant data discovery protocol. 

V. SIMULATION AND EVALUATION 

We have developed a simplified model of our roaming data 
redundancy scheme in Java and conducted simulation 
experiments to study the effects of different parameters on our 
scheme. Specifically, we evaluate the tolerance of our scheme 
against DoS attacks and host failures. We compare the results 
to another scheme in which a large number of static redundant 
copies are stored.  

Simulation model: We create a simulation model in Java 
that implements our model. We start with a simulation 
designed to evaluate the tolerance of our scheme against DoS 
attacks. Without loss of generality we perform our evaluation 
with 1, 2, or 3 servers which hold the roaming redundant 
copies. We expect the results to be similar when the number of 
redundant copies increases; indeed, similar trend is manifested 
in the simulation results. Every time unit the original source 
server randomly chooses 1, 2, or 3 servers out of 100 total 
servers to keep the redundant copies. Every time unit the 
adversary randomly chooses 10, 20, or 30 servers to attack 
simultaneously. If all the current roaming redundant copies are 
hit by the DoS attacks, then the attack is regarded successful 
and we measure the time elapsed in time units. Otherwise, in 
the next time unit the original source server again randomly 
chooses 1, 2, or 3 servers and the adversary again randomly 
chooses 10, 20, or 30 servers to attack. The longer the elapsed 
time before the attack succeeds the better the performance is, 
since the network proves to be more robust to the attack.  

Then, the simulation is extended to evaluate the tolerance 
of our scheme against host failures. Every time the original 
source server chooses a server to keep a redundant copy, a 
random number is used to determine whether this server is up 
or crashed. If this server is crashed, then one redundant copy is 
considered lost in the current period. If all the current roaming 
redundant copies are hit by the DoS attacks or crashed due to 
server failure, then the attack is regarded successful and we 

measure the time elapsed in time units. Server failure 
probability of 5% is used in the simulation, which is already a 
very high server failure rate and is not likely to happen often in 
reality. 

We compare our model with another scheme in which N 
static redundant copies are stored in N servers out of a total of 
100 servers. At the beginning of the simulation the source 
chooses 10, 20, or 30 servers to keep the redundant copies. At 
the beginning, the attacker randomly selects 10, 20, or 30 
servers to attack. If the adversary hits a server that keeps a 
redundant copy, the adversary keeps one attack on that server. 
The adversary uses its remaining attacks to keep attacking 
until it locates and shuts down all the servers that keep a 
redundant copy, and we measure the time elapsed in time 
units. 

Both models assume either direct or overlay node 
connectivity and a constant number of simultaneous DoS 
attacks in a single simulation. 

Evaluation: Figure 3 shows the statistics of 1000 runs for 
our roaming data redundancy model – 1, 2, 3 roaming copies 
in 100 total servers under 10, 20, 30 attacks. The results are 
compared with the same setup but with 5% host failure 
probability. As the number of attacks increases, the average 
time needed for the adversary to succeed in its attack 
decreases. As we increase the number of roaming copies, the 
time needed for the adversary to succeed increases 
exponentially. Therefore by increasing the number of roaming 
copies by just one, we can achieve exponential increase in the 
difficulty for the adversary. 

Figure 4 shows the statistics for our comparison model – 
10, 20, 30 static copies distributed in 100 total servers. Note 
that the number of simultaneous attacks needs to be larger than 
the number of static copies in order for the adversary to be 
able to successfully shut down all the static copies. While the 
increase of the number of static copies increases the time 
necessary for a successful attack, the increase is smooth and 
the average time needed for a successful attack is apparently 
shorter than when 2 or 3 roaming copies are used.  

From the figures it is clear that the roaming data 
redundancy scheme performs better than N static copies, and 
Figure 3 shows that the benefits of using our approach increase 
when the number of roaming copies increases, as the average 
time needed for the attack to succeed increases by around 10 
times with every additional roaming copy. 

VI. CONCLUDING REMARKS 

In this paper, we point out the need for greater assurance of 
the continuous availability of critical data services, and show 
that current solutions are not sufficient to provide the desired 
level of assurance under serious DoS attacks. We then 
introduce a novel roaming data redundancy scheme that aims 
to ensure constant availability of critical data by changing the 
locations of the redundant copies of critical data periodically. 
Simulation results show that with a small number of roaming 
redundant copies, the roaming data redundancy scheme 
effectively mitigate the impacts of DoS attacks and server 
failures, with better efficiency compared to another scheme 
that stores many static redundant copies. 
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In the future work, we will incorporate untrusted hosts into 
the network to increase the flexibility of our scheme. The 
cryptographic accumulator proposed in [3] suggests a scheme 
for authenticating data provided by a mirror site, which may be 
incorporated into our scheme. Moreover, we will conduct 
simulations and experiments to show when is the best time to 
start using the roaming data redundancy scheme, and how 
frequently the roaming copies should be moved. Furthermore, 
we would like to investigate the impacts that the topology of 
the critical data service network and the routing algorithm of 
the messages have on the overall performance of the roaming 
data redundancy scheme. 
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