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Abstract— Combinatorial filters are discrete structures for
modeling and reasoning about robotic systems. Such filters are
of interest not only because of the potential for reduction of
the computational power needed to execute the filter, but also
for the insight they can sometimes provide into the information
requirements of certain robotic tasks.

It is known that the filter minimization problem —that is,
for a given filter, to find a combinatorial filter with the minimal
number of states among all filters with equivalent behavior—
is NP-hard. Intuition might suggest that the well-known notion
of bisimulation might be of direct use for this minimization
problem. Indeed, the bisimilarity relation —the union of all
bisimulation relations over the state space of the original filter—
is an equivalence relation, and one might attempt to reduce a
filter by merging states that are equivalent under this relation.

This paper studies this relationship between bisimulation
and combinatorial filter reduction. Specifically, we show that
every filter minimization problem can be solved by computing a
quotient of the input filter with some relation, but that for some
filters, the bisimilarity relation is not the correct relation for
this purpose. We also characterize the result of the bisimulation
quotient operation as the solution to a different, stricter filter
minimization problem, and identify several classes of filters for
which a variant of bisimulation, called compatibility, can be
used to minimize filters in polynomial time.

I. INTRODUCTION

Combinatorial filters, first proposed by LaValle [12], [13],
are a general class of models for reasoning about systems
that process discrete (rather than continuous) sensor data.
For these kinds of filters, a natural and important question
is to consider the number of states required to express the
desired behavior as labelled transition graph. This problem of
reduction of combinatorial filters was addressed by O’Kane
and Shell [16], who proved that this problem is NP-hard.

Similar problems relating to the minimization of discrete
transition structures have been studied through the lens
of bisimulation relations [25]. Informally, a bisimulation
relation over the states of a transition system includes pairs of
states that can be ‘merged’ without impacting the behavior of
the system. In that context, a relatively straightforward min-
imization algorithm, which we call bisimulation-quotienting,
would find the largest bisimulation relation, which is known
to be a unique equivalence relation, and then to merge equiv-
alent states into a single state. Can this bisimulation-based
approach be used for reduction of combinatorial filters?

This paper provides an answer to that question in the
negative, by exploring the relationship between bisimulation
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Fig. 1. (a) An agent moves in an environment divided into four regions by
five beam sensors. (b) A filter for that system that provably tells if the agent
is region 3 or not. (c) A filter that mimics the behavior of the original filter,
obtained by bisimulation-quotienting. (d) The smallest filter equivalent to
the original filter. Note in particular that reduction via bisimulation does not
produce a fully-minimized filter.

relations and combinatorial filter reduction. Figure 1 illus-
trates an example, inspired by the work of Tovar et al. [27].
Figure 1a shows an environment, divided into four regions
by five beam sensors, in which an agent moves. When the
agent crosses a beam, the system can tell the label of crossed
beam —a, b, c, or d— but not the direction of the crossing.
In addition, the agent can travel from region 4 to region 1
only in that direction; direct travel from region 1 to region 4
is impossible. Note, for example, that from region 3, crossing
of a b beam can be triggered by the agent moving to region 1
or region 2; the system cannot directly distinguish these two
possibilities. The task of the system is to determine, at any
time, whether the agent is definitely in region 3.

A naı̈ve combinatorial filter for this task appears in Fig-
ure 1b. Each of the eight states in this filter corresponds
to a set of possible regions that might contain the agent.
Edges indicate changes to that set that result from each beam
crossing that might be observed. Colors on the states indicate
the filter’s output, with the darker node corresponding to
certainty that the agent is in region 3 and the lighter



nodes indicating otherwise. Figure 1c depicts the result of
bisimulation-quotienting on this original filter. In this case,
bisimulation-quotienting reduced the size of the original
filter, but not optimally so, as shown by the actual optimal
filter in Figure 1d.

The broader question we address here is to find an equiv-
alence relation, similar in spirit to the bisimilarity relation
on the state space of the original filter, that when used
for constructing a quotient filter actually does lead to an
optimally reduced filter. Saberifar et al. [24] proved that
such an equivalence relation does indeed exist. However,
their proof is not constructive, and no readily-constructed
equivalence relation over the states in the original filter for
this purpose is known. This paper clarifies this situation by
introducing a variant of bisimulation called compatibility and
showing that the equivalence relation that leads to optimal
filter reduction is a maximal subset of the union of all
compatibility relations.

