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Abstract. The detection of unknown viruses is beyond the capability
of many existing virus detection approaches. In this paper, we show how
proactive customization of system behaviors can be used to improve the
detection rate of unknown malicious executables. Two general proac-
tive methods, behavior skewing and cordoning, and their application in
BESIDES, a prototype system that detects unknown massive mailing
viruses, are presented.
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1 Introduction

Two major approaches employed by intrusion detection systems (IDSs) are
misuse-based detection and anomaly-based detection. Because misuse-based de-
tection relies on known signatures of intrusions, misuse-based IDSs cannot in
general provide protection against new types of intrusions whose signatures are
not yet cataloged. On the other hand, because anomaly-based IDSs rely on iden-
tifying deviations from the “normal” profile of the protected system’s behavior,
they are prone to reporting false-positives unless the normal profile of the pro-
tected system is well characterized.

In either case, detection must be performed as soon as an intrusion occurs
and certainly before the intruder can cause harm and/or hide its own tracks. In
this paper, we present the paradigm of PAIDS (ProActive Intrusion Detection
System) and describe an application of PAIDS that can detect some classes of
intrusions without knowing a priori their signatures and does so with very small
false positives. PAIDS also provides a way to dynamically trade off the time it
takes to detect an intrusion and the damage that an intruder can cause, and can
therefore tolerate intrusions to an extent. To achieve these advantages, PAIDS
exploits two general techniques: behavior skewing and cordoning.

Traditionally, the security of a computer system is captured by a set of secu-
rity policies. A complete security policy should classify each behavior of a system



as either legal or illegal. In practice, however, specifications of security policies
often fail to scale [1] and are likely to be incomplete. Given a security policy,
we can instead partition the set of all behaviors of a system into three subsets:
(S1) Legal behaviors, (S2) Illegal behaviors and (S3) Unspecified behaviors, cor-
responding to whether a behavior is consistent, inconsistent or independent of
the security policy. (Alternatively, think of a security policy as the axioms of a
theory for establishing the legality of system behaviors.) In this context, behav-
ior skewing refers to the modification of a security policy P into P’ such that the
subset of legal behaviors remains unchanged under P’, but some of the behaviors
that are in the subset (S3) under P are illegal under P’. By implementing de-
tectors that can recognize the enlarged subset (S2), behavior skewing can catch
intruders that would otherwise be unnoticed under the unmodified policy P. The
speed of detection depends on the length of the prefix of the illegal behavior that
distinguishes it from the legal behaviors. To contain the damage caused by an
intrusion, we seek ways to isolate the system components that are engaged in the
illegal behavior, hopefully until we can distinguish it from the legal behaviors.
By virtualizing the environment external to the system components that are
engaged in the illegal behavior, cordoning prevents the system from permanent
damage until the illegal behavior can be recognized.

In this paper, we illustrate an application of the PAIDS paradigm by BE-
SIDES, a tool for detecting massive mailing viruses. We have applied behavior
skewing and cordoning techniques to the NT-based Windows operating systems
(Windows 2000 and Windows XP). Inasmuch as behavior skewing and cordoning
are general techniques, we specialize them to certain types of system behaviors
for efficient implementation. Specifically, we use behavior skewing to customize
the security policy upon the use of certain information items on the protected
system. An information item can be any logical entity that carries information,
e.g., a filename, an email address, or a binary file. Behavior skewing is accom-
plished by customizing the access control mechanism that governs the access to
the information items. In a similar vein, cordoning is applied to critical system
resources whose integrity must be ensured to maintain system operability. Specif-
ically, we provide mechanisms for dynamically isolating the interactions between
a malicious process and a system resource so that any future interaction between
them will not affect other legal processes’ interaction with the resource. This is
achieved by replacing the original resource with a virtual resource the first time
a process accesses a system resource. The cordoning mechanism guarantees for
each legal process that its updates to critical system resources are eventually
committed to the actual system resources, If a malicious executable is detected,
an execution environment (a cordon) consisting of virtual system resources is
dynamically created for the malicious executable and its victims. Their previous
updates to the actual system resources can be undone by performing recovery
operations on those resources, while their future activities can be monitored and
audited. Depending on the nature of the system resources, cordoning can be
achieved through methods such as cordoning-in-time and cordoning-in-space.



The rest of this paper is organized as follows: Section 2 is a brief discussion
of related works. Section 3 gives the details of how behavior skewing and cor-
doning work. Section 4 discusses the implementation of BESIDES, a prototype
system we have implemented for detecting massive-mailing viruses. Section 5
presents the experiments we have performed with BESIDES and the analysis of
the experimental results. Section 6 discusses some future directions.

