
Hyper-Polynomial Hierarchies and the NP-Jump

Stephen Fenner
�

University of Southern Maine
Steven Homer

�

Boston University
Randall Pruim

�

Boston University
Calvin College

Marcus Schaefer
�

University of Chicago

December 19, 1997

Abstract

Assuming that the polynomial hierarchy (���) does not collapse, we show
the existence of ascending sequences of ptime Turing degrees of length �	��
�
all of which are in ���������� and uniformly hard for ��� , such that succes-
sors are ��� -jumps of their predecessors. This is analgous to the hyperarith-
metic hierarchy, which is defined similarly but with the (computable) Turing
degrees. The lack of uniform least upper bounds for ascending sequences of
ptime degrees causes the limit levels of our hyper-polynomial hierarchy to be
inherently non-canonical. This problem is investigated in depth, and various
possible structures for hyper-polynomial hierarchies are explicated, as are
properties of the ��� -jump operator on the languages which are in ����������
but not in ��� .

�
Computer Science Department, University of Southern Maine, Portland, ME 04104. E-mail:

fenner@cs.usm.maine.edu. Supported in part by the NSF under grants CCR 92-09833 and CCR
95-01794.�

Computer Science Department, Boston University, Boston, MA 02215. E-mail:
homer@cs.bu.edu. Supported in part by the NSF under grant NSF-CCR-9400229 and by the Math-
ematical Institute, Oxford University.�

Computer Science Department, Boston University, Boston, MA 02215. E-mail:
rpruim@calvin.edu. On leave from Department of Mathematics and Statistics, Calvin College,
Grand Rapids, MI 49546.�

Computer Science Department, University of Chicago, Chicago, IL 60637 . E-mail: schae-
fer@cs.uchicago.edu. Supported in part by the NSF under grant CCR 95-01794. This work was
done while visiting Steve Fenner at the University of Southern Maine.

1

1 Introduction

Since its definition in 1976, [Sto77] the polynomial hierarchy has been used to
classify and measure the complexity of infeasible combinatorial problems. It has
been hugely successful in this capacity, providing the main framework for com-
plexity classes above polynomial time within which most subsequent complexity
theory has taken place. The classes in this hierarchy, particularly in the first few
levels of the hierarchy, have been studied extensively and their structure carefully
examined. In this paper we consider extensions of the polynomial hierarchy into
extended hierarchies, all lying within ���������	� . Our aim is to provide tools for a
further understanding of many complex and interesting �
�������
� problems which
lie just outside �� as well as to gain further understanding of the intricacies of
ptime reductions, degrees and the ��� -jump operator. The ��� -jump has proven
to be a fundamental and useful tool in complexity theory. It is the central concept
in the definition of the high and low hierarchies. Its properties have recently been
explored by Fenner [Fen95].

The polynomial time hierarchy was defined and motivated in analogy with the
arithmetic hierarchy first studied by Stephen Kleene. The structure and many key
properties of the classes in the polynomial hierarchy are similar to those in the
arithmetic hierarchy. Furthermore various concepts and definitions originating in
the arithmetic hierarchy have been important in illuminating interesting aspects of
the complexity theory of problems in the resource bounded setting. For example,
the alternating quantifier characterizations of the levels of both the arithmetic and
polynomial hierarchies provides a simple and useful method for placing problems
within levels of these hierarchies. One of the deepest and most elegant develop-
ments in this area of mathematical logic was the extension of the arithmetic hier-
archy to the hyperarithmetic hierarchy by transfinite iteration of the Turing jump
operator and the subsequent development by Kleene, Spector and others of the
properties of this hierarchy. (See, for example, [Sac90], [Rog67].) Our work here
intends to develop an analogous resource bounded framework for problems lying
within �
�������
� and above �� . In this work we define and (under reasonable as-
sumptions) prove the existence of hyper-polynomial hierarchies formed by transfi-
nite iteration of the ��� -jump operator and study their properties and the properties
of the ��� -jump operator in the realm between �� and �
�������
� .

Assuming the polynomial hierarchy is infinite, Ambos-Spies [AS89] has shown
the existence of a rich, infinite partial order of degrees in ���������
� above �� . In
this paper we extend his techniques to define infinite, NP-jump-respecting hierar-
chies of length ������ (the first nonconstructive ordinal) in �
�������
� above �� ,
which naturally extend the polynomial hierarchy. This shows that if �� does
not collapse then not only is there a rich and complex structure to the degrees in

1

���������
��� �� , but that �
�������
� is in some sense “very far” from �� , since not
even ������ many ��� -jumps suffice to get from �� to �
�������
� . We are hopeful
that the classes of problems hard for levels of these hierarchies will also provide a
new classification scheme for interesting hard combinatorial problems, such as the
��� -complete languages, which lie in �
�������
� but above �� .

The major technical obstacle encountered in proving the existence of an ex-
tended polynomial hierarchy is the lack of uniform least upper bounds for ascend-
ing sequences of ptime degrees. This fact was noted by Ambos-Spies [AS89], and
makes the definition of our hierarchies non-canonical at limit levels, giving rise
to several possibilities for the properties of the extended hierarchy. This situation
is explored in depth here and various possible structures for the hyper-polynomial
hierarchy are explicated. For example, under reasonable assumptions about the
structure of uniformly hard sets for �� , we prove that there is a problem which is
a uniform upper bound for �� but is not such a bound for any ptime non-constant
alternation class. Such a problem would lie “just above” �� , and a careful ex-
amination of the proof of Toda's Theorem [Tod91] indicates that the ��� -complete
languages may fit this description.

Outline. After providing the necessary background on constructive ordinals
and uniform upper bounds in Section 2, we constuct in Section 3 an infinite hi-
erarchy of languages of length � ���� in ���������
� above �� . This hierarchy is
proper provided that �� doesn't collapse. In Sections 4 and 5 we investigate the
extent to which such a hierarchy is or is not canonical by asking where within
���������
��� �� such a hierarchy can be placed. This investigation leads to the
differentiation between two types of uniform upper bounds, slow and fast. Finally,
in Section 6 we present some directions for further investigation.