After reviewing related work in Section II and recalling
the basic definitions in Section III, this paper presents several
new contributions.
• In Section IV, we provide basic ideas to consider

solving the filter minimization problem as making a
quotient filter under a certain kind of relation, which we
call compatibility relation. We prove that the state space
of any minimal filter is the quotient of the state space
of the original filter under a compatibility equivalence
relation.

• In Section V, we show why the use of bisimilarity
relation in making the quotient filter fails to produce
an optimal solution for the filter minimization problem.
The intuition is that, for bisimulation-quotienting, the
set of observation sequences that can be processed by
the reduced filter, called the language of the filter, must
be identical to the language of the original filter; in
contrast, for the combinatorial filter reduction problem,
the language of the reduced filter may be a superset of
the language of the original filter.

• In Section VI, we show that bisimilarity-quotienting
induces a filter with the smallest number of states
among all filters who behave the same as the original
filter, and whose languages are identical to the language
of the original filter.

• In Section VII, we show that the union of all compati-
bility relations is not in general an equivalence relation,
and thus, cannot be always used to making a quotient
filter. But, if it is an equivalence relation for a given
filter, then the quotient filter under the union of all
compatibility relations is indeed a minimal filter for the
given filter. We use this idea to identify several classes
of filters for which filter minimization problem can be
solved efficiently.

Concluding remarks appear in Section VIII.

II. RELATED WORK

Building on a foundation of prior work on minimalism in
robotics [4], [7], combinatorial filters were originally formu-

lated by LaValle [12], [13]. The key idea is to make, from
the data accessible to the robot, a smallest abstraction still
adequate to solve a given task. This approach has recently
been utilized for a wide spectrum of tasks including navi-
gation [14], [26], [28], exploration [11], manipulation [10],
target tracking [2], [32], and story validation [31].

Interest in forming combinatorial filters that are minimal,
in the sense of minimizing the number of states, is motivated
not only by the reduction in resources needed to execute such
filters, but also by the insight into the nature of the under-
lying problems that arises from identifying the information
required to solve those problems. The problem of performing
this reduction automatically was first studied by O’Kane and
Shell [16], who proved via a reduction from the graph 3-
coloring problem that the filter minimization problem is NP-
hard. Saberifar et al. [23] showed that several special cases
of filters, including tree and planar filters, remain hard to
minimize, and that the filter minimization problem is hard
even to approximate with ε-guarantee, for any ε.

Bisimulation was discovered independently in at least
three different fields–in modal logic, by van Benthem [29]; in
process theory, independently by Milner [15] and Park [19];
and in set theory, by Forti and Honsell [6]. It is currently
used across many fields, including automata and language
theory [21], [20], coalgebra and coinduction [5], [22], and
dynamical and control systems [8], [30]. Generally speaking,
bisimulation can be used for at least two purposes: either
to prove that two objects are behaviorally equivalent, or to
minimize the size of a structure by forming the quotient
under the coarsest bisimulation equivalence relation between
elements of the original structure. This paper focuses on
the latter application. Computing this coarsest bisimulation
equivalent relation is generally performed using partition
refinement algorithms [9], [18]. Details about bisimulation
quotient algorithms appear in the survey by Cleaveland and
Sokolsky [3].

III. DEFINITIONS

This section presents basic definitions used throughout the
paper. We are interested in filters that model the behavior
of a robot in response to a discrete, finite sequence of
observations. The following definitions are equivalent to the
those introduced by O’Kane and Shell [17].

Definition 1: A filter is a 6-tuple (V, Y, C, δ, c, v0) in
which:
• V is a finite set of states,
• Y is a set of possible observations, representing the

input space of the filter,
• C is a set of outputs, sometimes called colors, repre-

senting the outputs produced by the filter,
• δ : V ×Y → V ∪{⊥} is the transition function of filter,
• c : V → C is a function assigning to each state v ∈ V

a color, and
• v0 ∈ V is the initial state.

Filters are readily shown as directed graphs, in which the
states are vertices and edges are determined by the transition



function. Recall the examples in Figure 1b–d.
For state-observation pairs (v, y) for which δ(v, y) =

⊥, we interpret this to mean that we can be sure that
observation y will not, because of some structure in the
robot’s environment, occur when the filter is in state v. In the
graph view, there would simply be no outgoing edge from v
labeled y.

Note that Definition 1 ensures that from any state, for
any observation, at most one transition can happen. The next
definition makes this idea more precise.

Definition 2: Let F = (V, Y, C, δ, c, v0) be a filter, v ∈
V be a state, and s = s1s2...sn ∈ Y ∗ be an observation
sequence where each si is a member of Y . We say that s is
trackable from v if there is a sequence of states q0, q1, ..., qn
such that:
• q0 = v, and
• δ(qi, si+1) = qi+1 for all 0 ≤ i < n.