2 Related Work

Virus detection is closely related to the more general topic of malicious ex-
ecutable detection [2, 3]. Traditional malicious executable detection solutions
use signature-based methods, where signatures from known malicious executa-
bles are used to recognize attacks from them [4]. Security products such as virus
scanners are examples of such applications. One of the focuses in signature-based
methods research is the automatic generation of high quality signatures. Along
this line of work, Kephart and Arnold developed a statistical method to extract
virus signatures automatically [5]. Heuristic classifiers capable of generating sig-
natures from a group of known viruses were studied in [6]. Recently, Schultz et
al. examined how data mining methods can be applied to signature generation
[7] and built a binary filter that can be integrated with email servers [8]. Al-
though proved to be highly effective in detecting known malicious executables,
signature-based methods are unable to detect unknown malicious executables.
PAIDS explores the possibility of addressing the latter with a different set of
methods, the proactive methods. In PAIDS, signatures of malicious behaviors
are implicitly generated during the behavior skewing stage and they are later
used in the behavior monitoring stage to detect malicious executables that per-
form such behaviors.

Static analysis techniques that verify programs for compliance with security
properties have also been proposed for malicious executable detection. Some of
them focus on the detection of suspicious symptoms: Biship and Dilger showed
how file access race conditions can be detected dynamically [9]. Tesauro et al.
used neural networks to detect boot sector viruses [10]. Another approach is to
verify whether safe programming practices are followed. Lo et al. proposed to use
“tell-tale signs” and “program slicing” for detecting malicious code [11]. These
approaches are mainly used as preventive mechanisms and the approach used in
PAIDS focuses more on the detection and tolerance of malicious executables.

Dynamic monitoring techniques such as sandboxes represent another ap-
proach that contributes to malicious executable detection. They essentially im-
plement alternative reference monitoring mechanisms that observe software ex-
ecution and enforce additional security policies when they detect violations [12].
The range of security policies that are enforcible through monitoring were stud-
ied in [13, 14, 15] and more general discussion on the use of security policies
can be found in [1]. The behavior monitor mechanism used in PAIDS adopts
a similar approach. Sandboxing is a general mechanism that enforces a secu-
rity policy by executing processes in virtual environments (e.g., Tron [16], Janus



[17], Consh [18], Mapbox [19], SubDomain [20], and Systrace [21]). Cordoning
is similar to a light-weight sandboxing mechanism whose coverage and time pa-
rameters are customizable. However, cordoning emphasizes the virtualization of
individual system resources, while traditional sandboxing mechanisms focus on
the virtualization of the entire execution environment (e.g., memory space) of
individual processes. More importantly, sandboxing usually provides little tol-
erance toward intrusions, while cordoning can tolerate misuse of critical system
resources as explained in Section 3.2.

Deception tools have long been used as an effective way of defeating mali-
cious intruders. Among them, Honeypot (and later Honeynet) is a vulnerable
system (or network) intentionally deployed to lure intruders’ attentions. They
are useful for studying the intruders’ techniques and for assessing the efficacy of
system security settings [22, 23]. Traditional Honeypots are dedicated systems
that are configured the same way as (or less secure than, depending on how they
are used) production systems so that the intruders have no direct way to tell the
difference between the two. In the context of the Honeypot, no modification is
ever performed on production systems. The latest advances such as virtual Hon-
eypots [24, 25] that simulate physical Honeypots at the network level still remain
the same in this regard. Recently, the concept of Honeypots was generalized to
Honeytokens—“an information system resource whose value lies in unauthorized
or illicit use of that resource” [26]. So far, few implementation or experimental
results have been reported (among them, a Linux patch that implements Honey-
token files was made available early 2004 [27]). The Honeytoken concept comes
the closest to PAIDS. However, the proactive methods that PAIDS explores, such
as behavior skewing and cordoning, are more comprehensive and systematic than
Honeytokens. We note that the implementation of our IDS tool BESIDES was
well on its way when the Honeytoken concept first appeared in 2003.

System behavior modifications are gaining more and more interest recently.
Somayaji and Forrest applied “benign responses” to abnormal system call se-
quences [28]. The intrusion prevention tool LaBrea is able to trap known intrud-
ers by delaying their communication attempts [29]. The virus throttles built by
Williamson et al. [30, 31, 32] utilized the temporal locality found in normal email
traffics and were able to slow down and identify massive mailing viruses as they
made massive connection attempts. Their success in both intrusion prevention
and toleration confirms the effectiveness of behavior modification based meth-
ods. However, the modifications performed in all these methods do not attempt
to modify possibly legal behaviors since that may incur false positives, while the
behavior skewing method in PAIDS takes a further step and converts some of
the legal but irrelevant behaviors into illegal behaviors. No false positives are
induced in this context.

Intrusion detection is a research area that has a long history [33, 34]. Tradi-
tionally, IDSs have been classified into following categories: Misuse-based IDSs
look for signatures of known intrusions, such as a known operation sequence
that allows unauthorized users to acquire administrator privileges [35, 36]. This
is very similar to the signature-based methods discussed earlier in this section.



