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Heat Transfer Analysis in Solids 
Objectives 

In this project, you will gather unsteady-state data from the conductive heating of solid 
shapes that are made of various materials.  The solids are being heated (or cooled) in a water 
bath so the process involves a convective boundary condition.  Therefore, the heat transfer 
process will be modeled as transient heat conduction with a convective boundary.  The important 
variables to be considered are the shape (geometry) of the solid and the physical properties (type 
of material, density, specific heat, and thermal conductivity) of the solid.  The heating process 
will be modeled with varying levels of complexity.  Depending on the particular experiment and 
amount of known information, these experiments can be used to determine either (a) 
thermophysical properties of the solid (specific heat or thermal conductivity) or (b) the 
convective heat transfer coefficient at the solid/fluid interface.  Students will formulate more 
specific objectives in keeping with their experimental plans. 

 

Introduction 

Heat transfer is relevant to all engineering disciplines, and is a fascinating part of the 
engineering sciences.  Heat transfer phenomena play an important role in many industrial and 
environmental problems. As an example, consider the vital area of energy production and 
conversion. There is not a single application in this area that does not involve heat transfer 
effects in some way. In the generation of electrical power, whether through nuclear fission or 
fusion, the combustion of fossil fuels, or the use of geothermal energy sources, there are 
numerous heat transfer problems that must be solved. These problems involve conduction, 
convection, and radiation processes and relate to the design of systems such as boilers, 
condensers, and turbines. One is often confronted with the need to maximize heat transfer rates 
and to maintain the integrity of materials in high-temperature environments. 

Experimental Procedure: 
In the laboratory, we have a number of solid shapes (cylinders, spheres, rectangles) that have 

been fabricated from a number of different materials (copper, brass, aluminum, stainless steel, 
Teflon™, and possibly others).  Each shape has been fitted with a thermocouple (electrical 
temperature sensor) that is located at the precise center of the shape.  You should make a 
complete inventory table of all available shapes and materials.  You will select from among these 
to get sufficient data to meet your objectives.  If the heat transfer coefficient for a particular 
geometry and set of fluid conditions is known, you can use the experimental results to compute 
the heat capacity and thermal conductivity of the solid.  Conversely, if the thermal conductivity 
and heat capacity of the solid are known, you can use the results to compute the heat transfer 
coefficient for a given geometry. The raw data are centerline temperature versus time for a given 
solid shape.  In addition, you must record all relevant descriptive data for the shape that are being 
used. Read all directions and examine the required calculations before beginning 
experimentation.  

The experiments themselves are simple.  After recording the initial temperature of each 
shape, the solid will be immersed in a constant-temperature bath and the transient temperature 
response will be recorded.  It takes approximately one hour to establish the setpoint temperature 
for the water bath, so must coordinate with the teaching assistant for one of you to get started 
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early to establish the bath temperature.  Only one bath temperature can be set each lab period.  
Generally speaking, each group will do one set of runs with heating, and another set of runs 
during the second lab period with cooling.  You will note that the water bath has a stirrer. By 
turning off the stirrer, you can estimate the heat transfer coefficient under free convection 
conditions. 

Step-by-step instructions are given below.  Consult closely with your teaching assistant for 
further details. 

1. Prior to the 2:30 starting time, insure that the water bath is properly filled. The water should 
be one inch from the top and should cover the heater, pump, and one inch of the temperature 
sensor. 

2. Prior to the 2:30 starting time, turn on the water bath, controller, and potentiometer. Set the 
controller to the desired water bath temperature (the setpoint temperature).  

a. In order to set the controller to the desired temperature, press the Set button on the 
controller. Then enter the value of the set point, including all decimal places. Then press 
enter. The setpoint will then appear on the controller screen. 

b. Allow sufficient time for the water bath to stabilize completely at the setpoint. It may 
take over an hour. It will take longer to cool the water than to heat it.  

c. The spare thermocouple should be placed in the small hole next to the controller and 
plugged into the outlet labeled 1. Then the measured value recorded by the thermocouple 
and associated equipment can be compared against the controller value.  

3. Turn on the computer and monitor. After Windows is loaded, double click on the icon 
labeled “Heat Conduction” to start the monitoring program, which is the software LabView. 
A window will appear which will specify the username as Unit Operations Laboratory. Click 
OK or press Enter.   