Given a state v ∈ V and an observation sequence s ∈ Y ∗
trackable from v, we write δ∗(v, s) to denote the state
reached by tracing s starting from v. If s is not trackable
from v, we write δ∗(v, s) = ⊥. For the empty string ε,
we define δ∗(v, ε) = v for all states v, and define that ε
is trackable for all states v.

We can now define the language of a filter, which plays a
crucial role in filter reduction.

Definition 3: The language of a state v, denoted L(v), is
the set of all observation sequences trackable from v. The
language of a filter F , denoted L(F ), is the language of its
initial state: L(F ) = L(v0).

Before we can speak meaningfully about reduction of
filters, we need a definition of filter equivalence with respect
to a language.

Definition 4: Let F1 = (V1, Y, C, δ1, c1, v0) and F2 =
(V2, Y, C, δ2, c2, w0) be two filters with the same observation
space Y and the same color space C. Let L ⊆ Y ∗ denote
a language of observation sequences. We say that F1 is
equivalent to F2 with respect to L, denoted F1

L
== F2, if

for any observation sequence s ∈ L:
• δ∗1(v0, s) 6= ⊥,
• δ∗2(w0, s) 6= ⊥, and
• c1(δ

∗
1(v0, s)) = c2(δ

∗
2(w0, s)).

This definition says that any observation sequence that
is in L is trackable by both F1 and F2, and both of
them produce the same output while tracing that sequence.
However, for observation sequences that are not in L, it does
not say anything about the outputs generated by the two
filters, nor does it require that the observation languages of
F1 and F2 should be the same. The central problem this
work studies is called the filter minimization problem.

Problem: Filter minimization (FM) [17]
Input: A filter F .

Output: A filter F ∗ such that F
L(F )
==== F ∗ and the number

of states in F ∗ is minimal.

Fig. 2. a) A sample filter F3. b) A minimal filter F4 such that F3
L(F3)
=====

F4 and L(F3) = L(F4). c) A minimal filter F5 such that F3
L(F3)
===== F5.

Note that we allow that L(F ) ⊂ L(F ∗) because, for the
observation sequences that are in L(F ∗) − L(F ), we are
sure that they will never occur due to the properties of the
environment and the problem.

Because much of what follows deals with relations over
the set of a filter’s state, we will rely on some elements of
standard notation for such relations. For a given filter F , we
use IF to denote the identity relation on the state set V of F ,
i.e. IF = {(v, v) | v ∈ V }. If R ⊆ V × V is an equivalence
relation on V , then it partitions V to a set of equivalence
classes. For any v ∈ V , the equivalence class of v in R
is denoted [v]R, so that [v]R = {w ∈ V | (v, w) ∈ R}. In
particular, for any v, w ∈ V , if (v, w) ∈ R, then [v]R = [w]R.
Finally, the set of all equivalence classes of R is called the
quotient of V under R, denoted V/R.

IV. FILTER REDUCTION AS A QUOTIENT OPERATION

In this section, we show how the process of filter min-
imization can be understood as a quotient operation with
respect to certain kinds of relations over the states of the
input filter.

The intuition is that we want to consider relations that
indicate which pairs of states should be ‘merged’ to form
a reduced filter. Therefore, we must establish conditions on
the relation that guarantee that this merging operation makes
sense.

Definition 5: Let F = (V, Y, C, δ, c, v) be a filter and let
R ⊆ V ×V denote a relation over the states of F . We say that
R is a compatibility relation for F , if for any (v, w) ∈ R:

1) c(v) = c(w), and
2) for any y ∈ Y , if δ(v, y) 6= ⊥ and δ(w, y) 6= ⊥, then

(δ(v, y), δ(w, y)) ∈ R.



To illustrate this definition, consider filter F3, de-
picted in Figure 2. Some compatibility relations for
F3 are R1 = ∅, R2 = {(v0, v1)}, and R3 =
{(v3, v2), (v5, v4), (v5, v5), (v2, v3), (v4, v5)}.1

Now we can define the notion of a quotient filter.

Definition 6: For a filter F = (V, Y, C, δ, c, v0), and a
relation R ⊆ V × V that is both a compatibility relation
and an equivalence relation (a compatibility equivalence
relation), the quotient of F under R is the filter F/R =
(V/R, Y,C, δ′, c′, [v0]R), in which

δ′([v]R, y) =

{
[δ(w, y)]R if ∃w ∈ [v]R with δ(w, y) 6= ⊥
⊥ otherwise

and c′([v]R) = c(v).