Anomaly-based IDSs detect intrusions by identifying deviations from normal
profiles in system and network activities. These normal profiles can be studied
from historical auditing data that are collected during legitimate system exe-
cutions [34, 37, 38, 39]. Specification-based IDSs look for signatures of known
legitimate activities that are derived from system specifications [40]. These IDSs
differ from misused-based IDSs in that activities that do not match any signa-
ture are treated as intrusions in the former, but are regarded as legitimate ones
in the latter. Hybrid IDSs integrate different types of IDSs as subsystems [41].
The limitations of different subsystems can be compensated and a better overall
quality can be improved.

Many techniques devised in IDSs are applicable to malicious executable de-
tection and vice versa. For example, in an effort to apply the specification-based
approach to malicious executable detection, Giffin et al. showed how malicious
manipulations that originated from mobile code can be detected [42]. Christodor-
escu and Jha proposed an architecture that detects malicious binary executables
even in the presence of obfuscations [43]. One common goal of all IDSs (anomaly-
based IDSs in particular) is to generate a profile using either explicit or implicit
properties of the system that can effectively differentiate intrusive behaviors
from normal behaviors. A wide variety of system properties, ranging from low-
level networking traffic statistics and system call characteristics to high-level
web access patterns and system resource usages, have been studied in litera-
ture. McHugh and Gates reported a rich set of localities observed in web traffic
and pointed out such localities can be used to distinguish abnormal behaviors
from normal behaviors [44]. None of them considers the possibility of modifying
system security settings for intrusion detection purposes, which is explored in
PAIDS. The proactive methods proposed in PAIDS modify the definition of nor-
mal behaviors through skewing the security policy in anticipation of the likely
behavior of intruders. By doing so, PAIDS implicitly generates profiles that have
small false positive rates, are easy to understand and configure, and are highly
extensive.

3 Methodology

3.1 Behavior Skewing

As illustrated in Fig.1, behaviors are high-level abstractions of system activities
that specify their intentions and effects, but ignore many of the implementation
details of the actual operations they perform. We refer to the part of security
assignments of behaviors that are explicitly specified to be legal (or illegal) as
the legal behavior set (LBS) (or the illegal behavior set (IBS)). The security
assignments of behaviors that are not explicitly specified either intentionally or
unintentionally are denoted as the unspecified behavior set (UBS). The UBS
consists of behaviors that either 1) the user considers to be irrelevant to her
system’s security or 2) the user is unaware of and unintentionally fails to specify
their security assignments; the default security policy will apply to the behaviors
in the set UBS. Behavior skewing refers to the manipulation of the security policy
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Fig. 1. System States and Behavior Skewing

that customizes the security assignments of the behaviors in the set UBS that
are implicitly assigned to be legal by default. The goal of behavior skewing is to
create enough differences in the legal behaviors among homogeneous systems so
that malicious executables are made prone to detection.

Specifically, behavior skewing customizes a security policy regarding the use
of certain information items in a system. Behavior skewing creates its own ac-
cess control mechanism that describes the use of information items since many
of the information items are not system resources and are thus not protected
by native security mechanisms. The customization is performed on information
domains, which are sets of information items that are syntactically equivalent
but semantically different. For example, all text files in a target system form
an information domain of text files. Specifically, behavior skewing reduces the
access rights to existing items that are specified by the default access rights and
creates new information items in an information domain with reduced access
rights.

Figure 1 shows two possible behavior skewing instances. We emphasize that
although different skewing mechanisms produce different security settings, they
all preserve the same LBS. The modified security policy generated by a behavior
skewing is called the skewed security policy (or skewed policy in short). The
default security policy is transparent to the user and cannot be relied upon
by the user to specify her intentions. Otherwise, additional conflict resolution
mechanisms may be required.

After behavior skewing is completed, the usage of information items is moni-
tored by a behavior monitoring mechanism that detects violations of the skewed
policy. Any violation of the skewed policy triggers an intrusion alert. It should
be noted that the monitoring mechanism does not enforce the skewed policy,



instead it simply reports violations of the skewed policy to a higher-level entity
(e.g., the user or an IDS) that is responsible for handling the reported violations.

3.2 Cordoning

Although behavior skewing and monitoring make malicious executables more
prone to detection, actual detection cannot happen before the malicious exe-
cutables have their chance to misbehave. Hence, there is a need for additional
protection mechanisms to cope with any damage the malicious executables may
incur before they are eventually detected. Among them, the recovery of sys-
tem states is an obvious concern. In this section, we illustrate another proactive
method, cordoning, that can be used to recover states of selected system re-
sources. Existing system recovery solutions, such as restoring from backup media
or from revertible file systems, usually perform bulk recovery operations, where
the latest updates to individual system resources containing the most recent
work of a user may get lost after the recovery. Cordoning addresses this problem
by performing the recovery operation individually.