2 Preliminaries

We identify � , the natural numbers, with
� �

, the set of all binary strings, via the
usual dyadic representation. We let � be the empty string and denote by ���	�
����� ��� � ��� � �

a standard ptime-computable, ptime-invertible bijection such that
���
��������� , and ��������� �!� for all �#"��� .

We fix a standard, acceptable enumeration $&%'�($ � �($*)'�
+
+
+ of nondeterminis-
tic oracle TMs, and a standard enumeration ,-%.�(, � �(,/)'�
+
+
+ of deterministic ptime
oracle TMs, where for each 0 , 12,4365�7 8:9<; 8>=2? enumerates the set of all oracle com-
putations running in time @ 5BA 0 for all oracles and inputs of length @ . Often we
will abuse notation and associate with a set (language) its characteristic function.
Thus �DCFE if and only if E�G��BHI6�KJML�G��NHO�QP . We write ,/RSUTWVYX[Z if
,]\R G��BH^�_Z�G��BH and ,/R accesses the oracle T only in a manner allowed by the

2

reduction type V X . For the most part we are interested in V��� - and V � � -reductions.
As usual, �M%'��� � ���M)'�
+
+
+ is a standard acceptable enumeration of the computable
partial functions (as in [Soa87]).

Definition 2.1 For any set T�� � �
, we define, in the spirit of Balcázar, et al.

[BDG88], �
G T�H � 1 �
	 ��������<��� $ \R G��BH has an accepting

path of length V���; +
We call

�
G T H the � � -jump of T . It is complete for � � \ under (unrelativized)

V � � -reductions.

It is easy to check that
�
G��6H lifts to a well-defined operator on the V��� degrees.

We denote by
���
G��6H the � -fold iteration of

�
G��6H . Let � be a ptime alternating oracle

Turing machine such that for all T and � , � � +�� \ G��
�
���BH ���

�
G T H , the canonical

G ���� H \ -complete set, and write � \� G��NH for � \ G��
�
���BH . We assume without loss of

generality that � has been chosen so that for any oracle T , � \ G��
�
���BH only makes

oracle queries of length V�� ��� .

2.1 Kleene's
Here we give a brief definition of Kleene's partial order, �"!]�$#&% � , of all notations
for constructive ordinals. Here !'� � �

and #(% is a binary relation on ! . The
information in this section comes chiefly from Sacks [Sac90], but see also [Rog67].
Our development is slightly different from, but entirely isomorphic to, Kleene's
original definition. Define)�*,+$+ G��BH �-�'� and .0/01�G��NH � P�� . We define �"!]�$#2% � by
transfinite induction. It is the least partial order such that the following hold for all3 ��	 C � � :

1. �YC4! .

2. If 3 C4! , then)�*,+$+ G 3 H C5! and 3 #(%6)�*7+$+ G 3 H .
3. If �MR is total, 8:9<;>=<? G
�MR
H@�A! , and �MR.G�� HB#(%C�MR G<P2HB#(%C�MR.G
D HE#F%F�
�
� ,

then .0/01�G
	.H C4! and � R G�@�H�# % .G/01�G
	.H for all @[C � � .
4. #(% is transitive.

It can be shown that �"!]�$# % � is well-founded, and hence functions with domain !
can be defined by transfinite recursion. For all 3 CH! we define I 3 I , the unique
ordinal for which 3 is a notation, in this way:

1. I �<I �-� .

3

2. If 3 C4! , then I�)�*,+$+ G 3 H IY� I 3 I A P .
3. If .0/01�G
	.H C5! , then I�.G/01�G
	.H I ��)�* ��� I:�MR G�@�H I .

Each element of ! is the notation for a constructive ordinal, and each constructive
ordinal has at least one (but usually more than one) notation. Also, if 3 #&%�� , then
I 3 I # I�� I , but not conversely. The set of all constructive ordinals is � � �� , which
is the least non-constructive ordinal, and is countable.

The structure of �"!]�$#F% � is a tree, where (infinite) branching occurs at every
limit level. Some branches (maximal linearly ordered subsets) peter out well be-
fore reaching height ������ (in fact, there are branches of height only �)), but some
branches do reach height � ���� . The most important fact about ! is that one can
construct objects via “effective transfinite recursion” up to �	���� by using notations
from ! . We will do just that in Section 3, where we define sets �	� in �
�������
� for
all 3 C4! such that 3 #F%�� implies �
� V � � �
� , and ���������� ��� �

�
G��
�.H."V � � �
� . (This

last inequality assumes that �� is infinite.) This mirrors the classical construction
of the hyperarithmetic hierarchy.

2.2 Uniform Upper Bounds and Padding Arrays

In computability theory, it is a simple matter to define a canonical join of a uni-
vormly enumerable sequence of sets which is the least uniform V � -upper bound
(in fact, the least uniform V � -upper bound) for the sequence. In complexity the-
ory this is not possible, since there is no least uniform V��� -upper bound [AS89],
[Lad75]. Furthermore, the most natural join operator has the unfortunate (for our
purposes) property that the join of a collection consisting of a complete language
for each level of �� is �
�������
� -complete. In our case we are interested in un-
derstanding the problems which lie between �� and �
�������
� and we would like
the join to be as close to �� as possible. Therefore, we must work instead with
uniform upper bounds, defined below, which correspond to possible choices for a
nicely behaved join operator.

Definition 2.2 Given a countable collection � � 12E 5 � 0-C � ; of languages, a
uniform VYX -upper bound for � is a language � such that there is a computable
function �I � � � with the property that for all 0 , ,�� � 5 � E 5 VUX�� .

We are primarily interested in uniform upper bounds for �� and similar classes.
A uniform upper bound for �� is a uniform upper bound for 1

� 5 G�� H ��0/C � ; .
Since for any 3 C ! , 1��IC ! � �4#F% 3 ; is computably enumerable in 3 , it also
makes sense to talk about uniform upper bounds for 1�� C4! � �F#2% 3 ; .

4

Definition 2.3 For any computable function � � � � � � and any countable
collection of languages ��� 12E 5 �N0 C � ; , the padding array for � via � is the
language defined by

T � 1 �
� ��� � P��N� �.� C E ��� @ � ��G
� � � ��� H�; +
Two types of padding arrays are of special interest.