Note that Definition 5 ensures that every transition in a quo-
tient filter is well-defined. Because R must be a compatibility
relation, if two states v and w that share some outgoing
observation y are merged, then the resulting states δ(v, y) and
δ(w, y) must be merged as well. Consider filter F3 depicted
in Figure 2. A compatibility equivalence relation for this
filter is R = IF3 ∪ {(v3, v2), (v5, v4), (v2, v3), (v4, v5)}. The
quotient of F3 under this relation, F3/R, is filter F4, depicted
in Figure 2.

The next two lemmas establish that, though this quotient
operation may increase the language of the filter, it does not
change the behavior, in the sense of Definition 4.

Lemma 1: For any filter F = (V, Y, C, δ, c, v0), and
any compatibility equivalence relation R for F , L(F ) ⊆
L(F/R).

Lemma 2: For any filter F = (V, Y, C, δ, c, v0), and any

compatibility equivalence relation R for F , F
L(F )
==== F/R.

The proofs, which we omit for space reasons, proceed
by induction on the length of the observation sequences,
leveraging Definitions 4 and 6.

Next we prove that the state space of any optimally
reduced filter can be seen as the quotient of the state space
of the original filter under some compatibility equivalence
relation. We begin with a result due to Saberifar et al.:

Lemma 3: [24] Let F1 = (V1, Y, C, δ1, c1, v0) denote a
filter that does not have any unreachable states, and let F2 =
(V2, Y, C, δ2, c2, w0) denote some minimal filter for which

F1
L(F1)
===== F2. Then there exists a function f : V1 → V2 such

that for every observation sequence s ∈ L(F1), δ∗2(w0, s) =
f(δ∗1(v0, s)).

We now strengthen this result slightly.

Lemma 4: The function described in Lemma 3 is surjec-
tive.

1Note that the notion of compatibility relation is different from the usual
notion of simulation, in that its second condition in weaker is required of
a simulation relation. In fact, two states can be compatible (can exist in a
compatibility relation) while none of them simulates another. As an example,
states 2 and 4 in Figure 1b are compatible but neither of them simulates
the other.

Fig. 3. An illustration of the proof of Lemma 5. Filter F2 is a minimal

filter for which F1
L(F1)
===== F2 holds. The state space of F2 corresponds

to the quotient of the state space of F1 under the equivalence relation Rf .
The assumption for this relation is (v, w) ∈ Rf but (r, t) /∈ Rf .

Proof: We prove that each state in F2 is mapped to by
at least one state in F1 via f . For the sake of contradiction,
suppose that there exists a state z in F2 that is not mapped
to by f from any state in F1. We consider two cases.

1) If no observation sequence that ends or passes through
z is in L(F1), then we can construct a new filter F3

from F2 by removing state z. Clearly, F1
L(F1)
===== F3

and F3 has fewer states than F2. This contradicts the
construction that F2 is minimal.

2) If there exists an observation sequence s ∈ L(F1) that
ends or passes through z when traced in F2, then let
k ≤ |s| be an integer such that δ∗2(w0, s1...k) = z. By
the structure of filters, and given that s ∈ L(F1), we
conclude that s1...|s|−1 ∈ L(F1), s1...|s|−2 ∈ L(F1),
. . . , and ultimately s1...k ∈ L(F1). This by Lemma 3
proves that z is mapped to by δ∗1(v0, s1...k), which is a
contradiction.

Given such a function f , we define an equivalence relation
Rf ⊆ V ×V so that (v, w) ∈ Rf if and only if f(v) = f(w).
Note that there is a one-to-one correspondence between the
equivalence classes [v]Rf

of Rf and the states of F2.

Lemma 5: For any filter F1 and any minimal equivalent
filter F2, the equivalence relation Rf they induce is a
compatibility relation.

Proof: First observe that by the construction of Rf , for
any v, w ∈ V , if (v, w) ∈ Rf , then v and w are mapped to
a single state in F2. Let [v]Rf

be such a state. To show that
Rf is a compatibility relation, we prove that conditions (1)
and (2) of Definition 5 hold for any v and w for which
(v, w) ∈ Rf . Suppose that condition (1) does not hold,
that is, c1(v) 6= c1(w), which means c2([v]R) is different
from c1(v) or c1(w). Without loss of generality assume
that c1(v) 6= c2([v]Rf

). Let s ∈ L(F1) by an observation
sequence such that δ∗1(v0, s) = v. By Lemma 3, we have
that δ∗2(w0, s) = [v]Rf

. But, c1(δ∗1(v0, s)) = c1(v) 6=
c2([v]Rf

) = c2(δ
∗
2(w0, s)), which by Definition 4 contradicts

that F1
L(F1)
===== F3.