In general, cordoning is a mechanism that allows dynamic partial virtual-
ization of execution environments for processes in a system. It is performed on
critical system resources (CSRs), objects in the system whose safety are deemed
critical to the system’s integrity and availability (e.g., executables, network ser-
vices, and data files, etc.). The cordoning mechanism converts a CSR (also called
an actual CSR) to a recoverable CSR (or a cordoned CSR) that can be recovered
to a known safe state by dynamically creating a virtual CSR (called the current
CSR), and granting it to processes that intend to interact with the actual CSR.
The current CSR provides the same interface as the actual CSR. The underly-
ing cordoning mechanism ensures all updates to the current CSR are eventually
applied to the actual CSR during normal system execution.

When a malicious executable is detected by the behavior monitor, its updates
to all cordoned CSRs can be recovered by performing the corresponding recover
operations on the cordoned CSRs that restore the actual CSRs to known secure
states (called recovered CSRs). The malicious executable and its victims—its
children, as well as processes accessing system resources that have been updated
by the malicious executable!—continue to interact with the current CSRs, the
same set of CSRs they are using at the time of detection. However, their future
updates to this set of current CSRs will not be applied to the actual CSRs and
are instead subject to audition and other intrusion investigation mechanisms.
Unaffected processes—existing processes other than the malicious executable and
its victims, and all newly started processes—will use the recovered CSRs in their
future interactions. The malicious executable and its victims are thus cordoned
by a dynamically created execution environment (called a cordon) that consists
of these current CSRs. The operations performed by the malicious executable

! We note that an accurate identification of victims can be as difficult as the identifica-
tion of covert channels. The simple criteria we use here is a reasonable approximation
although more accurate algorithms can be devised.



and its victims on CSRs are thus isolated from those performed by the unaffected
processes.
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Fig. 2. A Cordoning Example

CSRs can be classified as revertible CSRs, delayable CSRs, and substitutable
CSRs based on their nature. Two cordoning mechanism: cordoning-in-time and
cordoning-in-space can be applied to these CSRs as described below:

A revertible CSR is a CSR whose updates can be revoked. For example, a
file in a journaling file system can be restored to a previous secure state if it is
found corrupted during a virus infection. Cordoning of a revertible CSR can be
achieved by generating a revocation list consisting of revocation operations of all
committed updates. The recovery of a revertible resource can be performed by
carrying the revocation operations in the revocation list that leads to a secure
state of the CSR.

Cordoning-in-time buffers operational requests on a CSR and delay their
commitments until a secure state of the resource can be reached. It is thus
also referred to as delayed commitment. Cordoning-in-time can be applied to
delayable CSRs—CSRs that can tolerate certain delays when being accessed. For
example, the network resource that serves a network transaction is delayable if
the transaction is not a real-time transaction (e.g., a SMTP server). The delays
on the requests can be made arbitrarily long unless it exceeds some transaction-
specific time-out value. Time-outs constraint the maximum length of delays.
Such a constraint, as well as others (e.g., constraints due to resource availability)
may render a delayable CSR a partially recoverable CSR; the latter can only be
recovered within a limited time interval. The recovery of a delayable resource
can be performed by discarding buffered requests up to a secure state. If no such
secure state can be found after exhausting all buffered requests, the CSR may
not be securely recovered unless it is also revertible.



Cordoning-in-space is applied to a substitutable CSR—a CSR that can be
replaced by another CSR (called its substitute) of the same type transparently.
For example, a file is a substitutable CSR because any operation performed
on a file can be redirected to a copy of that file. Cordoning-in-space redirects
operational requests from a process toward a substitutable CSR to its substitute.
The actual CSR is kept in secure states during the system execution and is
updated by copying the content of its substitute only when the latter is in secure
states. A substitutable CSR can be recovered by replacing it with a copy of the
actual CSR saved when it is in a secure state. Where multiple substitutes exist for
a CSR (e.g., multiple writer processes), further conflict resolution is required but
will not be covered in this paper. We note here that the cordoning and recovery
of CSRs are independent mechanisms that can be separately performed.

Figure 2 shows an example of cordoning on two CSRs: Resource #2 and
Resource #4. Process B and Process C are identified as victims of a virus in-
fection. They are placed in a cordon consisting of the Current Resource #2 and
the Current Resource #4. The cordoning mechanism performs the recovery op-
erations, where the Recovered Resource #2 and the Recovered Resource #4 are
created. Unaffected processes that shares CSRs with the victims, e.g., Process
A, continue to use Recovered Resource #2. New processes such as Process D will
be given the Recovered Resource #4 when it requests to access Resource #4 in
the future. The remaining system resources, such as Resource #1, #3, and #5,
are not cordoned.

