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Abstract— In this paper, we study planning in stochastic
systems, modeled as Markov decision processes (MDPs), with
preferences over temporally extended goals. Prior work on
temporal planning with preferences assumes that the user
preferences form a total order, meaning that every pair of
outcomes are comparable with each other. In this work, we
consider the case where the preferences over possible outcomes
are a partial order rather than a total order. We first introduce
a variant of deterministic finite automaton, referred to as
a preference DFA, for specifying the user’s preferences over
temporally extended goals. Based on the order theory, we
translate the preference DFA to a preference relation over
policies for probabilistic planning in a labeled MDP. In this
treatment, a most preferred policy induces a weak-stochastic
nondominated probability distribution over the finite paths in
the MDP. The proposed planning algorithm hinges on the
construction of a multi-objective MDP. We prove that a weak-
stochastic nondominated policy given the preference specifica-
tion is Pareto-optimal in the constructed multi-objective MDP,
and vice versa. Throughout the paper, we employ a running
example to demonstrate the proposed preference specification
and solution approaches. We show the efficacy of our algorithm
using the example with detailed analysis, and then discuss
possible future directions.

I. INTRODUCTION

With the rise of artificial intelligence, robotics and au-
tonomous systems are being designed to make complex
decisions by reasoning about multiple goals at the same
time. Preference-based planning (PBP) allows the systems
to decide which goals to satisfy when not all of them can
be achieved [6]. Even though PBP has been studied since
the early 1950’s, most works on preference-based temporal
planning (c.f. [2]) assume that all outcomes are pairwise
comparable—that is, the preference relation is a total order.
This assumption is strong and, in many cases, unrealistic [1].
In robotic applications, preferences may need to admit a par-
tial order because of (a) Inescapability: An agent has to make
decisions under time limits but with partial information about
preferences because, for example, it lost communication with
the server; and (b) Incommensurability: Some situations, for
instance, comparing the quality of an apple to that of banana,
are fundamentally incomparable since they lack a standard
basis to compare. These situations motivate the need for
a planner that deals with partial order preferences in the
presence of all uncertainties in its environment.
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puter Engineering, University of Florida, Gainesville, FL 32605, USA.
{h.rahmani, a.kulkarni2, fujie}@ufl.edu This ma-
terial is based upon work supported by the Air Force Office of Scientific
Research under award number FA9550-21-1-0085 and in part by NSF under
award number 2024802.

Fig. 1: a) Bob’s Garden. b) Bob’s preferences on how the
bee robot perform the task of pollinating the flowers.

As a motivation example, consider Figure 1, which shows
a garden that belongs to Bob. He grows three kinds of
flowers: Tulips, daisies, and orchids. To pollinate the flowers,
he uses a bee robot with limited battery. The environment
is uncertain due to the presence of another agent (bird), the
weather, and the robot dynamics.

Bob has a preference for how the robot should achieve the
task of pollination. Compared to the other types, tulips have
a shorter life span, so Bob considers four outcomes
(p1) pollinate tulips first, then at least one other flower type;
(p2) pollinate two types of flowers, with the first being either

daisies or orchids;
(p3) pollinate only tulips; and
(p4) at most one out of daisies and orchids is pollinated,
where the preference relation among them is shown in Fig-
ure 1b using a preference graph, where the nodes represent
the outcomes, and each directed edge is an improving flip
[14]. Thus, p1 is the most preferred and p4 is the least
preferred outcome, while p2 and p3 are incomparable with
each other. As the robot has a limited battery life and the
system is stochastic, it might not achieve the most preferred
outcome with probability one. Incomparable outcomes also
introduce incomparable policies.

Preference-based planning problems over temporal goals
have been well-studied for deterministic planning given both
total and partial preferences (see [2] for a survey). For
preference specified over temporal goals, several works [12],
[15], [16] proposed minimum violation planning methods
that decide which low-priority constraints should be violated
in a deterministic system. Mehdipour et al. [11] associate
weights with Boolean and temporal operators in signal
temporal logic to specify the importance of satisfying the
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sub-formula and priority in the timing of satisfaction. This
reduces the PBP problem to that of maximizing the weighted
satisfaction in deterministic dynamical systems. However, the
solutions to PBP problem for deterministic systems cannot
be applied to stochastic systems. This is because in stochastic
systems, even a deterministic policy yields a distribution
over outcomes. Hence, to determine a better policy, we need
comparison of distributions—a task a deterministic planner
cannot do.