Now suppose that condition (2) does not hold, which
means that there exists y ∈ Y , such that δ1(v, y) 6= ⊥ and
δ1(w, y) 6= ⊥ but (δ1(v, y), δ1(w, z)) /∈ Rf . Let r = δ1(v, y)
and t = δ1(w, y). We argue that if this is the case, then F2 is



not a filter, which is a contradiction. Figure 3 illustrates this
proof. Let s1 and s2 be two observation sequences that end
in v and w, respectively, when traced by F1. By Lemma 3,
states v and w are in the same equivalence class of Rf , and
thus, they are mapped to a single state, such as [v]Rf

, in
F2; hence, both s1 and s2 end in [v]Rf

when traced by F2.
Consider also that observation sequences s1y and s2y end
in r and t, respectively, when traced by F1. Observe that
from state [v]Rf

there should be two outgoing edges with
the same label y, one of which goes to [r]Rf

and another
goes to [t]Rf

. Because F2 is a filter, the only way to reach
r by tracing s1y from the initial state is to have an edge
labeled by y, that goes from [v]Rf

to [r]Rf
. We can use the

same argument to prove that there should be an outgoing
edge labeled by y that connects [v]Rf

to [t]Rf
. This implies

that F2 has two edges labeled y from [v]Rf
, a contradiction.

In particular, since Rf is both an equivalence relation
and a compatibility relation for F1, it is meaningful to
consider the quotient filter F1/Rf . Moreover, F1/Rf is
structurally identical to the minimal filter F2. Of course,
in the context of filter minimization, F2 is unknown, so
we cannot expect to compute F1/Rf directly. However, the
impact of Lemma 5 is that we can view the problem of
filter minimization as equivalent to the problem of identifying
a suitable compatibility equivalence relation with which to
construct a quotient filter —there always exists some such
relation for which the quotient leads to the minimal filter. The
question remains, however: Which compatibility equivalence
relation is the right one?

V. BISIMULATION AND FILTER REDUCTION

One apparently reasonable hypothesis is that the notion of
bisimulation may be useful for filter minimization via com-
patibility equivalence relation quotient. This section explores
that idea, and shows that although the bisimilarity relation
is indeed a compatibility equivalence relation, it does not
in general induce minimal filters. We begin by adapting the
standard notion of bisimulation within states of a transition
system to filters.

Definition 7: Let F = (V, Y, C, δ, c, v0) be a filter. A
relation R ⊆ V × V is said to be a bisimulation relation
for F if for any (v, w) ∈ R:

1) c(v) = c(w),
2) for any y ∈ Y , if δ(v, y) 6= ⊥, then δ(w, y) 6= ⊥ and

(δ(v, y), δ(w, y)) ∈ R
3) for any y ∈ Y , if δ(w, y) 6= ⊥, then δ(v, y) 6= ⊥ and

(δ(v, y), δ(w, y)) ∈ R
We say that state v in filter F is bisimilar to state w in

filter F if there exists a bisimulation relation R for F such
that (v, w) ∈ R.

Observe that any union of bisimulation relations for
a filter is itself a bisimulation relation. The union of
all bisimulation relations for F , denoted ∼F , is called
the bisimilarity relation for F . Recall filter F3, depicted

Fig. 4. a) It shows the construction of filter Fn, mentioned in Theorem 1.
The quotient of this filter under ∼Fn does not reduce its size. b) Filter F ∗

n
is the minimal for Fn with respect to L(Fn). State vn+2 in filter Fn and
state {vn+2} in filter F ∗

n have color 2; all other states in both filters have
color 1.

in Figure 2. For this filter, we have ∼F3
= IF3

∪
{(v2, v3), (v3, v2), (v4, v5), (v5, v4)}.

Such bisimilarity relations are of interest in part because
they are suitable for constructing quotient filters.

Lemma 6: The bisimilarity relation of every filter is both
a compatibility relation and an equivalence relation.

Proof: It is easy to prove that the bisimilarity is an
equivalence relation (for a proof, see Lemma 7.8 of [1]).
Also, by Definition 7, any bisimulation relation —including
the bisimilarity relation— is a compatibility relation in the
sense of Definition 5.

Because the bisimilarity relation of a given filter rep-
resents, in a certain sense, a coarsest partitioning of the
states into ‘mergable’ subsets, intuition might suggest that a
quotient with the bisimilarity relation might perhaps produce
an optimally reduced filter, in the sense of the FM problem.
The next result debunks this misconception.

