A new proof of a result of Higman

Stephen A. Fenner
University of South Carolina*

April 15, 2005

Abstract

Given two strings $x, y \in \Sigma^{*}$, say that x is a subsequence of y (denoted $x \preceq y$) if x results from removing zero or more characters from y. For a language $L \subseteq \Sigma^{*}$, define $\operatorname{SUBSEQ}(L)$ to be the set of all subsequences of strings in L. We give a new proof of a result of Higman, which states,

If L is any language over a finite alphabet, then $\operatorname{SUBSEQ}(L)$ is regular. Higman's original proof makes use of the theory of well quasi-orders. The current proof is completely different and makes no mention of well quasi-orders. It also provides a different insight into the relationships between L and $\operatorname{SUBSEQ}(L)$ for various L.

Fix an alphabet Σ. For $x, w \in \Sigma^{*}$ we let $x \preceq w$ denote the condition that x is a subsequence of w, that is, $x=x_{1} x_{2} \cdots x_{n}$ for $x_{1}, x_{2}, \ldots, x_{n} \in \Sigma$, and $y \in L\left(\Sigma^{*} x_{1} \Sigma^{*} x_{2} \Sigma^{*} \cdots \Sigma^{*} x_{n} \Sigma^{*}\right)$. For a language $L \subseteq \Sigma^{*}$, define

$$
\operatorname{SUBSEQ}(L):=\left\{x \in \Sigma^{*} \mid(\exists w \in L) x \preceq w\right\} .
$$

The following theorem was essentially proved by Higman [1] using well quasi-order theory.
Theorem 1 (Higman [1]). $\operatorname{SUBSEQ}(L)$ is regular for any $L \subseteq \Sigma^{*}$.
Clearly, $\operatorname{SUBSEQ}(\operatorname{SUBSEQ}(L))=\operatorname{SUBSEQ}(L)$ for any L, since \preceq is transitive. We'll say that L is \preceq-closed if $L=\operatorname{SUBSEQ}(L)$. So Theorem 1 is equivalent to the statement that a language L is regular if L is \preceq-closed. The remainder of this note is to prove Theorem 1 . We do so directly, without recourse to well quasi-orders.

[^0]
1 Preliminaries

We let $\mathbb{N}=\omega=\{0,1,2, \ldots\}$ be the set of natural numbers. We will assume WLOG that all symbols are elements of \mathbb{N} and that all alphabets are finite, nonempty subsets of \mathbb{N}. We can also assume WLOG that all languages are nonempty. We extend the star notation to \mathbb{N}, letting \mathbb{N}^{*} be the set of all finite strings over \mathbb{N}.

For a finite set X we let $|X|$ denote the cardinality of X.
Definition 2. For any alphabet $\Sigma=\left\{n_{1}<\cdots<n_{k}\right\}$, we define the canonical string for Σ,

$$
\sigma_{\Sigma}:=n_{1} \cdots n_{k}
$$

the concatenation of all symbols of Σ in increasing order. If $w \in \Sigma^{*}$, we define the number

$$
\ell_{\Sigma}(w):=\max \left\{n \in \mathbb{N} \mid\left(\sigma_{\Sigma}\right)^{n} \preceq w\right\} .
$$

Observation 3. $\left(\sigma_{\Sigma}\right)^{n}$ has any string in Σ^{*} of length at most n as a subsequence. Thus for any string w and $x \in \Sigma^{*}$, if $|x| \leq \ell_{\Sigma}(w)$, then $x \preceq w$.

Our regular expressions (regexps) are built from the atomic regexps ε and $a \in \mathbb{N}$ using union, concatenation, and Kleene closure in the standard way (we omit \emptyset as a regexp since all our languages are nonempty). For regexp r, we let $L(r)$ denote the language of r. We consider regexps as syntactic objects, distinct from their corresponding languages. So for regexps r and s, by saying that $r=s$ we mean that r and s are syntactically identical, not just that $L(r)=L(s)$. For any alphabet $\Sigma=\left\{n_{1}, \ldots, n_{k}\right\} \subseteq \mathbb{N}$, we let Σ also denote the regexp $n_{1} \cup \cdots \cup n_{k}$ as usual, and in keeping with our view of regexps as syntactic objects, we will heretofore be more precise and say, e.g., " $L \subseteq L\left(\Sigma^{*}\right)$ " rather than " $L \subseteq \Sigma^{*}$."