4. The first day of experimentation will be to heat all the solids from room temperature to a 
higher temperature. The bath temperature will be between 40 and 80 oC. The particular 
temperatures for your group will be given by the TA. The second day the solids will be 
cooled from room temperature to a lower temperature between 5 and 15 oC. The temperature 
range of the water bath is from 3 oC to 90 oC. Please be very careful not to burn yourself with 
hot water or the hot solids.  Lift the solids using the support wire, and use gloves or tongs if 
needed. 

5. Record the initial temperature (room temperature) of the solids. Prepare to monitor the 
thermocouple temperature by using the mouse to click on the start or run arrow at the top of 
the Heat Conduction program window. It is simplest to start a new data file for each 
experiment.  See 6 below for more details on the data acquisition software. 

6. You need to store the data file name in the appropriate space on the hard drive. Be sure to use 
the following form when specifying the file name in the data acquisition program: 

C:\Heat Conduction\yourfilename.txt 

a. When you are ready to begin recording data to the file, use the mouse to toggle the “off” 
key by “Enable Filing”. You should not begin recording until just before the solid is 
placed in the bath. 
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b. The computer program will record the temperature and time elapsed since the monitoring 
was begun. In order to determine the relative time since the beginning of the testing of 
the particular solid, one will need to adjust the time values.  

7. After the bath temperature is stabilized and the data acquisition system is ready, you may 
immerse the solid in the water bath. First, hook the solid to the fish-eye on the frame. Insure 
that you have begun recording the data. Then lower the solid into the water bath until 
completely submerged. Don’t drop the solid in the bath, but do try to get it immersed 
quickly.  At the instant the solid is immersed, note the time on the data acquisition system.  
There may be a lag between the time shown on the data acquisition and the actual “time 
zero” that the solid began heating. 

8. When the solid has reached the temperature of the bath and remains stable, disable the data 
acquisition. Remove the solid and hang it back over the plastic tub so that it can cool to room 
temperature.  Make sure that the data are saved on the hard disk, and on a floppy for backup. 

9. Repeat the items 6 through 8 for each solid.  

10. Repeat some experiments as time allows.  In the meantime, immerse the solids in a bucket of 
room-temperature water in order to hasten the return to room temperature. 

11. Repeat steps 5-9 for the second setpoint temperature. 

Theoretical Background (taken from the text by Incropera and DeWitt) 
Rate Law for Heat Conduction 

For heat conduction, the rate equation is known as Fourier’s law. For the one-
dimensional plane wall shown, having a temperature distribution T(x), Fourier’s law is  

 

q”x = - k dT/dx (1) 

 

The heat flux q”x (W/m2) is the heat transfer rate in the x direction per unit area perpendicular to 
the direction of transfer, and it is proportional to the temperature gradient, dT/dx, in this 
direction. The proportionality constant k is a transport property known as the thermal 
conductivity (W/mK) and is a thermophysical property of the solid material. The minus sign is a 
consequence of the fact that heat is transferred in the direction of decreasing temperature.  Note 
that this equation provides a heat flux, that is, the rate of heat transfer per unit area. The heat rate 
by conduction, qx (W), through a plane wall of area A is then the product of the flux and the area,  

qx = q”x * A.  (2) 

Rate Law for Heat Convection 

The convective heat transfer mode is comprised of two mechanisms. In addition to 
energy transfer due to random molecular motion (diffusion), energy is also transferred by the 
bulk, or macroscopic, motion of the fluid. The rate of convective heat transfer is enhanced by 
vigorous stirring or rapid flow. We are especially interested in convection heat transfer that 
occurs between a fluid in motion and a bounding surface when the two are at different 
temperatures.  

For convection, the rate equation is of the form 
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q” = h(Ts - T∞)  (3) 

where q”, the convective heat flux (W/m2), is proportional to the difference between the surface 
temperature Ts and the bulk fluid temperature T∞. Equation (3) is known as Newton’s law of 
cooling, and the proportionality constant h (W/m2*K) is termed the convection heat transfer 
coefficient. In contrast to thermal conductivity k, h is not a thermophysical property of a 
material; h depends on conditions of agitation, stirring, and the local velocity in the boundary 
layer between the heating fluid and the solid surface. h  is influenced by surface geometry, the 
nature of the fluid motion, and various transport and thermophysical properties of the heat 
transfer fluid, including its viscosity, thermal conductivity, heat capacity, and density. 

When Equation (3) is used, the convection heat flux is presumed to be positive if heat is 
transferred from the surface (Ts>T∞) and negative if heat is transferred to the surface (T∞>Ts). 
However, if T∞ >Ts, there is nothing to preclude us from expressing Newton’s law of cooling as 

 

q” = h(T∞ - Ts)  (4) 

 

in which case heat transfer is positive if it is to the surface. 

