
A new proof of a result of Higman

Stephen A. Fenner
University of South Carolina∗

April 15, 2005

Abstract

Given two strings x, y ∈ Σ∗, say that x is a subsequence of y (denoted x � y) if x
results from removing zero or more characters from y. For a language L ⊆ Σ∗, define
SUBSEQ(L) to be the set of all subsequences of strings in L. We give a new proof of
a result of Higman, which states,

If L is any language over a finite alphabet, then SUBSEQ(L) is regular.

Higman’s original proof makes use of the theory of well quasi-orders. The current proof
is completely different and makes no mention of well quasi-orders. It also provides a
different insight into the relationships between L and SUBSEQ(L) for various L.

Fix an alphabet Σ. For x, w ∈ Σ∗ we let x � w denote the condition that x is a subse-
quence of w, that is, x = x1x2 · · ·xn for x1, x2, . . . , xn ∈ Σ, and y ∈ L(Σ∗x1Σ

∗x2Σ
∗ · · ·Σ∗xnΣ∗).

For a language L ⊆ Σ∗, define

SUBSEQ(L) := {x ∈ Σ∗ | (∃w ∈ L) x � w }.

The following theorem was essentially proved by Higman [1] using well quasi-order theory.

Theorem 1 (Higman [1]). SUBSEQ(L) is regular for any L ⊆ Σ∗.

Clearly, SUBSEQ(SUBSEQ(L)) = SUBSEQ(L) for any L, since � is transitive. We’ll
say that L is �-closed if L = SUBSEQ(L). So Theorem 1 is equivalent to the statement that
a language L is regular if L is �-closed. The remainder of this note is to prove Theorem 1.
We do so directly, without recourse to well quasi-orders.

∗Computer Science and Engineering Department, Columbia, SC 29208. fenner@cse.sc.edu

1

1 Preliminaries

We let N = ω = { 0, 1, 2, . . . } be the set of natural numbers. We will assume WLOG that
all symbols are elements of N and that all alphabets are finite, nonempty subsets of N. We
can also assume WLOG that all languages are nonempty. We extend the star notation to
N, letting N∗ be the set of all finite strings over N.

For a finite set X we let |X| denote the cardinality of X.

Definition 2. For any alphabet Σ = {n1 < · · · < nk }, we define the canonical string for Σ,

σΣ := n1 · · ·nk,

the concatenation of all symbols of Σ in increasing order. If w ∈ Σ∗, we define the number

`Σ(w) := max{n ∈ N | (σΣ)n � w }.

Observation 3. (σΣ)n has any string in Σ∗ of length at most n as a subsequence. Thus for
any string w and x ∈ Σ∗, if |x| ≤ `Σ(w), then x � w.

Our regular expressions (regexps) are built from the atomic regexps ε and a ∈ N using
union, concatenation, and Kleene closure in the standard way (we omit ∅ as a regexp since
all our languages are nonempty). For regexp r, we let L(r) denote the language of r. We
consider regexps as syntactic objects, distinct from their corresponding languages. So for
regexps r and s, by saying that r = s we mean that r and s are syntactically identical, not
just that L(r) = L(s). For any alphabet Σ = {n1, . . . , nk } ⊆ N, we let Σ also denote the
regexp n1 ∪ · · · ∪ nk as usual, and in keeping with our view of regexps as syntactic objects,
we will heretofore be more precise and say, e.g., “L ⊆ L(Σ∗)” rather than “L ⊆ Σ∗.”

Definition 4. A regexp r is primitive syntactically �-closed (PSC) if r is one of the following
two types:

Bounded: r = a ∪ ε for some a ∈ N;

Unbounded: r = Σ∗ for some alphabet Σ.

The rank of such an r is defined as

rank(r) :=

{
0 if r is bounded,
|Σ| if r = Σ∗.

Definition 5. A regexp R is syntactically �-closed (SC) if R = r1 · · · rk, where k ≥ 0 and
each ri is PSC. For the k = 0 case, we define R := ε by convention. If w is a string, we
define an R-partition of w to be a list 〈w1, . . . , wk〉 of strings such that w1 · · ·wk = w and
wi ∈ L(ri) for each 1 ≤ i ≤ k. We call wi the ith component of the R-partition.

Observation 6. If regexp R is SC, then L(R) is �-closed.

2

Observation 7. For SC R and string w, w ∈ L(R) iff some R-partition of w exists.

Definition 8. Let r = Σ∗ be an unbounded PSC regexp. We define pref(r), the primitive
refinement of r, as follows: if Σ = { a } for some a ∈ N, then let pref(r) be the bounded
regexp a ∪ ε; otherwise, if Σ = {n1 < n2 < · · · < nk } for some k ≥ 2, then we let

pref(r) := (Σ− {n1 })∗(Σ− {n2 })∗ · · · (Σ− {nk })∗. (1)

In the definition above, note that pref(r) is SC but not PSC. Also note that L((pref(r))∗) =
L(r). This leads to the following definition, analogous to Definition 2:

Definition 9. Let r be an unbounded PSC regexp, and let w ∈ L(r) be a string. Define

mr(w) := min{n ∈ N | w ∈ L((pref(r))n) }.