Several works have studied the PBP problem for stochastic
systems. Lahijanian and Kwiatkowska [8] considered the
problem of revising a given specification to improve the
probability of satisfaction of the specification. They for-
mulated the problem as a multi-objective Markov Decision
Process (MDP) problem that trades off minimizing the cost
of revision and maximizing the probability of satisfying
the revised formula. Li et al. [9] solve a preference-based
probabilistic planning problem by reducing it to a multi-
objective model checking problem. However, all these works
assume the preference relation to be total. To the best of our
knowledge, [5] is the only work that studies the problem
of probabilistic planning with incomplete preferences. The
authors introduce the notion of the value of preference
satisfaction for planning within a pre-defined finite time
duration and developed a mixed-integer linear program to
maximize the satisfaction value for a subset of preference
relations. In comparison, our work resorts to the notion
of stochastic ordering to compare policies in the stochastic
system with respect to the partial order of temporal goals
and allows the time horizon to be finite, but unbounded.

To conclude, our contributions in this paper are three-fold:
(1) We introduce a new computational model called a Pref-
erence Deterministic Finite Automaton (PDFA). A PDFA can
model a user’s (possibly partial) preferences over temporally
extended goals; (2) We identify the connection between the
PBP problem in probabilistic planning and stochastic orders
[10]. This allows us to reduce the problem of probabilistic
planning with partial preferences over temporal goals to
that of finding the set of weak-stochastic nondominated
policies in a product of MDP and the PDFA. (3) We employ
the property of weak-stochastic nondominated policies to
design multiple objectives in the product MDP and prove
that a Pareto-optimal policy in the resulting multi-objective
product MDP is weak-stochastic nondominated respecting
the preference relation. Thus, the set of weak-stochastic
nondominated policies can, then, be computed using any
off-the-shelf solver that computes Pareto optimal policies in
polynomial time.

II. PRELIMINARIES AND PROBLEM FORMULATION

Notations The set of all finite words over a finite alphabet
Σ is denoted Σ∗. The empty string Σ0 is denoted as ε. The set
of all probability distributions over a finite set X is denoted
D(X). Given a distribution d ∈ D(X), the probability of an
outcome x ∈ X is denoted d(x).

A. The System and its Policy

We model the system using a variant of MDP.

Definition 1. A terminating labeled Markov decision process
(TLMDP), or a terminating MDP for short, is a tuple M =
〈S,A :=

⋃
s∈S As,P, s0, s⊥,AP, L〉 in which S is a finite

set of states; A is a finite set of actions, where for each state
s ∈ S, As is the set of available actions at s; P : S ×A→
D(S) is the probabilistic transition function, where for each
s, s′ ∈ S and a ∈ A, P(s, a, s′) is the probability that the
MDP transitions to s′ after taking action a at s; s0 ∈ S is
the initial state; s⊥ ∈ S is the termination state, which is a
unique sink state and As⊥ = ∅; AP is a finite set of atomic
propositions; and L : S → 2AP ∪ {ε} is a labeling function
that assigns to each state s ∈ S \ {s⊥}, the set of atomic
propositions L(s) ⊆ AP that hold in s. Only the terminating
state is labeled the empty string, i.e., L(s) = ε iff s = s⊥.

Though this definition assumes a single sink state, we do
not lose generality, as one can always convert any MDP with
more than one sink state into an equivalent MDP that has
only a single sink state by redirecting proper transitions to
that sink state.

The robot’s interaction with the environment in a fi-
nite number k of steps produces an execution % =
s0a0s1a1 · · · sk−1ak−1sk, where s0 is the initial state and at
each step 0 ≤ i ≤ k, the system is at state si, the robot per-
forms ai ∈ Asi , and then the system transitions to state si+1,
picked randomly based on P among those states for which
P(si, ai, .) > 0. This execution produces a path defined as
ρ = s0s1 · · · sk ∈ S∗, and the trace of this path is defined
as the finite word trace(ρ) = L(s0)L(s1)L(s2) · · ·L(sk) ∈
(2AP)∗. Path ρ is called terminating if sk = s⊥. The set of
all terminating paths in M is denoted Paths⊥(M).