Transient Heat Conduction 

We recognize that many heat transfer problems are time dependent. Such unsteady state, 
or transient, problems typically arise when the boundary conditions of a system are changed. For 
example, if the surface temperature of a solid is altered, the temperature at each point in the solid 
will also begin to change. The changes will continue to occur until a steady-state temperature 
distribution is reached. Consider a hot metal forging that is removed from a furnace and exposed 
to a cool air stream. Energy is transferred by convection and radiation from its surface to the 
surrounding air. Energy transfer by conduction occurs from the interior of the metal to the 
surface, and the temperature at each point in the billet decreases until a steady-state condition is 
reached. Such time-dependent effects occur in many industrial heating and cooling processes. 

To determine the time dependence of the temperature distribution within a solid during a 
transient process, we begin by solving the appropriate energy balance and rate law.  The precise 
form depends on the geometry of the solid (plane wall, cylinder, sphere).  In addition, the 
boundary conditions must be specified.  In the following discussion we will present two general 
approaches to solving transient heat transfer in a uniform solid: the Lumped Capacitance method, 
and the more rigorous method of solving Fourier’s law that includes spatial temperature 
gradients. 

The Lumped Capacitance Method 

A common transient conduction problem is one in which a solid experiences a sudden 
change in its thermal environment. Consider a hot metal forging that is initially at a uniform 
temperature Ti and is quenched by immersing it in a liquid of lower temperature T∞ < Ti. If the 
quenching is said to begin at time t = 0, the temperature of the solid will decrease for time t > 0, 
until it eventually reaches T∞.  

The essence of the lumped capacitance method is the assumption that the temperature of 
the solid is spatially uniform at any instant during the transient process. This assumption means 
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that temperature gradients within the solid are negligible (dT/dx = 0). This is equivalent to saying 
that the rate of conduction of heat inside the solid is very large compared to the rate of heat 
convection at the fluid/solid interface. 

By examining Fourier’s law, eq. (1), we see that heat conduction in the absence of a 
temperature gradient implies infinitely large thermal conductivity. Such a condition is clearly 
impossible. However, although the condition is never satisfied exactly, it is closely approximated 
if the resistance to conduction within the solid is small compared with the resistance to heat 
transfer between the solid and its surroundings.  

By neglecting temperature gradients within the solid, we no longer need so solve the 
partial differential equations (spatial dependence) of the problem that are part of Fourier’s law of 
conduction. Instead, the transient temperature response is determined simply by formulating an 
overall energy balance on the solid. This balance relates the rate of heat transfer at the solid 
surface (Newton’s law)  to the rate of change of the internal energy (U) of the solid.  

 

-hAs(T-T∞) = dU/dt = ρVc dT/dt   (5) 

 

In equation (5), the solid has volume V, surface area As, temperature T, density ρ, and specific 
heat c. The assumptions behind this analysis mean that the surface temperature T is equal to the 
interior temperature T everywhere throughout the solid.  Introducing the temperature driving 
force θ 

θ ≡ T - T∞   (6) 

and recognizing that (dθ/dt) = (dT/dt), it follows that 

θθρ
−=

dt
d

hA
Vc

s

  (7) 

Separating variables and integrating from the initial condition, for which t = 0 and T(0) = Ti, we 
then obtain 

∫ −=
θ

θ θ ∫
θρ

i

t

s

dtd
hA

Vc
0

  (8) 

where 

θi ≡ Ti - T∞      (9) 

Evaluating the integrals it follows that 

t
hA

Vc i

s

=
θ
θρ ln        (10) 

or 

















−=

−
−

=
∞

∞ t
Vc

hA
TT
TT

i
s

i ρθ
θ exp        (11) 
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If the solid properties and h, are known, Equation (10) may be used to determine the time 
required for the solid to reach some temperature T. Conversely, Equation (11) may be used to 
compute the temperature reached by the solid at some time t. Finally, if the solid properties and 
T(t) are known, equation (10) can be used to evaluate h.  Thus, experimenters must understand 
what is known and what is unknown so that appropriate use of the data is determined. 

The foregoing results indicate that the difference between the solid and fluid temperatures 
must decay exponentially to zero as t approaches infinity. From Equation (11) it is also evident 
that the quantity (ρVc/hAs) may be interpreted as a thermal time constant. This time constant 
may be expressed as 

tt
s

t CRVc
hA

=







= )(1 ρτ       (12) 

where Rt is the resistance to convection heat transfer and Ct is the lumped thermal capacitance of 
the solid. Any increase in Rt or Ct will cause a solid to respond more slowly to changes in its 
thermal environment and will increase the time required to reach thermal equilibrium (θ = 0). 
This behavior is analogous to the voltage decay that occurs when a capacitor is discharged 
through a resistor in an electrical RC circuit. 