There is a nice connection between Definitions 2 and 9, given by the following Lemma:

Lemma 10. For any unbounded PSC regexp r = Σ∗ and any string w ∈ L(r),

mr(w) =

{
`Σ(w) if |Σ| = 1,
`Σ(w) + 1 if |Σ| ≥ 2.

Proof. First, if |Σ| = 1, then pref(r) = a ∪ ε and σΣ = a, where Σ = { a }. Then clearly,

mr(w) = |w| = `Σ(w).

Second, suppose that Σ = {n1 < · · · < nk } with k ≥ 2, so that σΣ = n1 · · ·nk and
pref(r) = Σ∗

1 · · ·Σ∗
k from (1), where we set Σi = Σ − {ni } for 1 ≤ i ≤ k. Let m = mr(w),

and let P = 〈w1,1, . . . w1,k, w2,1, . . . , w2,k, . . . , wm,1, . . . , wm,k〉 be any (pref(r))m-partition
of w (at least one such partition exists by Observation 7). We have that each wi,j ∈
L(Σ∗

j). If (σΣ)` � w for some ` ≥ 0, then there is some monotone nondecreasing map
p : { 1, . . . , `k } → { 1, . . . ,mk } such that the t’th symbol of (σΣ)` occurs in the p(t)th com-
ponent of P . Now we must have p(t) 6= t for all 1 ≤ t ≤ `k: writing t = qk + s for some
1 ≤ s ≤ k, we have that the t’th symbol of (σΣ)` is ns, but the t’th component of P is
wq+1,s ∈ L(Σ∗

s), and ns /∈ Σs. Thus the t’th symbol in (σΣ)` does not occur in the t’th
component of P , and so t 6= p(t). Now it follows from the monotonicity of p that p(t) > t for
all t. In particular, `k < p(`k) ≤ mk, and so ` < m. This shows that mr(w) ≥ `Σ(w) + 1.

Let m be as in the previous paragraph. We build a particular (pref(r))m-partition
Pgreedy = 〈w1,1, . . . w1,k, w2,1, . . . , w2,k, . . . , wm,1, . . . , wm,k〉 of w by the greedy algorithm be-
low. In the algorithm, for integers 1 ≤ i ≤ m and 1 ≤ j ≤ k we let

(i, j)′ =

{
(i, j + 1) if j < k,
(i + 1, 1) otherwise.

This is the successor operation in the lexicographical ordering ordering on the pairs (i, j)
with 1 ≤ j ≤ k: (i1, j1) < (i2, j2) if either i1 < i2 or i1 = i2 and j1 < j2.

3

(i, j)← (1, 1)
While i ≤ m do

Let wi,j be the longest prefix of w in Σ∗
j

Remove prefix wi,j from w
(i, j)← (i, j)′

End while

Since some (pref(r))m-partition of w exists, this algorithm will clearly also produce a
(pref(r))m-partition of w, i.e., the while-loop terminates with w = ε. Furthermore, w does
not become ε until the end of the (m, 1)-iteration of the loop at the earliest; otherwise, the
algorithm would produce a (pref(r))m−1-partition of w, contradicting the minimality of m.
Finally, for all (i, j) lexicographically between (1, 1) and (m−1, k) inclusive, letting (i′, j′) =
(i, j)′, we have that wi′,j′ starts with nj. This follows immediately from the greediness
(maximum length) of the choice of wi,j. Therefore, we have σΣ is a subsequence of each
of the strings (w1,2 · · ·w2,1), (w2,2 · · ·w3,1), . . . , (wm−1,2 · · ·wm,1), and so (σΣ)m−1 � w, which
proves that mr(w) ≤ `Σ(w) + 1.

Definition 11. Let R = r1 · · · rk and S be two SC regexps, where each ri is PSC. We say
that S is a one-step refinement of R if S results from either

• removing some bounded ri from R, or

• replacing some unbounded ri in R by (pref(ri))
n for some n ∈ N.

We say that S is a refinement of R (and write S < R) if S results from R through a sequence
of one or more one-step refinements.

One may note that if S < R, then L(S) ⊆ L(R), although it is not important to the
main proof.

Lemma 12. The relation < of Definition 11 is a well-founded partial order on the set of SC
regexps (of height at most ωω).

Proof. Let R = r1 · · · rk be an SC regexp, and let e1 ≥ e2 ≥ · · · ≥ ek be the ranks of all the
ri, arranged in nonincreasing order, counting duplicates. Define the ordinal

ord(R) := ωe1 + ωe2 + · · ·+ ωek ,

which is in Cantor normal form and always less than ωω. If R = ε, then ord(R) := 0 by
convention. Let S be an SC regexp. Then it is clear that S < R implies ord(S) < ord(R),
because the ord of any one-step refinement of R results from either removing some addend
ω0 = 1 or replacing some addend ωe for some positive e (the rightmost with exponent e) in
the ordinal sum of ord(R) with the ordinal ωe−1 · n, for some n < ω, resulting in a strictly
smaller ordinal. From this the lemma follows.