1. If for every � , ��G
� ��� H is monotone non-decreasing and � ���� � � �
� 7 � � is ptime

computable, and for every @ ��G�� ��@�H is monotone non-decreasing, then we
say that T is a ptime padding array via � .

2. If in addition, there are constants � and � such that for all � , ��G
� ���BH #
�B� ��� 	 then we say that T is a ptime padding array of degree � via � .

A ptime padding array for �� is a ptime padding array for 1
� 5 G�� H �.0 C � ; .

As the following lemma shows, padding arrays are particularly nice uniform
upper bounds.

Lemma 2.4 If T is a ptime padding array for � � 12E 5 �'0 C � ; via � then T is a
uniform V � � -upper bound for � .

Proof. The map
 5 � �� ��0���� � � 5�7�� �� � P��N� is a many-one reduction from E 5 to T .�

As a partial converse to the result above we have the following lemma.

Definition 2.5 A function � is nice if � is monotone non-decreasing, unbounded,
and can be computed in �^G�@ A ��G�@�H�H steps.

Lemma 2.6 Let T be a uniform V X -upper bound for � � 12E � � �IC � ; via � . If
Z is the ptime padding array for � via � , and � is a nice function such that for all
�^, \� � 8 � G��NH halts in fewer than � G�� � � � � H steps, then ZFV X T .

Proof. We describe a reduction from Z to T . On input �4� �
� ������P�� � :
1. If � "��� G
� � � � � H , then � "C T . This can be determined in polynomial time

because � is nice.

2. If �U��� G
� � � � � H , then compute , \� � � � G�� H . Since �U��� G
� ��� H is greater than

the number of steps required to compute , \� � � � G���H , this can also be done in
polynomial time.

5

�

Thus, in particular, every ptime padding array is a uniform V � � -upper bound
for �� , and every set which is a uniform V X -upper bound for �� is V X -above
some ptime padding array for �� .

3 A Hyper-Polynomial Hierarchy

We now come to the construction of an extended polynomial hierarchy. We show
how to “embed”

� �"!]�$#(% � into � ���������	�Y�
V � ��� in such a way that successors
correspond to � � -jumps and limits to uniform upper bounds. We will call such an
embedding a hyper-polynomial hierarchy, or � - �� � . More formally, we construct
a set � such that if � � denotes 1>� � � 3 ���B� C �#;*� � � + � G 3 ���NH , then � satisfies
the following properties.

(P1) � C ���������
� .

(P2) ��� � � .

(P3) � ��������� ��� �
�
G�� � H for all 3 .

(P4) For any 	 with .G/01�G
	.H]C ! , ������� � R � is a uniform upper bound for 1 � � �3 #(% .G/01�G
	.H�; .
(P5) If �� is infinite, then for any 3 C4! , �
��������� ��� �

�
G��
�.H."V � � �
� .

Although �
� is defined here for all 3 C � � , we are really only interested in ���
when 3 C ! . � will be constructed by transfinite induction over ! . We will say
that � is universal for this hyper-polynomial hierarchy.

To ensure the last two properties, we build � ����� � R � so that ��
	�
 � ������

is infinite.
At the same time, we must code into ������� � R � all � � for 3 #(% .G/01�G
	.H . We do the
latter by making � ����� � R � a uniform upper bound of 1 ��� � ��� � �]C � ; , which we do
by making ������� � R � a ptime padding array for 1 � � � ��� � � C � ; . Now to get �� to
separate over � ����� � R � we delay coding each � � � ��� � into � ����� � R � until we notice that
some designated V � � -reduction , 5 fails to reduce some

�
-level of the hierarchy

over � ����� � R � to the previous level (say, the G
� A P2H st to the � th). If we can do this
for all 0 and � , we are done.

Assuming by transfinite induction that ��
	�� � �����

separates for all � , this can
be accomplished by delayed diagonalization. We are guaranteed to kill off our

�
Strictly speaking, this may not be an embedding, since we will preserve comparability but not

necessarily incomparability.

6

reduction , 5 just by waiting long enough before coding each level: � ����� � R � will
“look like” � � � ��� � and since �

��� � G�� � � ��� � � "V � � � � � ��� � , , 5 will eventually make a
mistake. The particular “delayed diagonalization” strategy employed here is simi-
lar to those used by Ambos-Spies [AS89], which in turn are based on well-known
techniques of Ladner [Lad75].

We now define � formally by simultaneous transfinite induction over ! and
length-decreasing recursion. In what follows, 3 ��	 ���[C � � are arbitrary and � is a
fixed ptime alternating oracle Turing machine such that for all T and � ,
����+���\ G��

�
���NHY� �

�
G T�H , the canonical G ���� H�\ -complete set. We write � \� G��BH for

� \ G��
�
���NH and assume without loss of generality that � has been chosen so that

for any oracle T , � \ G��
�
���NH only makes oracle queries of length V � � � . The limit

case is as explained above. We need to perform the diagonalization via a look-back
technique in order to keep � in ���������	� —this explains the stringent bounds on
0 , � , and � in 3(b).

1. � � G��BH ��� (thus � � � �).
2. � ��������� ��� G��NH � � 	��� G��BH (thus � ��������� ��� �

�
G��
�.H).

3. � ����� � R � G���� ��� �(H���� , unless � is of the form � � P	� , where
 is least (if it exists)
such that

(a) �MR.G�� H ���MR G<P2H �
+
+
+ ����R G���H all halt in a combined total of V�
 steps, and

(b) there is “sufficient evidence” that

G � � H �
	�
 � ��� ���� � "V � � �

	�
 � ������ +
We will say there is sufficient evidence if G � 0 #�.�<= � � H�G � �E# � � � H�G���� #
.�<= �
 H such that

�
	�
 � ������	� � G���H "� ,

���
 � ���� ��5 G�� H +
If such a least
 exists and �&�-� � P	� for some � C � � , then we let

� ����� � R � G���� ��� �(H�� � � � ��� � G���H +
In this way, ����+ � ����� � R � G���� ��� �(H will be a padded version of ��� � ��� � .

It is important to observe that the value of
 is 3(b) above only depends on � and
not on � .

7

Theorem 3.1 The set � satisfies properties (P1)–(P5) listed above.