Validity of the Lumped Capacitance Method 

From the foregoing results it is easy to see why there is a strong preference for using the 
lumped capacitance method. It is certainly the simplest and most convenient method that can be 
used to solve transient conduction problems. Hence it is important to determine under what 
conditions it may be used with reasonable accuracy. 

To develop a suitable criterion, we will briefly consider steady-state conduction through 
the plane wall of area A. (Although we will consider steady-state conditions, this criterion is 
readily extended to transient processes.) One surface is maintained at a temperature Ts,1 and the 
other surface is exposed to a fluid of temperature T∞ < Ts,1. The temperature of this surface will 
be some intermediate value , Ts,2, for which T∞ < Ts,2 < Ts,1. Hence, under steady-state conditions 
the surface energy balance shows that heat transfer through the plane wall by conduction must 
equal heat transfer by convection at the wall/fluid boundary: 

(kA/L) (Ts,1 - Ts,2) = hA (Ts,2 - T∞) (13) 

Rearranging, we then obtain 

( ) Bi
k

hL
R
R

hA
kAL

TT
TT

conv

cond

s

ss ≡===
−

−

∞ /1
)/(

2,

2,1,  (14) 

The quantity h*L / k appearing in this equation is a dimensionless group called the Biot number, 
Bi.  Bi plays a fundamental role in conduction problems that involve surface convection effects. 
According to Equation (14), the Biot number provides a measure of the temperature drop across 
the wall relative to the temperature difference between the wall surface and the fluid. Note 
especially the case where  Bi <<1. For this case, it is reasonable to assume a uniform temperature 
distribution across a solid at any time during a transient process. This result may also be 
associated with interpretation of the Biot number as a ratio of thermal resistances, Equation 14. If 
Bi<<1 , the resistance to conduction within the solid is much less than the resistance to 
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convection across the fluid boundary layer. Hence the assumption of a uniform temperature 
distribution inside the solid is reasonable.  

We have introduced the Biot number because of its significance to transient conduction 
problems. Consider a plane wall that is initially at a uniform temperature Ti and experiences 
convection cooling when it is immersed in a fluid of T∞ < Ti. The problem may be treated as one-
dimensional in x, and we are interested in the temperature variation with position and time, 
T(x,t). This variation is a strong function of the Biot number, and three conditions are possible. 
For Bi << 1 the temperature gradient in the solid is small and T(x,t) ≈ T(t). Virtually all the 
temperature difference is between the solid and the fluid, and the solid temperature remains 
nearly uniform as it decreases to T∞. For moderate to large values of the Biot number, however, 
the temperature gradients within the solid are significant. Hence T = T(x,t). Note that for Bi >> 
1, the temperature difference between the two edges of the solid is now much larger than that 
between the surface and the fluid. 

It is important to emphasize the importance of the lumped capacitance method. Its 
inherent simplicity renders it the preferred method for solving transient conduction problems. 
Hence, when confronted with such a problem, the very first thing that one should do is calculate 
(or estimate) the Biot number. If the following condition is satisfied, 

1.0<=
k

hL
Bi c  (15) 

then the error associated with using the lumped capacitance method is small. For convenience, it 
is customary to define the characteristic length of equation (15) as the ratio of the solid’s volume 
to surface area, Lc≡V/As. Such a definition facilitates calculation of Lc for solids of complicated 
shape and reduces to the half-thickness L for a plane wall of thickness 2L, to ro/2 for a long 
cylinder, and to ro/3 for a sphere. However, if one wishes to implement the criterion in a 
conservative fashion, Lc should be associated with the length scale corresponding to the 
maximum spatial temperature difference. Accordingly, for a symmetrically heated (or cooled) 
plane wall of thickness 2L, Lc would remain equal to the half-thickness L. However, for a long 
cylinder or sphere, Lc would equal the actual radius ro, rather than ro/2 or ro/3. 