A policy for M is a function π : DOM → CODOM
where it is called memoryless if DOM = S; finite-memory if
DOM = S∗; deterministic if CODOM = A, and randomized
if CODOM = D(A).

In a terminating MDP, a policy is proper if it guarantees
that the termination state s⊥ will be reached with probability
one [3]. The set of all randomized, finite-memory, proper
polices for M is denoted ΠM

prop. We are only interested in
finite traces for which a preference relation is defined. Thus,
we only consider proper policies.

Assumption 1. We assume all the policies for the MDP are
proper.

In this paper, we consider only the MDPs for which all
the policies are proper. We consider applications where the
robot finishes its execution in a finite time, and in fact, in
many robotics application, the robot has a battery limit or a
limited lifespan and cannot execute forever.

B. Rank the policies

We introduce a computational model that captures the
user’s preference over different temporal goals.



Definition 2. Given a countable set U , a preference model
for U , denoted �U is a partial order over the elements of U .

We simply use � for �U if its meaning is clear from the
context. Given u1, u2 ∈ U , we write u1 � u2 if u1 is weakly
preferred to (i.e., is at least as good as) u2; and u1 ∼ u2 if
u1 � u2 and u2 � u1, that is, u1 and u2 are indifferent. We
write u1 � u2 to mean that u1 is strictly preferred to u2,
i.e., u1 � u2 and u1 6∼ u2. We write u1 ∦ u2 if u1 and u2
are incomparable.

Definition 3. [10]. Given a countable set U partially ordered
by a preference model �, the weak-stochastic ordering for
U is denoted Ewk(U) and is defined as the family of subsets

Ewk(U) =
⋃
x∈U
{x}↑ ∪ {U, ∅}. (1)

where {x}↑ = {y | y � x} contains all elements in U that
are at least as good as x, according to the partial order �.

The weak-stochastic ordering for U allows us to rank
different probability measures on U . Given two probability
measures P1 and P2 on U , we say P1 weak-stochastic
dominates P2 under �, denoted P1 >Ewk

P2, if P1[X] ≥
P2[X] for each X ∈ Ewk(U) and P1[Y ] > P2[Y ] for some
Y ∈ Ewk(U). Intuitively, for any outcome x in U , the
probability of getting an outcome (weakly) preferred to x in
P1 is at least as good as that in P2, and for some outcome
x′ ∈ U , the probability of getting an outcome preferred to
x′ in P1 is higher than that in P2.

To illustrate, consider the following example.

Example 1. Let U = {a, b, c, d} and �=
{(a, b), (b, d), (c, d), (a, c), (a, d)}, where (x, y) ∈� if
and only if x � y. We have

Ewk(U) = {{a}, {a, b}, {a, c}, {a, b, c, d}, ∅}.

Now consider three probability measures P1, P2, and P3

where P1(a) = P1(b) = 0.5, P2(a) = P2(c) = 0.5, and
P3(a) = P3(d) = 0.5. Accordingly,

[P1[X]]X∈Ewk(U) = [0.5, 1, 0.5, 1, 0],

[P2[X]]X∈Ewk(U) = [0.5, 0.5, 1, 1, 0], and
[P3[X]]X∈Ewk(U) = [0.5, 0.5, 0.5, 1, 0].

Therefore, P1 >Ewk
P3, P2 >Ewk

P3. None of P1 and P2

weak-stochastic dominates the other one.

In this context, the user preference over temporal goals is
a preference model for U = Σ∗ where Σ = 2AP . Based on
the ranking of probability measures induced by the weak-
stochastic ordering for Σ∗, we can rank the proper policies
ΠM
prop in the TLMDP as follows.
Note that a proper policy π : S∗ → D(A) produces a

distribution over the set of all terminating paths in the MDP
M such that for each terminating path ρ ∈ Paths⊥(M),
Prπ(ρ) is the probability of generating ρ when the robot uses
policy π. Each terminating path ρ is mapped to a single word
in Σ∗, namely trace(ρ), and therefore, π yields a distribution

over the set of all finite words over Σ such that for each word
w ∈ Σ∗, Prπ(w) is the probability that π produces w.