Proof. It is not too difficult to see that � C �
�������
� : the recursive aspects of
the definition are all length-decreasing—due to the stringent bounds on 0 , � , and
� in 3(b)—and the rest of the algorithm clearly needs no more than a polynomial
amount of space. Properties (P2) and (P3) are also clearly satisfied.

We prove properties (P4) and (P5) simultaneously by induction over �"!]� #&% � .
Actually, we need to prove a stronger property than (P5), namely:

(P5a) If �� is infinite, then ��
	 �

is infinite.

Choose an arbitrary 3 C ! and assume that properties (P4) and (P5a) hold for all
�
� with �F# % 3 . There are three cases:

Case 1: 3 ��� . Property (P4) holds vacuously. Since ���O� � , property (P5a)
holds.

Case 2: 3 �-)�*7+$+ G��
H . Again, property (P4) holds vacuously for 3 . Since ��
	 �

is
infinite and � � �

�
G��
�(H , clearly ��

	 �
is infinite as well.

Case 3: 3 �-.0/01�G
	 H . Note that �MR is total. For property (P4), we will only show

that � ����� � R � is a uniform upper bound for
�
� � � ��� ��� � =�� � . This suffices, be-

cause for any �(#(%6.0/01�G
	.H , there is a � such that �F#F%6�MR.G�� H and hence

�
�:V � � � � � ��� � V � � � ����� � R � �
and one could furthermore find such a reduction effectively in � and .G/01�G
	.H ,
using certain basic facts about �"!]� #2%S� .
We first show that for every � , the
 mentioned in case (3) of the definition of
� must always exist. Assuming otherwise, let � be least such that no such
corresponding
 exists. Then ������� � R � G���������� ��H�� � for all �	��
 � and all � ,
so we never code � � � ���� � into � ����� � R � . This makes � ����� � R ��� � � � � � ����� � � , or
if � � � then ������� � R � � � . Now by our inductive hypothesis, ��

	�
 � �����
is

infinite, so in particular, for all 0(��� , there is a � such that

�
	�
 � ������	� � G���H "� ,

� �
 � ���� ��5 G�� H �
and hence
 must exist by case 3(b) in the definition of � .

The fact that
 exists for all � immediately implies that

� ��
	�
 � ������

is infinite, via an argument similar to the one just given, and

8

� for all � , a padded version of ��� � ��� � is coded into � ����� � R � , and thus
� � � ��� � V � � � ����� � R � via the mapping �

�� ��� ��� � ��� � P	� � , where
 G���H is
the
 corresponding to � .

This concludes the proof.
�

4 Uniform Upper Bounds for ���

In this section and the next we investigate the extent to which the construction of
extended hierarchies in Section 3 is canonical. Since uniform upper bounds can be
thought of as non-canonical joins, it is inevitable that, at least level by level, such
a hierarchy cannot be canonically defined. As we shall see, the fact that we were
able to use ptime padding arrays of bounded degree (in fact, degree 0) for all of the
uniform upper bounds in our construction allows for considerable manipulation of
the structure of our extended hierarchies.

4.1 Quick Uniform Upper Bounds

The observation that all of the uniform upper bounds in our construction in the
previous section were actually ptime padding arrays of degree 0 prompts the fol-
lowing definition. We will call a uniform V�X -upper bound T for �O� 12E 5 �'0 C � ;
quick if there is a polynomial �MG�@�H such that for each E 5 there is a V X -reduction
, 8 E 5 VYX�T which runs in time �MG�@�H . A uniform VUX -upper bound which is not
quick is slow. All ptime padding arrays of bounded degree are quick uniform upper
bounds.

Quick uniform upper bounds for �� can also be characterized in terms of
alternating time, as defined in [CKS81]. For this we define the class

� � � � � � to
consist of all languages accepted by an alternating Turing machine in polynomial
time and at most ��G�@�H �IP alternations, beginning in an existencial state. (Note that
this really is ��G�@�H��!P alternations and not �/G���G�@�H�H .)
Lemma 4.1 A set T is a quick uniform VUX -upper bound for �� if and only if it is
VYX -hard for

� � � � � � for some nice � .

Proof. If T is a quick uniform VUX -upper bound for �� , then there is a com-
putable function � and a polynomial � such that ,�� � 8 �

� 8 G�� H V X T in time �MG�@�H .
Let ��G�@�H be the largest � such that all of � G�� H � � G<P2H �
+
+
+ � �BG�� H can be computed in
less than �MG�@�H steps. Then � fulfills the conditions.

9

For the other direction let T be V X -hard for
� � � � � � for some � as above. Con-

sider the set Z � 1 ��� ��� � P�� �# � C
� 8 G�� H for some � # ��G � H�; . Z C � � � � � � ,

so Z VYX]T . On the other hand
� 8 G�� H-V � � Z via a reduction that can be found

effectively.
�

The following theorem says that quick uniform upper bounds for �� cannot
be “just above” �� .

Theorem 4.2 If T is a quick uniform upper bound for �� , then there is a ptime
padding array (hence also a uniform upper bound for ��) Z such that

�
G Z^H V���

T .

The proof of Theorem 4.2 makes use of the following lemma.

Lemma 4.3 If T and Z are ptime padding arrays for �� via nice functions � and
� respectively and there is some polynomial � such that

��G
� A P'��� H V � G � G
� ��D H A � G�� ��� H�H
then

�
G Z/H V � � T .

Note that for any � , � G
� ��D H A � G�� ��� H is a polynomial in � of the same degree
as � G�� ��� H . So to satisfy the requirements of the lemma, T must be a ptime padding
array of bounded degree. Thus, we have the theorem only for quick uniform upper
bounds for �� . It remains open if there are slow uniform upper bounds for ��
which cannot compute the jump of any other (necessarily slow) uniform upper
bound for �� .

Before proceeding to the proofs of Theorem 4.2 and Lemma 4.3, we give a
couple of examples.

1. If T is a padding array for �� via ��G
� ��� H ��� R A D
�

or ��G
� ��� H ��� R A
D) � , where 	 is a constant, then

�
G T�H � � � T , so T is a fixed point of the

��� -jump.

2. If T is a bounded degree ptime padding array for �� via � , then the ptime
padding array for �� via �BG
� ��� H � ��G
� A P'��� H satisfies

�
G Z^H V � � T .