Finally, we note that, with Lc≡V/As, the exponent of Equation 11 may be expressed as 

22
c

c

c

c

c

s

L
t

k
hL

L
t

c
k

k
hL

cL
ht

cV
thA α

ρρρ
===   (16) 

or 

FoBi
Vc

thAs ⋅=
ρ

  (17) 

where 

2
cL
tFo α

≡   (18) 

is termed the Fourier number. It is a dimensionless time, which, with the Biot number, 
characterizes transient conduction problems. Substituting equation (18) into (11), we obtain 
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)exp( FoBi
TT
TT

ii

⋅−=
−
−

=
∞

∞

θ
θ   (19) 

 

Beyond the Lumped Capacitance Method: Rigorous Consideration of Spatial Gradients 

Situations frequently arise for which we must cope with the fact that spatial gradients 
within the solid medium are non-negligible. (This is equivalent to saying that the Biot number is 
sufficiently large that the lumped capacitance method cannot be applied.) In their most general 
form, transient conduction problems are described by the heat equation (Fourier’s law) in 
rectangular, cylindrical, or spherical coordinates. The solution to these partial differential 
equations provides the variation of temperature with both time and the spatial coordinates. 
However, in many problems, such as the plane wall or the sphere, only one spatial coordinate is 
needed to describe the internal temperature distribution.  

Consider first a one-dimensional plane wall (a rectangle with heat conduction in only the 
x-direction). Also assume that the thermal conductivity is constant.  An energy balance relating 
the rate of change of internal energy to the rate of heat conduction reduces to Equation 20: 

t
T

x
T

∂
∂

=
∂
∂

α
1

2

2

  (20) 

In this equation we have introduced the thermal diffusivity α, which has units of m2/s: 

 

α = k / (ρ Cp)  (21) 

 

It measures the ability of a material to conduct thermal energy relative to its ability to store 
thermal energy. Materials with large α will have a rapid internal temperature response to changes 
in their thermal environment, while materials with small α will respond more sluggishly, that is, 
the interior temperature will take longer to reach a new equilibrium condition. 

To solve Equation (20) for the temperature distribution T(x,t), it is necessary to specify an 
initial condition and two boundary conditions. We consider the symmetrical plane wall of 
thickness 2L, with a centerline at x=0 (Figure 1). 
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Figure 1:  The 1-D Symmetrical Plane Wall 
 

 

For the typical transient conduction problem, the initial condition is 

T(x,0) = Ti (22) 

and the boundary conditions are 

0
0

=
∂
∂

=xx
T  (23) 

and 

]),([
;

∞
−+=

−=
∂
∂

− TtLTh
x
Tk

LLx

  (24) 

Equation  (22) shows a uniform temperature distribution at time t = 0; Equation (23) reflects the 
symmetry requirement for the midplane of the wall; and Equation (24) describes the rate of 
conductive and convective heat transfer at the surface for time t>0. From Equations (21) to (24), 
it is evident that, in addition to depending on x and t, temperatures in the wall also depend on a 
number of physical parameters. In particular 

T = T(x, t, Ti, T∞, L, k, α, h)     (25) 

The foregoing problem may be solved analytically or numerically. It is important to note 
the advantages that may be obtained by nondimensionalizing the governing equations. This may 
be done by arranging the relevant variables into suitable groups. Consider the dependent variable 
T. If the temperature difference θ ≡ (T - T∞) is divided by the maximum possible temperature 
difference θi ≡ (Ti - T∞), a dimensionless form of the dependent variable may be defined as 

∞

∞

−
−

=≡
TT
TT

iiθ
θθ*  (26) 

Accordingly, θ* must lie in the range 0 ≤ θ* ≤ 1. A dimensionless spatial coordinate may be 
defined as 

L
xx ≡*  (27) 
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where L is the half-thickness of the plane wall, and a dimensionless time may be defined as 

Fo
L

tt ≡≡ 2* α   (28) 

where t* is equivalent to the dimensionless Fourier number, Equation (18). 

Substituting the definitions of Equations (26) to (28) into Equations (20) to (24), the heat 
equation becomes 

Fox ∂
∂

=
∂
∂ *

*
*
2

2 θθ   (29) 

and the initial and boundary conditions become 

θ∗(x∗,0) = 1    (30) 

0
*
*

0*

=
∂
∂

=xx
θ   (31) 

and 

*),1(*
*
*

1*

tBi
x x

θθ
−=

∂
∂

=

 (32) 

where the Biot number is Bi = hL/k. In dimensionless form the functional dependence may now 
be expressed as 

θ∗ = f(x∗,Fo, Bi)    (33) 

Comparing Equations (25) and (33), the considerable advantage associated with casting 
the problem in dimensionless form becomes apparent. Equation (33) implies that for a 
prescribed geometry, the transient temperature distribution is a universal function of x*, Fo, and 
Bi. That is, the dimensionless solution assumes a prescribed form that does not depend on the 
particular value of Ti, T∞, L, k, α, or h. Since this generalization greatly simplifies the 
presentation and utilization of transient solutions, the dimensionless variables are used 
extensively. 