Definition 4. Given two proper policies π, π′ in the termi-
nating labeled MDP M , π weak-stochastic dominates π′,
denoted π >Ewk

π′, if for each w ∈ Σ∗, it holds that
Prπ({w}↑) ≥ Prπ

′
({w}↑), and there exists a word w′ ∈ Σ∗

such that Prπ({w′}↑) > Prπ
′
({w′}↑).

This definition is used to introduce the following notion.

Definition 5. A proper policy π ∈ ΠM
prop is weak-stochastic

nondominated if there does not exist any policy π′ ∈ ΠM
prop

such that π′ >Ewk
π.

Informally, we say a policy π is preferred, if and only if
it is weak-stochastic nondominated in ΠM

prop.
Next, we state our problem informally.

Problem 1. Given a terminating labeled MDP and a prefer-
ence model � over finite words Σ∗, compute a proper policy
that is weak-stochastic nondominated.

III. MAIN RESULTS

A. Preference Deterministic Finite Automaton
In this section, we propose a finite automaton to compat-

ibly represent the user preferences over temporal goals.

Definition 6. A preference deterministic finite automaton
(PDFA) for an alphabet Σ is a tuple A = 〈Q,Σ, δ, ι, G :=
(F, E)〉 in which Q is a finite set of states; Σ is the alphabet;
δ : Q × Σ → Q is the transition function; ι ∈ Q is the
initial state; and G = (F, E) is a preference graph in which,
F = {F1, F2, · · · , Fm} is a partition of Q—i.e., F ⊆ Q
for each F ∈ F, F ∩ F ′ = ∅ for each distinct state subsets
F, F ′ ∈ F, and

⋃
F∈F F = Q; and E ⊆ F × F is a set of

directed edges.

With a slight abuse of notation, we define the extended
transition function δ : Q × Σ∗ → Q in the usual way, i.e.,
δ(q, σw) = δ(δ(q, σ), w) for w ∈ Σ∗ and σ ∈ Σ, and
δ(q, ε) = q. Note that Definition 6 augments the classical
deterministic finite automaton [7] with the preference graph
G, instead of a set of accepting (final) states.

For two vertices F, F ′ ∈ F, we write F  F ′ to denote
F ′ is reachable from F . By convention, each vertex F of G
is reachable from itself. That is, F  F always holds.

The PDFA encodes a preference model � for Σ = (2AP)∗

as follows. Consider two words w,w′ ∈ Σ∗. Let F, F ′ ∈ F
be the two state subsets such that δ(q, w) ∈ F and δ(q, w′) ∈
F ′ (recall that F is a partitioning of F ); There are four cases:
(1) if F = F ′, then w ∼ w′; (2) if F 6= F ′ and F ′  F ,
then w � w′; (3) if F 6= F ′ and F  F ′, then w′ � w; and
(4) otherwise, w ∦ w′.

To illustrate, see Figure 2, which shows a preference DFA
specifying the preferences in the example of Figure 1. State
subsets F1 = {q2}, F2 = {q4}, F3 = {q1}, and F4 =
{q0, q3, q5} respectively represent preferences p1 through p4.

The following Lemma allows us to define the weak-
stochastic ordering over Σ∗, defined by the PDFA, using its
preference graph.



Fig. 2: PDFA for the example in Figure 1. Left) The DFA
structure of PDFA. Right) The preference graph of PDFA.

Lemma 1. For each word w ∈ Σ∗, if δ(ι, w) ∈ F for some
F ∈ F, then

{w}↑ = {w′ ∈ Σ∗ | ∃F ′ ∈ F,
δ(ι, w′) ∈ F ′ and F  F ′} (2)

The lemma directly follows from the transitivity property
in the transition function in A and the preference relation
and thus the proof is omitted.

Problem: Probabilistic Planning with Partially Ordered
Preferences (PPwPOP)

Input: A TLMDP M = 〈S,A :=
Σs∈SAs,P, s0, s⊥,AP, L〉 and a PDFA
A = 〈Q, 2AP , δ, ι, G := (F, E)〉.

Output: The set of all proper polices for M that are weak-
stochastic nondominated under the preferences
specified by A.

IV. SYNTHESIZING A PREFERRED POLICY

We now present our algorithm. The first step is to augment
the planning state space with the state of the PDFA. With
this augmented state space, we can relate the preferences over
traces in the MDP to a preference over subsets of terminating
states in a product MDP we define as follows.