4

2 Main Proofs

The following lemma is key to proving Theorem 1.

Lemma 13 (Key Lemma). Let R = r1 · · · rk be a SC regexp where at least one of the ri is
unbounded. Suppose L ⊆ L(R) is �-closed. Then either

1. L = L(R) or

2. there exist refinements S1, . . . , Sk < R such that L ⊆
⋃k

i=1 L(Si).

Before proving Lemma 13, we see how it is used to prove Theorem 1.

Proof of Theorem 1. Let L ⊆ L(Σ∗) be �-closed. We prove by induction on the refinement
relation that: for any SC regexp R, if L ⊆ L(R) then L is regular. The theorem follows by
setting R = Σ∗. Fix R = r1 · · · rk, and suppose that L ⊆ L(R). If all of the ri are bounded,
then L(R) is finite and hence L is regular. Now assume that at least one ri is unbounded
and that the statement holds for all S < R. If L = L(R), then L is certainly regular, since R
is a regexp. If L 6= L(R), then by Lemma 13 there are S1, . . . , Sk < R with L ⊆

⋃k
i=1 L(Si).

Each L ∩ L(Si) is �-closed (being the intersection of two �-closed languages) and hence
regular by the inductive hypothesis. But then,

L = L ∩
k⋃

i=1

L(Si) =
k⋃

i=1

(L ∩ L(Si)),

and so L is regular.

Proof of Lemma 13. Fix R and L as in the statement of the lemma. Whether Case 1 or
Case 2 holds hinges on whether or not a certain quantity associated with each string in L(R)
is unbounded when taken over all strings in L.

For any string w ∈ L(R) and any R-partition P = 〈w1, . . . , wk〉 of w, define

Mbd
P (w) := min

i: ri is bounded
|wi|, (2)

and define
Munbd

P (w) := min
i: ri is unbounded

mri
(wi). (3)

In (2), for any bounded ri, we have wi ∈ L(ri) and thus |wi| ∈ { 0, 1 }. If there is no bounded
ri, we’ll take the minimum to be 1 by default.

Now define
M(w) := max

P : P is an R-partition of w
Mbd

P (w) ·Munbd
P (w). (4)

We will show that if
lim sup

w∈L
M(w) =∞, (5)

then Case 1 of the lemma holds. Otherwise, Case 2 holds.

5

Suppose that (5) holds. Let x ∈ L(R) be arbitrary. Then there is a w ∈ L such that
|x| < M(w). For this w there is an R-partition P = 〈w1, . . . , wk〉 of w such that Mbd

P (w) = 1
and Munbd

P (w) > |x|. Let 〈x1, . . . , xk〉 be some R-partition of x. For all 1 ≤ i ≤ k, we then
have

• |xi| ≤ 1 = |wi| if ri is bounded, and

• |xi| ≤ |x| ≤ mri
(wi)− 1 ≤ `Γ(wi) if ri = Γ∗ for some alphabet Γ.

(The last inequality of the second item follows from Lemma 10). In either case, we have
xi � wi (the second case following from Observation 3), and thus x � w. Since w ∈ L and
L is �-closed, we have x ∈ L. Since x ∈ L(R) was arbitrary, this proves that L = L(R),
which is Case 1 of the lemma.

Now suppose that (5) does not hold. This means that there is a finite bound B such
that M(w) ≤ B for all w ∈ L. So for any w ∈ L and any R-partition P = 〈w1, . . . , wk〉 of
w, either Mbd

P (w) = 0 or Munbd
P (w) ≤ B. Suppose Mbd

P (w) = 0. Then wi = ε for some i
where ri is bounded. Let Si be the one-step refinement of R obtained by removing ri from
R. Then clearly, w ∈ L(Si). Now suppose Munbd

P (w) ≤ B, so that there is some unbounded
rj such that mrj

(wj) ≤ B. This means that wj ∈ L((pref(rj))
B) by Definition 9. Let Sj

be the one-step refinement obtained from R by replacing rj with (pref(rj))
B. Then clearly

again, w ∈ L(Sj). In general, we define, for all 1 ≤ i ≤ k,

Si =

{
r1 · · · ri−1ri+1 · · · rk if ri is bounded,
r1 · · · ri−1(pref(ri))

Bri+1 · · · rk otherwise.

We have shown that there is always an i for which w ∈ L(Si). Since w ∈ L was arbitrary,
Case 2 of the lemma holds.

Acknowledgment

I thank Bill Gasarch for interesting discussions.

References

[1] A. G. Higman. Ordering by divisibility in abstract algebra. Proc. of the London Math.
Society, 3:326–336, 1952.

6