Theorem 1: For any integer n ≥ 1, there exists a filter
Fn with n+ 2 states, such that Fn/ ∼Fn

is larger than the
optimal solution F ∗n to the filter minimization problem FM
by n states.

Proof: For a given n, we construct a filter Fn with n+2
states, for which Fn/ ∼Fn

also has n + 2 states. Figure 4a
shows the construction. In particular, note that for any pair
of distinct states (v, w), we have v �Fn

w; this is because
if v ∼Fn w, then they must have the same color, meaning
that there must exist 1 ≤ i 6= j ≤ n + 1 such that v = vi
and w = vj , and if this is the case then by the definition
of bisimulation relation, we must have that vi+1 ∼Fn

vj+1,
vi+2 ∼Fn

vj+2, ..., and ultimately vi+k ∼Fn
vn+2, which

is a contradiction. Therefore ∼Fn
= IFn

, and Fn/ ∼Fn
is

structurally identical to Fn — no two states will be merged.
In contrast, for any n, the optimally reduced filter F ∗n has
exactly two states, as shown in Figure 4b.

In particular, Theorem 1 implies that bisimulation-
quotienting does not always induce an optimal solution to
the filter minimization problem FM, and in fact, that the
difference in size between the optimally reduced filter and
the bisimilarity-quotient filter cannot be bounded.



VI. STRONG FILTER MINIMIZATION

Section V showed that, although quotient with bisimilarity
relation produces an equivalent filter, that filter may not
necessarily be minimal. In this section, we provide some
insight into why that happens, by showing that this kind
of bisimilarity quotient instead solves a variant of the filter
minimization problem, in which the language of the reduced
filter must be identical to the language of the original filter,
rather than merely a superset of it. Specifically, this sec-
tion shows that bisimilarity-quotienting solves the following
problem.

Problem: Strong Filter Minimization (SFM)
Input: A filter F .

Output: A filter F ∗ such that F
L(F )
==== F ∗, L(F ) = L(F ∗),

and the number of states in F ∗ is minimal.

Now we can state the main result of this section.

Theorem 2: For any filter F , the bisimilarity quotient
F/ ∼F is a solution to the SFM problem for F .

The proof, again omitted due to space limitations, uses
the same techniques as the proof of the very similar well-
known result for finite labeled transition systems [1], [15];
the primary difference is that, for filters, we are concerned
with finite-length, rather than infinite, input sequences.

Corollary 1: SFM can be solved in polynomial time.

Proof: Beyond Theorem 2, we need only to show that
given a filter F = (V, Y, C, δ, c, v0) both (a) the bisimilarity
relation ∼F and (b) the quotient of a filter and a relation,
can be computed in polynomial time.

A simple efficient algorithm for constructing the bisimi-
larity relation starts with assigning the set {(v, w) ∈ V ×V |
c(v) = c(w)∧∀y ∈ Y, (δ(v, y) = δ(w, y) = ⊥∨c(δ(v, y)) =
c(δ(w, y)))} as the initial value to a variable R. Then, in
each iteration of a loop, all members of R that fail to satisfy
all three conditions of Definition 7 are removed from R.
This loop continues until no additional members of R can
be removed; at that time, we have R =∼F . Clearly, the
time complexity of this algorithm is O(|V |4 × |Y |). This
relation has at most |V |2 members, hence, the filter F/ ∼F

is constructed in O(|V |4 × |Y |) time.
As an example of this theorem, consider again filter F3

from in Figure 2. The quotient of this filter under ∼F3
is

filter F4, depicted in the same figure The language of F2 is
equal to the language of F3. Filter F5, depicted in the same
figure, represent the smallest filter who is equivalent to F3

with respect to the language of F3. In this case, we have
L(F3) ⊂ L(F5).

Knowing now that making the quotient of a filter under
bisimilarity relation does not always optimally reduce the
size of that filter, in the next section, we are interested in
other compatibility relations that are better suited for filter
reduction.

VII. SPECIAL CLASSES OF FILTERS

By the discussions of the Section IV, to minimize a given
filter F —one without any unreachable states, of course—
one can make the quotient filter under some compatibility
equivalence relation. Section V proved that the bisimilarity
relation ∼F is not always the appropriate relation for this
job.