Definition 7 (Product MDP). Let M = 〈S,A :=
Σs∈SAs,P, s0, s⊥,AP, L〉 and A = 〈Q,Σ, δ, ι, G :=
(F, E)〉 be respectively the TLMDP and the PDFA. The
product of M and A is a tuple M = (X,A :=⋃
x∈X Ax,T, x0, XG,G := (W, E)) in which
1) X = S ×Q is the state space;
2) A is the action space, where for each x = (s, q) ∈ X ,

Ax = As is the set of available actions at state x;
3) T : X ×A×X → [0, 1] is the transition function such

that for each state (s, q) ∈ X , action a ∈ A, and state
(s′, q′) ∈ X;

T((s, q), a, (s′, q′)) ={
P(s, a, s′) if q′ = δ(q, L(s′)), (3.a)

0 otherwise;

4) x0 = (s0, δ(ι, L(s0))) is the initial state;
5) XG = {s⊥} ×Q is the set of terminating states;

6) G = (W, E) is the preference graph, in which, letting
Wi = {s⊥} × Fi for each Fi ∈ F,
• W = {Wi | i = 1, . . . , |F|} is the vertex set of the

graph, and
• E is the edge set of the graph such that (Wi,Wj) ∈
E if and only if (Fi, Fj) ∈ E.

The preference graph of this MDP has been directly lifted
from the one defined for the PDFA. We use W  W ′ to
denote that W ′ is reachable from W in the preference graph
G. Again, every W is reachable from itself.

Continuing with the example in Figure 2, we have W1 =
{s⊥} × F1 = {(s⊥, q2)}, W2 = {s⊥} × F2 = {(s⊥, q4)},
W3 = {s⊥} × F3 = {(s⊥, q1)}, and W4 = {s⊥} × F4 =
{(s⊥, q0), (s⊥, q3), (s⊥, q5)}.

Next, we show how to compute a weak-stochastic non-
dominated policy, in the sense of Definition 5, through
solving a multi-objective MDP.

Given the product MDP M constructed in Definition 7,
the weak-stochastic ordering forW , denoted Ewk(W), is the
family of subsets

Ewk(W) = {{W}↑ |W ∈ W} ∪ {∅,W} (3)

where {W}↑ =
⋃
W ′∈W,W W ′{W ′}.

Note that by construction, the number of subsets in
Ewk(W) minus the empty set and the set W is exactly the
size of W . Let N = |W|.

Definition 8 (Multi-objective MDP (MOMDP)). The multi-
objective MDP (MOMDP) associated with the product MDP
M = 〈X,A,T, x0, XG,G := (W, E)〉 in Definition 7
is a tuple P = 〈X,A :=

⋃
x∈X Ax,T, x0, XG,Z =

{Z1, Z2, · · · , ZN}〉 in which X , A, T, x0, and XG are
the same elements in M and for each i ∈ {1, · · · , N},
Zi =

⋃
W∈{Wi}↑ W . The i-th objective in the MOMDP is

to maximize the probability for reaching the set Zi.

Note that each Zi is a subset of goal states XG, and that
the intersection of two distinct goal subsets Zi and Zj may
not be empty.

Using the running example in Figure 2, we have {W1}↑ =
{W1}, {W2}↑ = {W1,W2}, {W3}↑ = {W1,W3}, and
{W4}↑ = {W1,W2,W3,W4}; Z1 = W1, Z2 = W1 ∪W2,
Z3 = W1 ∪W3, and Z4 =

⋃4
i=1Wi.

In this MOMDP, for a given randomized, finite-memory
policy µ : X∗ → D(A), we can compute the value vector
of µ as a N -dimensional vector Vµ = [Vµ

1 ,V
µ
2 , · · · ,V

µ
N ]

where for each i, Vµ
i is the probability of reaching states of

Zi by following policy µ, starting from the initial state.
Given a randomized, memoryless policy µ : X → D(A),

to compute its value vector Vµ, we first set for each goal
state xg ∈ XG, Vµ(xg) to be the vector such that for each
i ∈ {1, · · · , n}, Vµ

i (xg) = 1 if xg ∈ Zi, and otherwise
Vµ
i (xg) = 0. Then we compute the values of the non-goals

states x ∈ X \XG via the Bellman recurrence

Vµ(x) =
∑
a∈A

(
µ(x)[a]

∑
x′∈X

T(x, a, x′)Vµ(x′)

)
. (4)



Definition 9. Given two proper polices µ and µ′ for M,
it is said that µ Pareto dominates µ′, denoted µ > µ′, if
for each i ∈ {1, · · · , N}, Vµ

i ≥ Vµ′

i , and for at least one
j ∈ {1, · · · , n}, Vµ

j > Vµ′

j .