Proof of Theorem 4.2. If T is a quick uniform upper bound for �� then there
is a bounded degree ptime padding array for �� � , such that � V��� T . By the
Lemma 4.3 there is another ptime padding array for �� , Z , such that

�
G Z^H V���

� V � � T .
�

10

Proof of Lemma 4.3. We describe an algorithm for a reduction
&
�
G Z^H V � � T .

Remember that
�
G Z^H�� 1 �
	 ��� ���<<� $ �R G��NH accepts � in V � steps ; . For this

proof we will use the fact that � -QBF � 1 ������ is a true
� � � formula ; � � � ��� G�� H .

WLOG we can assume that
�� , the encoding of the formula � as a binary string

satisfies � ���	
HD .
Algorithm for
 G�� H :

1. On input � , first determine 	 , � , and � such that ��� �
	 ��� ��� �� . If none such
exist, then ��"C

�
G Z/H , so
 G��BH can be chosen to be some fixed element of�Z � � � �#Z .

2. We need to find a QBF
�

, such that $ �R G��BH accepts if and only if
�

is true.
Furthermore, we must in time polynomial in @ � � � � be able to produce a
string � where

�
is coded into Z . For this we need the following observations

about the queries made during the computation $ �R G��BH (along any path).

� @O�C� � � �C���
	 ��� ��� �$�
 � � � � � .� Therefore, if $ �R G��BH makes queries to any strings � , then � �7� # �]V
� � � � @ .� If � does not have the form � � �

� 7 � � P �� , where � is a
���� formula and

� ���� � � , then we know that �I"C#Z , so we could modify $ R so that it
answers such queries “internally” (via a syntax check) without actually
querying the oracle.� If � � � � �

� 7 � � P �� , then we will say that � is a query of type G
� ��� H
about � . Note that � G
� ��� H�# @ , since � G
� ��� H�# � �7� V � � � � @ .� Let � be the query of type G
� ��� H such that � is maximal among the
queries. Then all of the queries in the simulation of $ �R G��NH not handled
by the syntax check above are about

���� formulas with codes of length
V @ .

3. Using the observations above, we see that determining whether $ �R G��NH ac-
cepts is equivalent to a formula of the form

� � ���� ���� ���3�	� � � 5 COZ�

 � 3 5 �� G
	 ����� � � � ��� � 3 H�

where �� codes a path in the non-deterministic computation tree, �� codes a
sequence of queries to B, �3 codes answer bits to those queries, and

�
is a

polynomial time predicate which checks that along path �� , $ �R G��NH makes
queries to �� if the answers (to previous queries) are �3 and halts in an accept-
ing configuration after at most � steps.

11

By the comments above, each predicate
� � � 5 CSZ�

 � 3 5 is

�������� � � , so that�� CSG
� A P2H -QBF ��� $ �R G��BH accepts.

4. Finally,
 G���HY� � � �
��� � 7����	 � � P �� . Notice that � �� �BV �/G�@�
>H and that � G
� ��D H V

� G
� ��� H4V @ , since there was a query of type G
� ��� H . So ��G
� A P'��� H]V
��G
� A P'� �^G�@�

H�H V �/G���G
� A P'��@�H�
.H # �/G�G��MG � G
� ��D H A �BG�� ��@�H�H�H�
 H V �/G��MG�@ A
@ 	 H
 H , where � is the degree of � G�� ��� H . Therefore,
 G�� H can be computed in
time polynomial in @ .

�

4.2 Slow Uniform Upper Bounds

We will now construct a set T which is a slow uniform upper bound for �� , i.e.
it is an upper bound for �� , but there is no uniform time bound on the reductions
from each level of the hierarchy to T . For this proof we need to assume more than
that �� separates. We present one hypothesis which is sufficient; modifications
are possible.

This hypothesis is expressed in terms of a notion of subexponential advice and
says roughly that no level of �� can be computed from a previous level, even with
the additional aid of polynomial time reductions with subexponential advice. By
increasing the padding, we can modify our construction of a � - � � to include
slow uniform upper bounds, if they exist.

We begin by defining what we mean by subexponential advice. For this, we
use definitions of advice classes and reductions which are based on oracle access
to the advice string. This definition is equivalent to the usual one for defining
common classes such as �� ��� ��� , �� ��� � , etc. The motivation for our definition
comes from the observation that, in defining ���� for some function class � such
that � "��� � , the usual definition in terms of languages (see [BDG88]) allows
the accepting machine not only to get advice from the advice string, but may also
provide it with greater resource bounds, since the length of the advice string counts
toward the length of the input. Thus, for example, an advice string consisting
solely of a super-polynomially long sequence of 0's becomes potentially useful,
not because it contains any information, but simply because of its length. Our
definition avoids this problem.

Definition 4.4 (Superpolynomial advice) Let � be a class of functions. For any
string � , let �J G��NH be the smallest finite set for which � is an initial segment of the
characteristic sequence i.e., �J G��BH � 1>0 � 5 � P ; .

12

We write T V��
���� Z if there is a an oracle Turing machine � which runs in

polynomial time regardless of oracle and a function � � � 1 � �>P ; � in � such
that

� COT � � � ����	
 ��� � � �� � � G��NH accepts +
and write T C ���� if T V �

���� � .
This is equivalent to saying that access to the advice comes by querying bits of

the advice string, � G�@�H .
Similar notions could be defined for other classes of Turing machines as well.

For �I � � � , let

�� ��� �� 1�]G � @�H�� ��G�@�H$� V ��G�@�H�; +
The classes

�� ��� ��� � � � ��.@
�
� and

�� ��� � � � � �����. <= G�@�H
have their usual meanings, since using the advice oracle, one can calculate the ad-
vice string as a preprocess, and using the advice string one can simulate the queries
to the advice oracle by checking bits of the advice string. Similar statements can
be made whenever the machines are capable of querying the entire advice oracle
bit by bit. Also note that ���D � is the class of all languages, since we can use D �
bits to code the membership of all the strings of length @ .

We can now state a hypothesis sufficient to demonstrate the existence of slow
uniform upper bounds for �� .