4 Implementation

BESIDES is a prototype system that uses behavior skewing, behavior monitor-
ing, and cordoning to detect unknown massive mailing viruses. As illustrated
in Figure 3, BESIDES consists of an email address domain skewer (EADS), an
email address usage monitor (EAUM) and a SMTP Server Cordoner (SSC). The
EADS is a user-mode application and the EAUM and the SSC are encapsulated
in a kernel-mode driver. BESIDES is implemented on Windows 2000 and also
runs on Windows XP. The main reason we choose to build a Windows based
system is that Windows is one of the most attacked systems and virus attacks
in particular are frequently seen there. Developing and experimenting BESIDES
on Windows allows us to illustrate our approach and to show that it can be
implemented on commercial operating systems.

4.1 The Email Address Domain Skewer

After BESIDES is installed, the user needs to use the EADS to skew the behavior
of the email address domain, an information domain that is actively exploited by
malicious executables such as massive mailing viruses. The skewing is performed
by modifying the usage policy of email addresses. A typical Windows system
does not restrict the use of email addresses. In particular, all email addresses
can be used as email senders or recipients. The EADS changes this default usage
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policy by making certain email addresses unusable in any locally composed email.
The affected email addresses are referred to as baiting addresses, or simply baits.
The existing email addresses are not skewed unless the user is able to determine
which of them is skewable. By default, the EADS grants all subjects full usage
(i.e., “allow all”) of any email address except the baits. It deems any use of
baits a violation of the skewed email address usage policy (i.e., “deny all”) The
EAUM will issue an intrusion alert whenever it detects the use of a bait in any
email messages sent locally. In addition, the EADS sets access rights to certain
email domains (e.g., foo.com in alice@foo.com) in baits to “deny all” as well.
This makes the skewing more versatile so that even viruses manipulating email
addresses before using them (e.g., Bugbear) can also be detected.

The skewing of email address domain requires the creation of enough unpre-
dictability in the domain so that viruses are not likely to figure out whether an
email address is legitimate by simply looking at the email address itself. The
EADS uses both heuristic methods and randomization methods in its skewing
procedure, i.e., it generates the baiting addresses either based on a set of baits
the user specifies or in random.

Specifically, the EADS creates email baits in following file types: email boxes,
e.g. .eml files; text-based files, e.g. .HTM, .TXT, and .ASP files, etc.; and binary
files, e.g., .MP3, .JPG, and .PDF files, etc. Email boxes are skewed by importing
baiting email messages that use baiting addresses as senders. Text-based files
are skewed with newly created syntactically valid files that contain baits. Binary
files are skewed with the same text files as in text-based file skewing but with
modified extensions. Such baiting binary files have invalid format and cannot be
processed by legitimate applications that operate on these files. This does not
pose a problem because these baits are not supposed to be used by them in the
first place. Many massive mailing viruses, however, are still able to discover the
baits within these files because they usually access them by “brute-force” and
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neglect their formats, e.g., by searching for email addresses with straightforward
string matching algorithms. By default, all these baits are placed in commonly
accessed system directories such as “C:\”, and “My Documents”. The user is
allowed to pick additional directories she prefers.

4.2 The Email Address Usage Monitor

BESIDES uses system call interposition to implement the EAUM (and the
SSC as well). System call interposition is a general technique that allows in-
terception of system call invocations and has been widely used in many places
[45, 46, 20, 47, 19, 17, 48]. Windows 2000 has two sets of system calls [49]: The
Win32 application programming interfaces (APIs), the standard API for Win-
dows applications, are implemented as user-mode dynamically linked libraries
(DLLs). The native APIs (or native system calls) are implemented in kernel
and are exported to user-mode modules through dummy user-mode function
thunks in ntd11.d11. User-mode system DLLs use native APIs to implement
Win32 APIs. A Win32 API is either implemented within user-mode DLLs or
mapped to one (or a series of) native API(s). Windows 2000 implements the
TCP/IP protocol stack inside the kernel [50]. At the native system call inter-
face, application level protocol behaviors are directly observable and can thus
be efficiently monitored. Transport level protocol specific data (e.g., TCP/UDP
headers) are not present at this interface. This saves the additional time needed
to parse them, analyze them, and then reconstruct protocol data flow states that
is unavoidable in typical network based interceptors.