Intuitively, µ Pareto dominates µ′ if, compared to µ′, it
increases the probability of reaching at least a set Zi without
reducing the probability of reaching other sets Zj’s.

Definition 10. A proper policy µ for the MOMDP in
Definition 8 is Pareto optimal if for no proper policy µ′

for the MOMDP it holds that µ′ > µ.

In other words, a policy is Pareto optimal if it is not
dominated by any policy. The Pareto front is the set of
all Pareto optimal policies. It is well-known that the set of
memoryless policies suffices for achieving the Pareto front
[4]. Thus, we restrict to compute memoryless policies.

With this in mind, we present the following result.

Theorem 1. Let µ : X → D(A) be a policy for P . Construct
policy π : S∗ → D(A) for the TLMDP M such that for each
ρ = s0s1 · · · sn ∈ S∗ it is set π(ρ) = µ(sn, trace(ρ)). If µ
is Pareto optimal, then π is weakly-stochastic nondominated,
respecting the preference specified by PDFA A.

Proof. We show that if µ is Pareto optimal then π is
weak-stochastic nondominated. To facilitate the proof, the
following notation is used: Let Prµ(reach(X),M) be the
probability of terminating in the set X given the policy µ
for the MOMDP and Prπ(reach(X),M) be the probability
of terminating in the set X given the policy π in the original
TLMDP.

First, consider that by the construction of the product
MDP, Definition 7, preference graphs G and G are isomor-
phic, and thus, each Wi ∈ W is mapped to a single Fi ∈ F,
and vice versa. Let’s define F+

i =
⋃
F,Fi F

F for each
Fi ∈ F. Given that G and G are isomorphic, Wi  Wj

if and only if Fi  Fj for all i, j ∈ {1, 2, · · · , N}. This
combined with that Zi =

⋃
W∈{Wi}↑ W for i ∈ {1, · · · , N}

by Definition 8, implies that for each i,

Vµ
i = Prµ(reach(Zi),M) = Prπ(reach(F+

i ),M}. (5)

Next, for each w,w′ ∈ Σ∗ such that δ(ι, w) = δ(ι, w′),
it holds that {w}↑ = {w′}↑. Given this and Lemma 1, for
each Fi and w ∈ Σ∗ such that δ(ι, w) ∈ Fi,

Prπ(reach(F+
i ),M) = Prπ({w}↑). (6)

Finally, given that µ is a Pareto optimal policy, by Def-
inition 9 and Definition 10, it means there exists no policy
µ′ such that Vµ′

i ≥ Vµ
i for all integers 1 ≤ i ≤ n and

Vµ′

j > Vµ
j for some integer 1 ≤ j ≤ n. This, by (5)

and (6) and that the set of randomized, memoryless policies
suffices for the Pareto front of M, means there exists no
policy π′ ∈ ΠM

prop such that Prπ
′
({w}↑) ≥ Prπ({w}↑) for

every w ∈ Σ∗ and Prπ
′
({w′}↑) > Prπ({w′}↑) for some

w′ ∈ Σ∗. This, by Definition 4 and Definition 5, means that
π is weak-stochastic nondominated.

Now one can use any existing methods to compute a
set of Pareto optimal policies for P . For a survey of those
methods, see [13]. Note that computing the set of all Pareto
optimal policies is generally infeasible, and thus, one needs
to compute only a subset of them or to approximate them.

V. CASE STUDY: GARDEN

In this section, we present the results from the planning
algorithm for the running example in Figure 1 .