Hypothesis � . The polynomial hierarchy does not collapse under polynomial time
reductions with subexponential advice in the following sense:

G����*� � H�G � � H�G � 0�H�G�� � H
� 8 G�� H."V�� ������� �

��� � �)����� � � G�� H +

Notice that Hypothesis � is (a priori) slightly stronger than the statement that

G � � H �� "�! #"%$'&)(+* � �-,�./ G
� �
G�� H�H �

where

'0 � 	
� ��� 1�� G � � ��� H � � G�@�H$� �21-G
D � � H�;

and
 " $'&)(-* � �-,�./ G

� �
G�� H�H � 12E�� E�V � � �)3 � R ��

� �
G�� H�; +

13

Theorem 4.5 If � is nice, then
� � � � � � contains a slow uniform V � � -upper bound for

�� , unless � fails.

Corollary 4.6 If � is nice, then
� � � � � � contains a uniform V � � -upper bound for ��

that is not hard for any
� � � � � � (with � nice), unless � fails.

Proof. We define T and verify the properties.

T � 1 � � � � �
�) ��� � P��] � C

� �
G�� H�; +

From the definition of T it is clear that T is a uniform V � � -upper bound for �� . If
T were quick, then we would have

G�� 0�H�G � � H
� 8 G�� H C ������� � \ G�@ 5 H +

We show that this contradicts Hypothesis � .
So suppose T is quick, and fix �/� � . Let ����� � .�<=) 5	 . Since T is quick,

there is an oracle Turing machine ,^R such that ,/R]
� 8 G�� H V � � T in time @ 5 . We

will show that ,^R can be used to get
� 8 G�� H V�� �) ���� � � G�� H .

Consider an input � to , R . On input � the reduction , R can only make queries

� of length less than @ 5 where @ � � ��� . So if � �-� � � � �
�) �
� � P�� (and only queries of

this form are interesting) we know:

� V�.�<=�.�<= @��6.�<= .�<= G�� � � A D H A .�<= 0(� (1)

in particular, � #�.�<=�.�<= @ A .�<= 0 . This leads us to define the sequence of sets � �
as follows:

� � � 1 ��� ��� � B� � � # @ 	 �) � � C
� �
G�� H�;

Simulate , �
� �R G��BH and assume access to � � �� and to
� � G�� H . Whenever the com-

putation tries to make a query � to the oracle, do the following:

1. If � does not have the form � � � � �
�) ��� � P�� for some � and � , answer the query

negatively, else fix � and � such that � �-� � � � �
�) � � � P�� .

2. If � � �,# @ 	 �) use � to decide whether �OC
� �
G�� H and answer the query to �

accordingly (note that � #H.�<= .�<= @ A .�<= 0 since � �7� # @ 5).
3. If � � ��
 @ 	 �) , then using inequality (1),

� V .�<= . <= @��6.�<=�.�<= G�� � � A D H A . <= 0
V .�<= D 0� � �[+

So we can use the
� � G�� H oracle to decide � C

� �
G�� H .

14

Thus, , R can be simulated making use only of � � and
� � G�� H . Furthermore, since

��� ��� � C � � implies that � � � #K@ 	 and � #'.�<=�.�<= G�@�H A 0 , we can code the
information about � � into a string of length D � � . So from our assumption that T is
quick it follows that

G � � �H� H�G�� � H�G � �]� � H
� 8 G�� H V�� ������� �

� � � � � �) ���� � � G�� H
and therefore that � fails.

To this point we have not concerned ourselves with the complexity of T . The
proof just given can, however, be improved to get the upper bound required by the
statement of the theorem. Given any nice � , we can obtain a slow uniform upper
bound for �� which is in

� � � � � � as follows. Let ��G
� H be the smallest � for which
��G�� H �H� . We will use � for additional padding:

T � 1 � � � ��
�) �
� � � � � � � P��O �OC

� �
G�� H�; +

Then if � is a string of length @ in T , we know that � G
� HF#�@ , and hence ��G�@�H

��G � G
� H�HI� � . Hence T lies in

� � � � � � . The rest of the proof needs only minor
adjustments. This yields the result as stated.

�

4.3 Fixed Points of the NP-jump

In constructing a � - � � we must avoid fixed points of the ��� -jump. We show
that every fixed point of the � � -jump is a uniform upper bound for �� and that
fixed points exist which are very unlikely (even more unlikely than the examples
after Lemma 4.3) to be �
�������
� -complete. Thus it really is necessary to actively
avoid them in our construction.

Lemma 4.7 If
�
G T�H V � � T then T is a uniform V � � -upper bound for �� (in fact

for �� \).
�

Proof. Fix the reduction ,^R from
�
G T�H to T i.e.

�
G T�H�G��BH�� , \R G��BH . We

assume that our enumeration of nondeterministic OTMs is nice in that the jump and
composition of machines is effective, i.e., that there are two computable functions
� *71 � and +	 1 � such that

� if ZDV � � T via , 5 , then
�
G Z^H V � �

�
G T H via ,�� � � � � 5 � , and

� if ZDV � � � via , 5 and � V � � , via , 8 , then ZDV � � , via , ��� � � � 5�7 8 � .

15

Now by definition
� � G T HYV � �IT say via , R . Then we can prove by induction that� ��� � G T�H]V � �

� �
G T H via , � � � � � � � � R � . Using +	 1 � we can define a computable

function � such that
� �
G T H�V � � T via , � � � � which proves that T is a uniform

upper bound of �� \ . Starting with
� � G�� H instead of

� � G T�H will yield the same
result for �� (without making any additional assumptions).

�

Remarks.

1. If we start with the stronger assumption that
�
G T H^V � � T , then T will be

a uniform upper bound for �� with regard to � -reductions. The necessary
adjustments in the proof are straightforward.

2. If
�
G T H&V � � T is witnessed by a reduction which runs in linear time, then

the uniformity in the above proof, together with the fact that
� *71 � and +	 1 �

are also computable in linear time, yields that T is hard for
� � � � ��� � . This

means (Lemma 4.1) that T is quick, and not slow.

Lemma 4.8
� � � ��� � ��� � ��� � � � is closed under Turing reductions and the ��� -jump

and has a complete set in
� � � ��� � ��� � .