Another intuitive possibility would be to use the
union of all compatibility relations, analogous to the
definition of the bisimilarity relation as the union of
all bisimulation relations. As an example, this rela-
tion for filter F3 depicted in Figure 2, is IF3 ∪
{(v0, v1), (v1, v0), (v2, v3), (v3, v2), (v4, v5), (v5, v4)}. For a
given filter F , we write fF to denote this the union of
all compatibility relations for F . Trivially, fF is itself a
compatibility relation for F .

In addition, we can compute fF in time polynomial in the
size of F . See Algorithm 1 for a simple approach to doing
so. The intuition is to begin with a relation containing state
pairs that are compatible for observation strings of length
at most one, and then to iteratively delete state pairs that
violate Definition 5 for successively longer strings. The time
complexity of this algorithm is O(|V |4|Y |), where V and Y
are, respectively, the state space and the observation space
of the input filter.

The next lemma shows that, unfortunately, fF may not be
suitable for forming quotient filters, because for some filters
it is not an equivalence relation. (Recall Definition 6, under
which quotient filters are well-defined only for compatibility
equivalence relations.)

Lemma 7: For any filter F = (V, Y, C, δ, c, v), the re-
lation fF is reflexive and symmetric. However, there exist
filters F for which fF is not transitive.

Proof: For the first claim, consider that in sense of
Definition 5, the identity relation IF = {(v, v) | v ∈ V } is
a compatibility relation for F . By definition of fF , it is a
superset of IF , and therefore fF is reflexive. To prove that
fF is symmetric, one need to show that if v fF w, then
w fF v. Suppose that v fF w. This means that there exists
a compatibility relation R for F such that (v, w) ∈ R. By
the symmetry of conditions (1) and (2) of Definition 5 with
respect to v and w, if R is a compatibility relation for F ,
then so is R−1. The relation R−1 contains (w, v), and so
does fF given the definition of fF .

For the second claim, to observe that fF may not be tran-
sitive, let F be the filter depicted in Figure 5. For this filter,
we have fF = IF ∪ {(v1, v2), (v2, v1), (v2, v3), (v3, v2)}.
This relation is not transitive since v1 fF v2 and v2 fF v3
hold but v1 fF v3 does not.

In an important sense, Lemma 7 should not be a surprise.
Since the filter minimization problem is NP-hard [17], [24],
and F/fF can be computed in polynomial time, if Lemma 7
were false, that would imply that P = NP .

However, any filter F for which fF is indeed an equiva-
lence relation, then F/fF is guaranteed to be the minimal
filter equivalent to F . Moreover, given any filter F , it takes



Algorithm 1: UNIONOFALLCOMPRELATIONS

1 Input: A filter F = (V, Y, C, δ, c, v0)

2 R← ∅
3 forall (v, w) ∈ V × V do
4 if c(v) 6= c(w) then
5 continue
6 add← true
7 forall y ∈ Y do
8 if δ(v, y) 6= ⊥ and δ(w, y) 6= ⊥ then
9 if c(δ(v, y)) 6= c(δ(w, y) then

10 add← false
11 if add = true then
12 R← R ∪ {(v, w)}
13 updated← true
14 while updated = true do
15 updated← false
16 forall (v, w) ∈ R do
17 forall y ∈ Y do
18 if δ(v, y) 6= ⊥ and δ(w, y) 6= ⊥ then
19 if (δ(v, y), δ(w, y)) /∈ R then
20 R = R/{(v, w)}
21 updatedd = true

22 return R

Fig. 5. A filter for which the union of all compatibility relations is not an
equivalence relation. State v0 has color 1, states in the middle column have
color 2, state v4 has color 3, and state v5 has color 4.

polynomial time to check whether fF is an equivalence
relation or not. This implies that solving filter minimization
problem for any filter for which fF is an equivalence
relation takes polynomial time in size of F . This fact gives
a roadmap to recognize some classes of filters for which the
filter minimization problem is in P , specifically by looking
for classes of filters for which the union of compatibility
relations can be proven to be an equivalence relation.

One such special class of filters consists of filters is
one we call observation-at-most-once-in-a-color filters. An
observation-at-most-once-in-a-color filter is a filter in which
for any observation, from all states with the same color,
there is at most one outgoing edge labeled by that ob-
servation. Such filters are a generalization of the class
that Saberifar et al. [24] called once-appearing-observations
filters. The difference between once-appearing-observations
and observation-at-most-once-in-a-color filter is that in the
former each observation appears only once while in the latter
an observation can appear more than one time in the filter,
but only once from the states of each color. The following
theorem proves that solving filter minimization problem for

this class takes polynomial time in size of the input filter.

Problem: Observation-at-most-once-in-a-color Filter
minimization (OBS-AT-MOST-ONCE-IN-A-COL-FM)

Input: An observation-at-most-once-in-a-color filter F .