In the garden, the actions of the robot are N , S, E, W—
for receptively moving to the cell in the North, South, East,
and West side of the current cell—and T for staying in the
current cell. The bee robot initially has a full charge, and
using that charge it can fly only 12 time steps.
Uncertain environment: A bird roams about the south east
part of the garden, colored yellow in the figure. When the
bird and the bee are within the same cell, the bee needs to
stop flying and hide in its current location until the bird goes
away. The motion of the bird is given by a Markov chain.
Besides the stochastic movement of the bird, the weather is
also stochastic and affects the robot’s planning. The robot
cannot pollinate a flower while raining. We assume when
the robot starts its task, at the leftmost cell at the bottom
row, it is not raining and the probability that it will rain
in the next step is 0.2. This probability increases for the
consecutive steps each time by 0.2 until the rain starts. Once
the rain started, the probability for the rain to stop in the five
following time steps will respectively be 0.2, 0.4, 0.6, 0.8,
and 1.0, assuming the rain has not already stopped at any of
those time steps.

We implemented this case study in Python and considered
two variants of it, one without stochasticity in the robot’s
dynamics, and one with stochasticity. In the former case,
when the robot decides to perform an action to move to
a neighboring cell, its actuators will guarantee with full
certainty that the robot will move to that cell after performing
the action. In the later case, the probability that the robot
reaches the intended cell is 0.7, and for each of the unin-
tended directions except the opposite direction, the probably
that the robot’s actuators move the robot to that unintended
direction is 0.1. If the robot hits the boundary, it stays in its
current cell.

All the experiments were performed on a Windows 11
installed on a device with a core i7, 2.80GHz CPU and a
16GB memory.

A. Deterministic Robot in the Uncertain Environment

The MDP for this case has 10, 460 states and 280, 643
transitions (its transition function has 280, 643 entries with
non-zero probabilities). It took 47.38 seconds for our pro-
gram to construct the MDP. The product MDP had 36, 649
states and 946, 467 transitions. The construction time for the
product MDP was 408.87 seconds.

Given the preference described in Fig. 2, we employ linear
scalarization methods to solve the MOMDP.

Specifically, given a weight vector w = [w1, w2, w3, w4],
we compute the weak-stochastic nondominated policy µw,



by first setting Vw(x) =
∑
i:x∈Zi

wi for each goal state x ∈
XG, and then by solving the following Bellman equation for
the values of the non-goal states

Vw(x) = max
a∈Ax

∑
x′∈X

T(x, a, x′)Vw(x′),∀x ∈ X \XG. (7)

The policy is recovered from Vw(x) as

µw(x) = argmax
a∈Ax

∑
x′∈X

T(x, a, x′)Vw(x′),∀x ∈ X \XG.

(8)
We randomly generated 100 weight vectors and used

each one of them to compute a Pareto optimal policy for
the MOMDP. The computed Pareto-optimal policies in the
MOMDP yield a set of 100 weak-stochastic nondominated
policies. From the result, it is noted that none of those
computed polices were weak-stochastic dominated by the
other polices. This is expected due to Theorem 1. Table I
shows 10 out of those 100 weight vectors along with the
value vectors of the polices computed for those weight
vectors and the corresponding probabilities those polices
assign to the four preferences p1 through p4.

Weight Vector Value Vector Prob. of individual outcomes
1 [0.50, 0.17, 0.21, 0.12] [0.24, 0.25, 0.98, 1.0] [0.24, 0.01, 0.74, 0.01]
2 [0.08, 0.46, 0.38, 0.08] [0.24, 0.42, 0.80, 1.0] [0.24, 0.18, 0.56, 0.02]
3 [0.73, 0.13, 0.13, 0.01] [0.24, 0.32, 0.91, 1.0] [0.24, 0.08, 0.67, 0.01]
4 [0.67, 0.24, 0.02, 0.07] [0.19, 0.63, 0.51, 1.0] [0.19, 0.44, 0.32, 0.05]
5 [0.16, 0.11, 0.04, 0.69] [0.15, 0.71, 0.42, 1.0] [0.15, 0.56, 0.27, 0.02]
6 [0.26, 0.16, 0.03, 0.55] [0.15, 0.72, 0.40, 1.0] [0.15, 0.57, 0.25, 0.03]
7 [0.24, 0.46 0.26, 0.04] [0.17, 0.64, 0.53, 1.0] [0.17, 0.47, 0.36, 0.00]
8 [0.22, 0.28, 0.13, 0.37] [0.15, 0.73, 0.40, 1.0] [0.15, 0.58, 0.25, 0.02]
9 [0.07, 0.65, 0.04, 0.25] [0.00, 1.00, 0.00, 1.0] [0.00, 1.00, 0.00, 0.00]

10 [0.18, 0.08, 0.01, 0.73] [0.18, 0.63, 0.51, 1.0] [0.18, 0.45, 0.33, 0.04]

TABLE I: Ten weak-stochastic nondominant polices com-
puted by our algorithm for the Garden case study.