The EAUM runs in kernel mode and monitors the use of email addresses in
SMTP sessions. An SMTP session consists of all SMTP traffic between a process
and an SMTP server. It starts with a “HELO” (or “EHL0”) command and usually
ends with a “QUIT” command. The EAUM registers a set of system call filters to
the system call interposition module (also referred to as the BESIDES engine)
during BESIDES initialization when the system boots up. It uses an SMTP au-
tomaton derived from the SMTP protocol [51] to simulate the progresses in both
the local SMTP client and the remote SMTP server. The SMTP automaton in
BESIDES is shared among all SMTP sessions. The BESIDES engine intercepts
native system calls that transmit network data and invokes the system call fil-
ters registered by the EAUM. These filters extract SMTP data from network
traffic, parse them to generate SMTP tokens, and then perform state transi-
tions in the SMTP automaton that monitors the corresponding SMTP session.
Each SMTP session is represented in the EAUM by a SMTP context, which is
passed to the SMTP automaton as a parameter each time that particular SMTP
session makes progress. The use of email addresses in a SMTP session can be
monitored when the SMTP automaton enters corresponding states. Specifically,
the EAUM looks for SMTP commands that explicitly uses email addresses (i.e.,
“MAIL FROM:” and “RCPT TO:”) and validates these usage against the skewed
email address usage policy specified by the EADS. If any violation is detected,
the EAUM notifies the SSC with an intrusion alert because none of the baiting
addresses should be used as either a recipient or sender. The use of legitimate
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email addresses does not trigger any alert because their usage is allowed by the
EADS. One advantage of this monitoring approach is that viruses that carry
their own SMTP clients are subject to detection, while interpositions at higher
levels (e.g., Win32 API wrappers) are bypassable. Misuse detection mechanisms
in the form of wrappers around SMTP servers are not used since viruses may
choose open SMTP relays that are not locally administrated.

4.3 The SMTP Server Cordoner

In addition to detecting massive mailing viruses, BESIDES also attempts to
protect CSRs (here, SMTP servers) from possible abuses from them. A SMTP
server is a delayable CSR since emails are not considered a real-time commu-
nication mechanism and email users can tolerate certain amount of delays. It
is also weakly revertible (by this we mean the damage of a delivered message
containing a virus can be mollified by sending a follow-up warning message to
the recipient when the virus is later detected). Whenever a SMTP session is
started by a process, the SSC identifies the SMTP server it requests and assigns
it the corresponding virtual SMTP server (the current SMTP server). Delayed-
commitment is then used to buffer the SMTP messages the process send to the
virtual SMTP server. The SSC also runs in kernel-mode and shares the same
SMTP automaton with the EAUM.

Specifically, the SSC intercepts SMTP commands and buffers them inter-
nally. It then composes a positive reply and has the BESIDES engine forward
it to the SMTP client indicating the success of the command. After receiving
such a reply, the SMTP client will consider the previous command successful
and proceeds with the next SMTP command. The SSC essentially creates a vir-
tual SMTP server for the process to interact with. The maximum time a SMTP
message can be delayed is determined by the cordoning period—a user specified
time-out value that is smaller than the average user tolerable delays, as well as
the user specified threshold on the maximum number of delayed messages. A
SMTP message is delivered (committed) to the actual SMTP server when either
it is delayed more than the cordoning period or the number of delayed messages
exceeds the message number threshold. After delivering a SMTP message, the
SSC creates a corresponding log entry (a revocation record) in the SMTP server
specific log containing the time, subject, and the recipient of the delivered mes-
sage. When informed of an intrusion alert, the SSC identifies the process that is
performing the malicious activity be the malicious executable. It then determines
the set of victims based on the CSR access history and process hierarchy, i.e, all
processes that access CSRs updated by this process and all its child processes
are labeled as victims. After this, the SSC initiates the recovery operations on all
cordoned CSRs they have updated. If the process that owns a SMTP session is
one of the victims or the malicious executable itself, no buffered messages from
that SMTP session is committed; instead they are all quarantined. All messages
that are previously committed are regarded as suspicious and the SSC sends a
warning message for their recipients as a weak recovery mechanism using the
information saved in the delivery log entries. Since the SMTP messages sent to
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| Virus || BugBear |Haptime| Klez |MyDoom||

Client Detected? Yes Yes Yes Yes

Baits Used at Detection Addr. Book| .htm |.html .htm

Delayed Message Quarantined? Yes Yes Yes Yes
Server|Detected?(by anti-virus software) Yes No Yes No
SMTP Message Received? Yes No No No

Table 1. Effectiveness of BESIDES (The BESIDES SSC is configured to intercept at
most 10 total SMTP messages and for at most 60 seconds for each SMTP message
during these experiments. The Outlook Express book is manually skewed.)

a SMTP server are independent, the order they are received does not affect the
correct operation of the SMTP server [52]. Thus the actual SMTP server can
be kept in a secure state even if some of the messages are dropped during the
recovery operation. In the mean time, the unaffected processes are unaware of
this recovery and can proceed as if no intrusion has occurred.

5 Experimental Results

We performed a series of experiments on BESIDES with viruses we collected
in the wild. These experiments are performed on a closed local area network
(LAN) consisting of two machines: a server and a client. BESIDES is installed
on the client and its EADS is set up the same way in all experiments. The server
simulates a typical network environment to the client by providing essential net-
work services, such as DNS, Routing, SMTP, POP3, and Remote Access Service
(RAS). The server is also equipped with anti-virus software (i.e., Symantec An-
tivirus) and network forensic tools (e.g., Ethereal, TcpDump, etc.). Evidences of
virus propagation can be gathered from output of these tools as well as service
logs.