Output: A filter F ∗ such that F
L(F )
==== F ∗, and the number

of states in F ∗ is minimal.

Theorem 3: OBS-AT-MOST-ONCE-IN-A-COL-FM ∈ P .

Proof: According to the discussion above, we need only
prove that for any observation-at-most-once-in-a-color filter
F = (V, Y, C, δ, c, v0), the relation fF is an equivalence
relation. It is easy to observe that since in F no distinct states
with the same color shares an outgoing edge labeled with the
same observation, we have fF = {(v, w) | c(v) = c(w)}.
This relation is clearly an equivalence relation,

Another class consists of filters which we call largest-
compatibility-is-bisimilarity— a filter for which the union
of all compatibility relations coincides with the bisimilarity
relation.

Problem: Largest-compatibility-is-bisimilarity Filter
minimization (LAR-COMP-IS-BISIM-FM)

Input: A largest-compatibility-is-bisimilarity filter F .

Output: A filter F ∗ such that F
L(F )
==== F ∗, and the number

of states in F ∗ is minimal.

Theorem 4: LAR-COMP-IS-BISIM-FM ∈ P .

Proof: For any filter F in this class, fF =∼F . By
Lemma 6, the relation ∼F is an equivalence relation.

A subclass of largest-compatibility-is-bisimilarity filters
are filters Saberifar et al. [24] called no-missing-edges– filters
for which, from any state, for any observation, there is an
outgoing edge labeled by that observation. This kind of filters
can be generalized to a class we call color-no-missing-edges
filters. A filter is color-no-missing-edges if for any two states
v and w for which c(v) = c(w), for any observation y, if
δ(v, y) 6= ⊥ then δ(w, y) 6= ⊥.

Problem: Color-no-missing-edges Filter minimization
(COL-NO-MIS-EDG-FM)

Input: A color-no-missing-edges filter F .

Output: A filter F ∗ such that F
L(F )
==== F ∗, and the number

of states in F ∗ is minimal.

Theorem 5: COL-NO-MIS-EDG-FM ∈ P .

Proof: By the definition of color-no-missing-edges for
each observation y, and for any two states v and w that share
the same color, we have that either δ(v, y) = δ(w, y) = ⊥
or (δ(v, y) 6= ⊥) ∧ (δ(w, y) 6= ⊥). In this case, the three
conditions of Definition 7, taking F1 = F2 = F , are identical
to the conditions of Definition 5. Therefore, fF =∼F , which
by Lemma 6 is an equivalence relation.

In spite of this good news for these (admittedly narrow)
classes of filters, in general the union of all compatibility



relations for a filter F is not always an equivalence relation.
In those cases, we must instead seek a coarsest compatibility
equivalence relation —that is, a compatibility equivalence
relation whose number of equivalence classes is smallest—
to construct a minimal filter.

Theorem 6: Let F be a filter and let R be a coarsest com-
patibility equivalence relation. The filter F/R is a minimal

filter for which F
L(F )
==== F ∗ holds.

Proof: By Lemma 2 and that R is a compatibility
equivalence relation, F

L(F )
==== F ∗. If F/R is not minimal,

that is if there is another filter F2 with fewer number of
states than F/R, then by Lemma 5, the relation R would
not be a coarsest compatibility equivalence relation.

VIII. CONCLUSION

In this paper, we showed that the bisimulation quotient,
which is widely used for reducing the size of transition
systems, is not always appropriate for optimally reducing
the size of combinatorial filters. However, we also showed
that it is useful when one needs to prevent expansion of
the language of a filter under minimization. We conclude
that filter minimization can be done by making the quotient
filter under a coarsest compatibility equivalence relation. In
particular, if the union of all compatibility relations for a filter
is an equivalence relation, then one can optimally reduce the
size of that filter. By way of example, we identified several
classes of filters for which this is the case.

Knowing that making the quotient of a filter under a
coarsest compatibility equivalence relation optimally reduces
the size of the filter, we believe that future work should
consider the design of efficient heuristic algorithms for
finding a coarsest compatibility equivalence relation. It is
also interesting to attempt to identify practical filters for
which finding the coarsest compatibility equivalence relation
can be done in polynomial time.

Finally, there are some kinds of filters for which finding
a coarsest compatibility equivalence relation can be directly
solved by finding a minimum clique partitioning of the union
of all compatibility relations. Several classes of graphs for
which clique partitioning are in P have been recognized.
This approach may provide a roadmap for finding additional
classes of filters that can be minimized in polynomial time.
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