For each policy, the last column shows probability vector
indicating the probability distribution over individual out-
comes p1, . . . , p4 (in this order) given the computed policy.
The third column shows the multi-objective value vector of
each computed policy. It is noted that none of those value
vectors dominates any other value vector.

Rows 1 and 3 of this table show that even if the weight
assigned to the most preferred outcome, p1, is significantly
higher than the weights assigned to the other preferences,
the probability that p1 to be satisfied is still less than 0.25.
This is justified by the fact that the robot’s battery capacity
supports the robot for only 12 time steps and thus to achieve
p1, the robot must not be stopped by the bird nor there
should be raining when it reaches a cell to do pollination. The
probability to satisfy these conditions given the environment
dynamics is less than 0.25. The probability of p4 to be
satisfied in any entry of this table is less than 0.05. This
is because p4 has the lowest priority, and any policy would
prefer to satisfy other preferences who are assigned higher
priorities. Although the objectives {p1, p2} and {p1, p3} in
the first and the third rows are treated almost equally by
the weight vector in terms of importance, the probability
that the later to be satisfied is significantly bigger than the

probability of the former to be satisfied. This is because
the objective {p1} contains the preference with the highest
priority and that those two rows assign a very high weight to
this objective, forcing the policy to try to satisfy p1. Further,
by attempting to perform p1, the robot has the chance to
accomplish p3 within the same attempt, albeit if it fails to
accomplish p1. More precisely, if in attempting to perform
the task p1—first tulips and then at least one out of daisies
and orchids—the robot succeeds to pollinate the tulips but
fails to pollinate the daisies and orchids, then it has already
accomplished p3, even though it has failed in accomplishing
what it was aiming for—p1.

B. Stochasticity in the Robot’s Actions

The MDP for this variant has the same number of states,
10, 460, but it has more transitions, 779, 396, which is due to
the stochasticity in robot’s dynamics. The MDP construction
time for this case was 279.85 seconds and it took 2, 129.02
seconds to make the product MDP. We again computed 100
weak-stochastic nondominated policies.

Due to the stochasticity in the robot’s dynamic, we expect
the policy computed for a specific weight vector to be less
“attractive” than a policy computed for the same weight vec-
tor of the previous variant. We compare those two polices for
the weight vector [0.25, 0.25, 0.25, 0.25]. The probabilities
of the preferences to be satisfied for the variant without
stochasticity were [p1 : 0.24, p2 : 0.05, p3 : 0.70, p4 : 0.01],
while those probabilities for the variant with stochasticity
were [p1 : 0.01, p2 : 0.82, p3 : 0.12, p4 : 0.05]. While the
former policy yields a higher probability of achieving the
most preferred temporal goal—p1, the latter policy puts most
of its efforts to satisfy p2.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed a finite automaton for speci-
fying user preferences over temporal goals, formulated and
solved a preference-based temporal planning in stochastic
systems. The characteristic that distinguishes our work from
prior work on temporal logic planning is that our formulation
consider the case where the user preferences may have
incomparable outcomes, and this, introduces a problem in
defining how to compare policies given their distributions
over outcomes as well as a problem in designing planning
algorithm to solve a preferred policy.

We use the notion of weak-stochastic ordering to rank
different policies. Future work may consider other stochastic
ordering that are used for ranking probability measures given
a partial order over outcomes. Another direction will be
to extend this work to the planning with preference over
temporal goals that are satisfied in infinite time, for instance,
recurrent properties and other more general properties in
temporal logic. For practical robotic applications, it would
be interesting to design an interface that translates human
language preference specifications or human supervisors’
feedback to a computational model, such as a preference
automaton or its variant, to facilitate human-on-the-loop
planning.
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