Two sets of experimental results are presented in the remainder of this sec-
tion. First we present the outcome when BESIDES is experimented with several
actual viruses. These results demonstrate the effectiveness of behavior skewing
and cordoning when they are applied in a real-world setting. The second set
of results presents the performance overheads observed during normal system
execution for normal system applications, including delays observed at the na-
tive system call interfaces, and those at the command-line interface. As we have
expected, the overheads are within a reasonable range even though we have not
perform any optimization in BESIDES.

5.1 Effectiveness Experiments

The results of our experiments with four actual viruses—BugBear [53], Haptime
[54], Klez [55], and MyDoom [56]—are shown in Table 1. In all the experi-
ments, BESIDES were able to detect the viruses being experimented. Although
all these viruses attempted to collect email addresses on the client machine, their
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methods were different and the actual baiting addresses they were using when
BESIDES detected them also differed from each other. In all experiments, the
BESIDES SSC intercepted multiple SMTP messages sent by viruses and suc-
cessfully quarantined them. However, some of the virus carrying messages were
found delivered before the virus was detected during the experiment with Bug-
bear. From the email messages received by the SMTP server from Bugbear, we
found Bugbear actually manipulated either the sender or the recipient addresses
before sending them. Specifically, it forms a new email address by combining the
user field of one email address and the domain field of another email address.
BESIDES was initially unable to detect these messages since it only considers
the matches of both the user name field and the domain field as an acceptable
match to a bait. It then committed these messages to the SMTP server?. With
our experimental setups, an average two out of ten such messages were found
committed to the SMTP server. We note that the actual numbers varies with
the skewing manipulations. In one of our experiments, two such messages were
thus committed before BESIDES detected the virus. The anti-virus software on
the server detected Bugbear and Klez because they also spread over network
shares, a mechanism that is not cordoned by BESIDES in all these experiments.

We observed significant hard disk accesses from Haptime when it tried to
infect local files and collecting email addresses from them. All these happened
before the virus start to perform massive mailing operations. This suggested that
Haptime can be detected faster if BESIDES skews file access rights as well.

The outbreak of Mydoom was later than the version of BESIDES used in the
experiments was completed. Thus BESIDES had no knowledge of the virus when
it was experimented with it. BESIDES successfully detected the virus when it
tried to send messages using baiting email addresses placed in .htm files. This
demonstrated BESIDES’s capability in detecting unknown viruses.

As some of the viruses use probabilistic methods, (e.g., Klez,) their behavior
in different experiments can be different. The result shown here is thus only one
possible behavior. Also, as some of the viruses use local time to decide whether
particular operations are (or are not) to be performed (e.g., MyDoom does not
perform massive mailing if it performs DDoS attacks, which is dependent on
the system time.), we manually changed the client’s system time to hasten the
activation of massive mailing by the virus. We emphasize that this is done to
speed up our experiments and that system time manipulation is not needed to
effect detection in production.

5.2 Performance Experiments

Overall System Overheads Table 2 shows statistical results of the system call
overheads observed at three native system call interface during normal system
executions. Two interceptors, the pre-interceptor and the post-interceptor, are
used to perform interception operations before and after the actual system call

2 This loophole is later fixed by creating additional email usage policy on email do-
mains and creating baiting domains in the EADS. See Section 4.1 for details.
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|Native System Call ||NtClose O |NtCreateFile O |NtDeviceIoControlFile QO |

Total Execution Time 283076 1997247 16110683
Pre-Interceptor Time 108520 24033 21748
Actual System Call Time 32960 1471367 15791127
Post-Interceptor Time 23588 371826 156350
System Call In- 118008 130021 141457
terposition Time

Overhead (in %) 758.85% 35.74% 2.02%

Table 2. BESIDES system call overheads observed at native system call interface. All
numbers are calculated from CPU performance counter values directly retrieved from
the client machine (Pentium III 730MHz CPU with 128MB memory).

is executed. The three native system calls shown in the table are representatives
of three cordoning session phases.

NtCreateFile() is invoked to create or open a file (including a socket) [49].
BESIDES intercepts it so that SMTP sessions can be recognized and their cor-
responding SMTP contexts can be created. It is the setup phase of a SMTP
session. The post-interceptor is used to perform these operations. As can be
seen from Tab.2, the overhead is a fraction of actual system call.

NtDeviceIoControlFile() performs an I/O control operation on a file ob-
ject that represents a device [49]. Network packets are also transmitted using
this system call. BESIDES intercepts this system call so that it can inspect
SMTP session control and data messages. This is the inspection phase of a
SMTP session. During the interception, SMTP data are parsed, SMTP tokens
are generated, and the BESIDES EAUM SMTP automaton’s state is updated.
The pre-interceptor and the post-interceptor processes sent data and received
data, respectively. The overhead observed is only a small percentage of the ac-
tual system call because the actual system call incurs expensive hardware I/0
operations.