�

Proof. For every 0 there is a constant � such that .�<= . <= @ 5 VA.�<=�.�<= @ A � .
Hence

� � � ��� � ��� � ��� � � � is closed under Turing reductions, and the set

Z � 1 �
	 ��� ��� � the 	$ � alternating Turing

machine halts in � steps on input � with

at most .�<= . <= � alternations ;
is hard for this class and lies in

� � � ��� � ��� � . Since
� � � ��� � ��� � ��� � � � is closed under

adding a constant number of alternations it is certainly closed under the ��� -jump.�

In particular we note:

Corollary 4.9 There is a fixed point of the � � -jump in
� � � ��� � ��� � , which is not

���������
� -complete, unless �
�������
� � � � � ��� � ��� � ��� � � � . �

5 The Structure of Hyper-Polynomial Hierarchies

In Section 3 we gave some indication of how far apart ���������
� is from �� by
building an image � of ! in the ���������
� degrees that respects the � � -jump

16

operator and upper bounds, and (assuming �� is infinite) has no ��� -jump fixed
points. Furthermore, it is evident from our construction of � that �	� is a quick
uniform upper bound for every 3 C ! with I 3 I
 � . Section 4 showed how
every quick uniform upper bound can compute the jump of another quick uniform
upper bound. Combining these results it is possible to give further evidence of
the richness of the quick uniform upper bounds with respect to the ��� -jump. We
iterate our construction in Section 4 to construct a proper, “upside-down” image of
! in the quick uniform upper bounds below any given quick uniform upper bound.
That is,

Theorem 5.1 Given any T C ���������
� which is a quick uniform V � � -upper bound
for �� , there is a � C ���������
� such that (letting � � G��BH ��� G 3 ���BH)

1. for all 3 C ! , � � is a quick uniform upper bound for �� and if �� sepa-
rates, then ����

�
separates,

2. � � V � � T ,

3. for all 3 C4! ,
�
G�� ������� � ��� H V � � � � via a reduction found effectively in 3 ,

4. for all 	 such that .0/01�G
	.H C�! , � ����� � R � is a uniform lower bound for 1�� � �3 #(% .G/01�G
	.H�; , and

5. if �� is infinite, then for all 3 C ! ,
�
G�� �'H."V � � � � , so the embedding is proper

in the ptime degrees.

Within this upside-down � - � � , it is also possible to place a (right-side up)
� - � � starting with any � ����� � R � and completely below all the � � for 3 #F% .0/01�G
	 H .
Proof Sketch. We define a hierarchy of padding functions so that successor func-
tions satisfy the conditions in Lemma 4.3 with respect to their predecessors, and
limit functions dominate all previous padding functions. This by itself is straight-
forward, but there are a few extra wrinkles that we must smooth out. All our
padding functions must be nice, to satisfy the conditions in Lemma 4.3, and must
give rise to good sets (i.e., sets over which �� separates) to ensure a properly
descending hierarchy of degrees.

Let T C ���������	� be a quick uniform upper bound for �� and fix an 04C� �
and a computable � such that for all � , �

�
G�� H#�W,]\365�7 � � � � 9 . By taking a

padded version of T and choosing a new � , we can assume that 0&� P . Hence,
by Lemma 2.6 there is a computable � such that ��� � G � G
� H H�V � � T , and this fact
remains true if we increase the padding. Now let 	.% be least such that � R�� G
� H �
�
�
�)�*7+$+

�
G��:H for all ��C � . This implies that .0/01�G
	 % H C ! , I�.0/01�G
	 % H IY� � , and

� ����� � R�� � � ��� � G
 G
� H�H , where
 G�� H is the function corresponding to � ����� � R���� , c.f.

17

Section 3. So we know that �� �
�
� � � �

� � � is still infinite, and ��� � G
 G
� H�H&V � � T
and is a good quick uniform upper bound. Thus, ��� � G
 G
� H(H is a good candidate
for � � , but we must be careful to construct things uniformly.

In the proof of Theorem 3.1, we actually have much leeway in defining the
function
 �
 G
� H for � ����� � R � � : we can pick
 to be fully time-constructible and
monotone (i.e., nice), and in addition,
 can dominate any given computable func-
tion uniformly. Our construction of � depends on this observation, which we state
without proof. (The extra parameter 3 in the lemma will be used later on.)

Lemma 5.2 There is a deterministic Turing machine
�

that on input 	 � 3 ��� runs
in time � G
	 � 3 ���BHY� �NR.G 3 ���BH , where � is a computable partial function satisfying
the following properties for every 	 � 3 C � � such that �MR is total:

1. � � + �BR.G 3 ��� H is total and monotone nondecreasing, and � R G 3 ��� H�V �BR G 3 ��� H
for all � .

2. � � + �BR.G 3 ��� H satisfies the conditions for
 in the construction of � R�� , that is,
��� � G
 G
� H � � R G 3 ��� H�H is good.

By the existence of the machine
�

, � G
	 � 3 ���BH is fully time-constructible.
�

To define � , we first define a transfinite hierarchy (using !) of nice, quickly
growing padding functions. (Recall the definition of � G
� H , above.)

Lemma 5.3 There is computable partial function
� G 3 ��� H such that, for all 3 C5!

and ��C � � ,
1. � � + � G 3 ��� H is total and nice, and ��� � G � G 3 ��� H H is a good quick uniform

upper bound,

2. � G
� H V � G��>��� H ,
3.
� G�)�*7+$+ G 3 H ��� H
 � G 3 ��� A P2H , and

4. if 3 �-.G/01�G
	.H , then � G 3 ��� H
�1@9��5 " �
� G
� R G�0�H ��� H +

Proof of Lemma 5.3. Using the
 - � - @ theorem, define

� � � R � G 3 ��� H �
��� �� � G
� H if 3 ��� ,
�BR G��2��� A P2H if 3 �-)�*7+$+ G��
H ,
1 9�� 5 " � �BR G
� 	 G�0�H ��� H if 3 �-.G/01�G � H .