 

Geometry #1: The 1-D plane wall with convection at the boundary 

Exact, analytical solutions to transient conduction problems have been obtained for many 
simplified geometries and boundary conditions and are well documented. Several mathematical 
techniques, including the method of separation of variables, may be used for this purpose, and 
typically the solution for the dimensionless temperature distribution, Equation (33), is in the 
form of an infinite series. However, except for very small values of the Fourier number, infinite 
series may be approximated by a single term and the results may be represented in a convenient 
graphical form. 

Exact Solution 

Consider the plane wall of thickness 2L. If the thickness is small relative to the width and 
height of the wall, it is reasonable to assume that conduction occurs exclusively in the x 
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direction. If the wall is initially at a uniform temperature, T(x,0) = Ti, and is suddenly immersed 
in a fluid of T∞ ≠ Ti, the resulting temperatures may be obtained by solving Equation (29) subject 
to the conditions of Equations (30) to (32). Since the convection conditions for the surfaces at x* 
= ±1 are the same, the temperature distribution at any instant must be symmetrical about the 
midplane (x* = 0). An exact solution to this problem has been obtained and is of the form 

 

∑∞

=
−=

1
*2* )cos()exp(

n nnn xFoC ζζθ      (34) 

 

where Fo = αt/L2 and the coefficient Cn is 

 

Cn =  4 sin ζn 
     2ζn + sin (2ζn)      (35) 

 

and the discrete values (eigenvalues) of ζn are positive roots of the transcendental equation 

 

ζn tan ζn = Bi    (36) 

 

The first four roots of this equation are given in Appendix B.3 of the textbook by Incropera and 
De Witt. 

Approximate Solution 

It can be shown that for values of Fo > 0.2, the infinite series solution, Equation (34), can 
be approximated by the first term of the series. Invoking this approximation, the dimensionless 
form of the temperature distribution becomes 

θ∗ = C1 exp (-ζ2
1Fo) cos (ζ1x*) (37) 

or 

θ∗ = θo
* cos (ζ1x*)  (38) 

where θo
* ≡ (To - T∞) / (Ti - T∞) represents the midplane (x* = 0) temperature 

 

θo
∗ = C1 exp (-ζ2

1Fo) (39) 

 

An important implication of Equation (38) is that  the time dependence of the temperature at any 
location within the wall is the same as that of the midplane temperature. The coefficients C1 and 
ζ1 are evaluated from Equations (35) and (36), respectively, and are given in Table 5.1 of 
Incropera and De Witt for a range of Biot numbers. Graphical representations of the one-term 
approximations have been developed and are presented in Appendix D.  Although the associated 
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charts provide a convenient means of solving one-dimensional transient conduction problems for 
Fo > 0.2, better accuracy may be obtained by using the equations. 

Geometry 2 and 3: 1-D radial cylinder or sphere with convection 

For an infinite cylinder (or sphere) of radius ro that is at an initial uniform temperature, an 
exact series solution may be obtained for the time dependence of the radial temperature 
distribution.  Furthermore, a one-term approximation may be used for most conditions. The 
infinite cylinder is an idealization that permits the assumption of one-dimensional conduction in 
the radial direction. It is a reasonable approximation for cylinders having L/ro≥10. 

Infinite Cylinder: Exact Solution 

Exact solutions to the transient, one-dimensional form of the heat equation have been 
developed for the infinite cylinder. For a uniform initial temperature and convective boundary 
conditions, the solution is as follows. 

In dimensionless form, the temperature is 

∑∞

=
−=

1
*

0
2* )()exp(

n nnn rJFoC ζζθ    (40) 

 

where  

Fo=αt/2ro       (41) 

Cn = 2/ζn * J1(ζn)/ (J0
2 (ζn) + J1

2 (ζn)  (42) 

 

and the discrete values of ζn are positive roots of the transcendental equation 

 

ζn* (J1(ζn))/(J0 (ζn)) = Bi (43) 

 

The operators J1 and J0 are Bessel functions of the first kind and their values are tabulated in 
Appendix B.4 of Incropera and DeWitt. 

Infinite Cylinder: Approximate Solution 

For the infinite cylinder, the foregoing series solution can again be approximated by a 
single term for Fo>0.2. Hence, as for the case of the plane wall, the time dependence of the 
temperature at any location within the radial system is the same as that of the centerline. 