NtClose() is invoked by a user-mode process to close a handle to an object
[49]. BESIDES intercepts it to terminate a SMTP session. This is called the
termination phase of that SMTP session. The pre-interceptor releases system
resources that are used to monitor this SMTP session. The actual system call is
a lightweight system call and it takes much less time than the other two. The
overhead observed dominates the actual system call. However, as both setup and
termination phases are only performed once during a SMTP session’s lifespan,
their relatively high cost can be amortized by the much faster inspection phase.

Finally, it should be noted that a different type of overhead, the system
call interposition overhead, exists in all system call interceptions. This overhead
accounts for the mandatory overhead each intercepted system call has to pay, in-
cluding extra system call lookup time, and kernel-stack setup time, etc. However,
for those system calls that are not intercepted, optimized shortcuts are created
in interception routines so that as little overhead as possible is generated.
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Fig. 4. Time overhead for the latex application series

Application Specific Overheads We also measured the time overhead for
several applications on the client machine where BESIDES is installed. Figure
4 shows the overheads (average values of 10 separate runs) observed on a se-
ries of applications that compile the postscript version of a draft of this paper
from its .tex source files. The applications executed include delete (cleaning up
the directory), dir (listing the directory content), mpost (building graphic .eps
files), latex #1 (The first run of latex), bibtex (preparing bibliography items),
latex #2 (The second run of latex), latex #3 (The third run of latex), and
dvips (converting the .dvi file to the postscript file). Both CPU intensive and
I/0 intensive applications are present and this series can be regarded as a repre-
sentative of applications that require no network access. These applications are
only affected by the native system call interposition overhead induced by the
BESIDES engine. The average time overhead observed in these experiments is
around 8%. The highest increases (around 13%) occur in latex #1 and latex #2,
both of which perform significant I/O operations. The lowest increases (around
1.5% and 3.3%) occur in dir and delete respectively. These are shell commands
that perform simple tasks that require few system calls. We note that CPU in-
tensive applications, e.g., dvips, suffer much smaller overheads (e.g., 4.3% for
dvips). These results indicate that I/O intensive applications are likely to endure
more overhead than CPU intensive applications. They conform to our expecta-
tion as essentially all I/O operations are carried out by native system calls and
are thus subject to interception, while CPU intensive operations contain higher
percentage of user-mode code that makes few system calls.

Figure 5 shows the overheads observed for a command-line based web client
when it retrieves data files from the local web server. The sizes of data files used
in this experiment range from 1kB to 5MB. Although the web client retrieves
these data files using HT'TP, its network traffic is still subject to inspection of the
SMTP filters in BESIDES. The system call interposition overhead is relatively
small since the web client performs few other system calls during the whole
process. The two largest overheads observed are around 6.3% and 5% (at 1kB
and 50kB, respectively). The two smallest overheads are 0% and 1.8% (at 5MB
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Fig. 5. Time overhead for the command-line web client

and 100kB, respectively). The average overhead is around 3.4%, which is close
to 2.02%, the overhead observed at the NtDeviceIoControlFile() interface.
This confirms our previous speculation that the seemingly high increase in the
session setup phase and the session termination phase can be amortized by the
low overhead of the session inspection phase.

6 Conclusions

This paper presents a general paradigm, PAIDS for intrusion detection and tol-
erance by proactive methods. We present our work on behavior skewing and
cordoning, two proactive methods that can be used to create unpredictability
in a system so that unknown malicious executables are more prone to be de-
tected. This approach differs from existing ones in that such a proactive system
anticipates the attacks from malicious executables and prepares itself for them
in advance by modifying the security policy of a system.

PAIDS enjoys the advantage that it can detect intruders that have not been
seen yet in the raw and yet PAIDS has a very low false-positive rate of detec-
tion. BESIDES is a proof-of-concept prototype using the PAIDS approach, and
it can be enhanced in many directions. Obvious enhancements include skewers
and cordoners for additional information domains (e.g., file access skewer) and
system resources (e.g., file system cordoner). The BESIDES SSC can be aug-
mented with more versatile handling and recovery schemes to cope with general
malicious executables. We are also interested in devising more proactive meth-
ods. In general, we want to investigate to what extent we can systematically
cordon off parts or even all of a system by cordoning all the protocols they use
to interact with the external environment.

Finally, we would like to point out that the proactive methods we have stud-
ied are only part of the solution to the general problem of detecting unknown
malicious executables. A system that is equipped with only proactive techniques
are still vulnerable to new types of malicious executables that do not misuse
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any of the skewed information domains or abuse the system in more subtle
ways such as stealing CPU cycles from legitimate applications. PAIDS is not a
cure-all in that it works only for viruses’ whose route of spreading infection or
damage-causing mechanism is well characterized. A comprehensive solution that
consists of techniques from different areas is obviously more effective because the
weaknesses of each individual technique can be compensated by the strength of
others. We would like to explore how proactive methods can be integrated with
such hybrid solutions.
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