18

By the recursion theorem, there is a � with ��� � � � � � � . We set
� � ��� . � G 3 ��� H �

for all 3 C-! and all � by transfinite induction. The properties of
�

are ensured
by Lemma 5.2 and transfinite induction on the definition of

�
. Furthermore, notice

that
�

itself is fully time-constructible.
�

We now define � by the equation � � � ��� � G � G 3 ��� H H . Since
�

was con-
structed in a way that allows us to use Lemma 4.3 uniformly, � will satisfy all its
advertised properties. To see this we observe some critical facts about the proof
of Lemma 4.3. Everything about the proof is effectively uniform. For example,
there is a computable function 0 such that, if ��� � G
��R'G
� H(H is a degree 0 ptime
padding array, then it is a quick uniform upper bound via � 3 � R � . Likewise, there
is a computable � such that, if ��� � G
� R � G
� H�H is a degree 0 ptime padding array
and �MR � G
� H
 �MR � G
� A P2H for all � , then

�
G ��� � G
�MR � G
� H(H�H V � � ��� � G
�MR � G
� H(H via

, 8 � R � 7 R � � . Finally, there is a computable � such that, if ��� � G
��R � G
� H(H is a degree 0
ptime padding array and �MR � G
� H
H�MR � G
� H for all �
!$, then

��� � G
� R � G
� H�H V � � ��� � G
� R � G
� H(H
via ,�� � R � 7 R � 7 � � .

�

6 Open Questions

In continuing to investigate the world between �� and �
�������
� , there remain
many unanswered questions, especially about those languages which are “just
above” �� or “just below” ���������
� , and the location of well-known, natural
languages in this spectrum.

1. Under what plausible assumptions (if any) is there a uniform upper bound
for �� that cannot compute the jump of any other uniform upper bound? (It
must be slow.)

These are languages which are outside �� , have enough resources to pro-
vide easy computation of �� , but not much more (not a jump more). Such
languages, if part of a � - � � would have to sit at level � .

More generally, one can ask: Are there any ordinals � and languages E such
that E is at level � in some � - � � , but is not at level 	#�
� for any � - �� � ?

2. Which languages are hyper-polynomial?

Since there is no canonical notion of the hyper-polynomial hierarchy, it does
not make sense to define the hyper-polynomial languages to be those lan-
guages which are at or below some level of it (as one defines the hyper-
arithmetic sets). However, we could call a language T hyper-polynomial if

19

there is some � - � � , � , and some 3 C ! such that T V��� � � . This says
that T is far (more than ������ ��� -jumps) from being �
�������
� -complete.
Assuming � "� �
�������
� , the �
�������
� -complete languages are not hyper-
polynomial under this definition. Are there any other languages in ���������
�
which are not hyper-polynomial? These languages would in some sense be
much harder than �� yet still not ���������
� -complete. En route to answer-
ing this question, the following pair of questions arises:

(a) Can a � - � � be placed above any �
�������
� set which is not within a
finite number of jumps from ���������
� -complete?

(b) Is there an T with � \ "� ��� \ � �
�������
� ?

3. Where are the ��� -complete languages in this scheme?

A careful look at the exponents on the polynomials in the proof of Toda's
Theorem suggests that ��� -complete languages might not be uniformly hard
for any ptime unbounded alternation class. This would make them slow uni-
form upper bounds for �� , and indicate that ��� is only very slightly larger
than �� . Can this be made precise using hyper-polynomial hierarchies?

4. One of our primary motivations for this work is the logical theory of the hy-
perarithmetic sets which provides a well-developed link between the arith-
metic sets and the analytic sets of integers [Sac90]. In this generalization of
classical recursion theory, admissible recursion theory, the hyperarithmetic
sets play the role of the computable sets and

� �� corresponds to computably
enumerable. We have only begun to explore the resource bounded theory in
this work and there remains much to be done. We mention here a few key
aspects of this research.

The well-known theorem of Spector and Markwald [Spe55], [Mar54] shows
that � ���� is the supremum of the lengths of all computable well-orderings of
the integers. A careful proof of this result can be made to yield this same
fact for ptime well-orderings of the integers (that is � ���� � � � �). There is
a quite natural (though not fully invariant) alternating quantifier character-
ization of levels of the hyperarithmetic hierarchy. What is the correspond-
ing characterization of alternations of polynomial-bounded quantifiers? The
crowning result of basic hyperarithmetic theory is the theorem of Kleene that

� �� � � � (the sets Turing reducible to some level of the hyperarithmetic
hierarchy). What corresponds to

� �� in this setting? ���������
� (less the com-
plete languages) seems the obvious and most reasonable candidate, but see
2(b) above.

20

We believe continued work in this area will result in further insights into the com-
plexity of hard combinatorial problems in ���������
� .

References

[AS89] K. Ambos-Spies. On the relative complexity of hard problems for com-
plexity classes without complete problems. Theoretical Computer Sci-
ence, 63:43–61, 1989.

[BDG88] J. L. Balcázar, J. Díaz, and J. Gabarró. Structural Complexity I,
volume 11 of EATCS Monographs on Theoretical Computer Science.
Springer-Verlag, 1988.

[CKS81] A. Chandra, D. Kozen, and L. Stockmeyer. Alternation. Journal of the
ACM, 28(1):114–133, 1981.

[Fen95] S. A. Fenner. Inverting the Turing jump in complexity theory. In Pro-
ceedings of the 10th IEEE Structure in Complexity Theory Conference,
pages 102–110, 1995.

[Lad75] R. Ladner. On the structure of polynomial-time reducibility. Journal of
the ACM, 22:155–171, 1975.

[Mar54] Markwald. Zur theorie der konstruktiven wohlordnungen. Mathe-
matiche Annalen, 127:135–149, 1954.

[Rog67] H. Rogers. Theory of Recursive Functions and Effective Computability.
McGraw-Hill, 1967. Reprinted. MIT Press. 1987.

[Sac90] G. E. Sacks. Higher Recursion Theory. Springer-Verlag, 1990.

[Soa87] R. I. Soare. Recursively Enumerable Sets and Degrees. Springer-Verlag,
Berlin, 1987.

[Spe55] C. Spector. Recursive well-orderings. Journal of Symbolic Logic,
20:551–563, 1955.

[Sto77] L. Stockmeyer. The polynomial-time hierarchy. Theoretical Computer
Science, 3:1–22, 1977.

[Tod91] S. Toda. PP is as hard as the polynomial-time hierarchy. SIAM Journal
on Computing, 20(5):865–877, 1991.

21