The one-term approximation to Equations (40) through (43) is 

 

θ∗ = C1 exp (-ζ2
1Fo) J0 (ζ1r*)  (44) 

or 

θ∗ = θo* J0 (ζ1r*) (45) 
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where θo* represents the centerline temperature 

 

θo∗ =  To - T∞ 
      Ti- T∞ (46) 

and is of the form 

θo∗ = C1 exp (-ζ2
1Fo)  (47) 

 

Values of the coefficients C1 and ζ1 have been determined and are listed in Table 5.1 of 
Incropera and De Witt for a range of Biot numbers. 

Sphere:  Exact Solutions 

Exact solutions to the transient, one-dimensional form of the heat equation have been 
developed for the sphere. For a uniform initial temperature and convective boundary conditions, 
the solution is as follows. 

 

θ∗=   Cn exp (-ζn
2Fo) (1/(ζnr*)) sin (ζnI)   (48) ∑∞

=1n

where  

 

Fo=αt/2ro 

Cn = 4[sin (ζn) - ζn cos (ζn)] 

2ζn – sin (2ζn)     (49) 

and the discrete values of ζn are positive roots of the transcendental equation 

1 - ζn cot ζn = Bi    (50) 

Sphere:  Approximate Solution 

For the sphere, the foregoing series solution can again be approximated by a single term 
for Fo > 0.2. Hence, as for the case of the plane wall, the time dependence of the temperature at 
any location within the radial system is the same as that of the centerline. 

From Equation 59, the one-term approximation is 

 

θ∗ = C1 exp (-ζ2
1Fo) (1/(ζ1r*)) sin (ζ1r*) (51) 

or 

θ∗ = θo* (1/(ζ1r*)) sin (ζ1r*)  (52) 

where θo* represents the center temperature and is of the form 

θo∗ = C1 exp (-ζ2
1Fo)  (53) 
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Values of the coefficients C1 and ζ1 have been determined for a range of Biot numbers. 

 

Multidimensional Effects 
Transient problems are frequently encountered for which two-and even three-dimensional 

effects are significant. Solution to a class of such problems can be obtained from the one-
dimensional results. 

Consider immersing a short cylinder that is initially at a uniform temperature Ti, in a fluid 
of temperature T∞ ≠ Ti. Because the length and diameter are comparable, the subsequent transfer 
of energy by conduction will be significant for both the r and x coordinate directions. The 
temperature within the cylinder will therefore depend on r, x, and t. 

Assuming constant properties and no generation, the appropriate form of the heat 
equation is 

t
T

x
T

r
Tr

rr ∂
∂

=
∂
∂

+
∂
∂

∂
∂

α
1)(1

2

2

  (54) 

where x designates the axial coordinate. A closed-form solution to this equation may be obtained 
by the separation of variables method. Although we will not consider the details of this solution, 
it is important to note that the end result may be expressed in the following form: 

cylinder
Infinitei

wall
Planeii TT

TtrT
TT

TtxT
TT

TtxrT

∞

∞

∞

∞

∞

∞

−
−

⋅
−

−
=

−
− ),(),(),,(

  (55) 

That is, the two-dimensional solution may be expressed as a product of one-dimensional 
solutions that correspond to those for a plane wall of thickness 2L and an infinite cylinder of 
radius ro. For Fo > 0.2, these solutions are provided by the one-term approximationsas well as by 
graphical solutions that are available in standard texts and reference books. 

Results for other multidimensional geometries are available. In each case the 
multidimensional solution is prescribed in terms of a product involving one or more of the 
following one-dimensional solutions: 

solid
initeinfSemii TT

TtxT
txS

−∞

∞

−
−

≡
),(

),(  (56) 

wall
Planei TT

TtxT
txP

∞

∞

−
−

≡
),(

),(   (57) 

cylinder
initenfIi TT

TtrTtrC
∞

∞

−
−

≡
),(),(    (58) 

The x coordinate for the semi-infinite solid is measured from the surface, whereas for the 
plane wall it is measured from the midplane. In using graphical solutions the coordinate origins 
should carefully be noted. The transient, three-dimensional temperature distribution in a 
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rectangular parallelpiped, is then, for example, the product of three one-dimensional solutions for 
plane walls of thicknesses 2L1, 2L2, and 2L3. That is, 

),(),(),(
),,,(

321
321 txPtxPtxP
TT

TtxxxT

i

⋅⋅=
−

−

∞

∞  (59) 

The distances x1, x2, and x3 are all measured with respect to a rectangular coordinate system 
whose origin is at the center of the parallelpiped. 

 

Suggested Calculations and Discussion: 
Refer to this handout, Chapter 3 and Table 4.10 of the Mills textbook, and to the textbook 

by Incropera and Dewitt.  Generally speaking, you will first analyze the data from the pure 
component solids (aluminum and copper).  Assuming all properties of the metal are known, both 
the lumped capacitance theory and the more rigorous theory including spatial conduction effects 
will be used to determine h.  After examining these results thoroughly, the analysis will proceed 
to the results with the alloy metals.  You will assume that some of the metal alloy properties are 
unknown, but that the value of h determined from aluminum and copper solids will hold for the 
alloys of the same geometry.  You will use the experimental data to determine certain properties 
of the metal. 

The instructions below tell you to "calculate this and plot that."  Remember, however, 
that in the oral presentation and technical report that you should arrange tables and figures that 
are easy to follow and to discuss.  Therefore, you may want to combine certain curves and plots 
for ease and clarity of presentation.  Also, your objectives are not merely to produce certain 
tables and plots; your discussion must demonstrate critical thinking and depth of analysis. 

A. Determination of h from transient temperature response in pure solids. For pure 
solids (aluminum and copper), we will consider all physical properties known and 
will determine h. 

Lumped capacitance method 

1. Look up the thermal conductivity (k), the density (ρ), and the specific heat (C) of the pure 
metals. Calculate the thermal diffusivity. 

2. Using the data, calculate, plot, and tabulate the dimensionless centerline temperature as a 
function of time.  Remember to adjust the recorded time to the actual time elapsed after the 
immersion of the solid. 

3. Calculate the Fourier number as a function of time.  

4. Using the lumped capacitance method, determine the best single experimental value of the 
convective heat transfer coefficient h for each metal and each shape.  Compare the values of 
h obtained from each pure solid.  If you also obtained data under free convection conditions, 
use the same analysis to compute hfree and compare these to the values of h obtained from the 
stirred (forced convection) experiments. 

5. Using the best value of h, compute the dimensionless temperature as a function of time and 
plot the results, comparing to the actual experimental data.  How good is this model and the 
parameter h? 
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6. Considering the Biot number, discuss whether the lumped capacitance approach seems valid 
to determination of h. 

Analysis with convection plus internal conduction 

1. For each experiment, calculate the Fourier number from the experimental data.  Locate the 
regime where the truncated (one-term) solutions given in this handout are valid. 

2. Linearize the one-term solution, and plot the data.  Perform linear regression to determine C1 
and ζ1.  For a given shape, how do your values of these two parameters compare with 
tabulated values?  Do you values of C1 and ζ1 conform to the analytical relation (e.g., eq. 41).   

3. From the value of ζ1, compute the Biot number  and then the heat transfer coefficient h.  
Tabulate h for each shape and each type of convection, forced and free.   

4. Compare the values of h as obtained from the lumped capacitance and spatially-dependent 
analyses.  Discuss. 

5. Search the texts and literature for a method of estimating h, or for other experimental data.  
How do your results compare to other measurements or estimates of h? 

 

B. For alloys and other materials, we will consider h known and will compute 
unknown physical properties (k or c) of the alloys. 

Lumped Capacitance Method 

1. Determine or find the density for the alloys (stainless steel and brass) and plastics. 

2. Use the best known value of h from experimental data on pure solids from part A, and 
use the lumped capacitance method to determine c (the specific heat) for these materials. 
Based on what is known from Part A, is this a valid method to determine c?  If possible, 
obtain literature values for c and compare to your experimentally-determined values. 

 

Analysis with convection plus internal conduction 

1. Now with the best values of h and c, use the spatially-dependent solutions to determine k, 
the thermal conductivity of the alloys. Do this by determining C1 and ζ1 from linear 
regression of the data, and from ζ1 determine the Biot number and hence k. 

Other points for analysis and discussion: 

1. Are end effects important in the cylinder? For situations such as the cylinder, use the 
method of multidimensional effects to calculate the desired properties. 

2. Use correlations or other means to calculate the heat transfer coefficient. What could be 
done to vary h?  What can be done to decrease Bi? 

3. Compare any values of c or k that you compute to literature (handbook) data.  

4. Determine the conductive and convective resistances to heat transfer. Which is dominant 
in each case? 
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5. Determine the difference between the centerline thermocouple temperature and the water 
bath temperature. Make adjustments to correct any difference and explain the reasons for 
the difference.  

6. Explain the trend of the temperature versus time data.  

7. Explain what the plots of dimensionless time are showing. 

8. Explain the trends or characteristics of the different solids and materials.  
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