Definition 4. A regexp r is primitive syntactically \preceq-closed (PSC) if r is one of the following two types:

Bounded: $r=a \cup \varepsilon$ for some $a \in \mathbb{N}$;
Unbounded: $r=\Sigma^{*}$ for some alphabet Σ.
The rank of such an r is defined as

$$
\operatorname{rank}(r):= \begin{cases}0 & \text { if } r \text { is bounded } \\ |\Sigma| & \text { if } r=\Sigma^{*}\end{cases}
$$

Definition 5. A regexp R is syntactically \preceq-closed (SC) if $R=r_{1} \cdots r_{k}$, where $k \geq 0$ and each r_{i} is PSC. For the $k=0$ case, we define $R:=\varepsilon$ by convention. If w is a string, we define an R-partition of w to be a list $\left\langle w_{1}, \ldots, w_{k}\right\rangle$ of strings such that $w_{1} \cdots w_{k}=w$ and $w_{i} \in L\left(r_{i}\right)$ for each $1 \leq i \leq k$. We call w_{i} the i th component of the R-partition.

Observation 6. If regexp R is $S C$, then $L(R)$ is \preceq-closed.

Observation 7. For $S C R$ and string $w, w \in L(R)$ iff some R-partition of w exists.
Definition 8. Let $r=\Sigma^{*}$ be an unbounded PSC regexp. We define $\operatorname{pref}(r)$, the primitive refinement of r, as follows: if $\Sigma=\{a\}$ for some $a \in \mathbb{N}$, then let $\operatorname{pref}(r)$ be the bounded regexp $a \cup \varepsilon$; otherwise, if $\Sigma=\left\{n_{1}<n_{2}<\cdots<n_{k}\right\}$ for some $k \geq 2$, then we let

$$
\begin{equation*}
\operatorname{pref}(r):=\left(\Sigma-\left\{n_{1}\right\}\right)^{*}\left(\Sigma-\left\{n_{2}\right\}\right)^{*} \cdots\left(\Sigma-\left\{n_{k}\right\}\right)^{*} . \tag{1}
\end{equation*}
$$

In the definition above, note that $\operatorname{pref}(r)$ is SC but not PSC. Also note that $L\left((\operatorname{pref}(r))^{*}\right)=$ $L(r)$. This leads to the following definition, analogous to Definition 2:

Definition 9. Let r be an unbounded PSC regexp, and let $w \in L(r)$ be a string. Define

$$
m_{r}(w):=\min \left\{n \in \mathbb{N} \mid w \in L\left((\operatorname{pref}(r))^{n}\right)\right\}
$$

There is a nice connection between Definitions 2 and 9, given by the following Lemma:
Lemma 10. For any unbounded $P S C$ regexp $r=\Sigma^{*}$ and any string $w \in L(r)$,

$$
m_{r}(w)= \begin{cases}\ell_{\Sigma}(w) & \text { if }|\Sigma|=1 \\ \ell_{\Sigma}(w)+1 & \text { if }|\Sigma| \geq 2\end{cases}
$$

Proof. First, if $|\Sigma|=1$, then $\operatorname{pref}(r)=a \cup \varepsilon$ and $\sigma_{\Sigma}=a$, where $\Sigma=\{a\}$. Then clearly,

$$
m_{r}(w)=|w|=\ell_{\Sigma}(w) .
$$

Second, suppose that $\Sigma=\left\{n_{1}<\cdots<n_{k}\right\}$ with $k \geq 2$, so that $\sigma_{\Sigma}=n_{1} \cdots n_{k}$ and $\operatorname{pref}(r)=\Sigma_{1}^{*} \cdots \Sigma_{k}^{*}$ from (1), where we set $\Sigma_{i}=\Sigma-\left\{n_{i}\right\}$ for $1 \leq i \leq k$. Let $m=m_{r}(w)$, and let $P=\left\langle w_{1,1}, \ldots w_{1, k}, w_{2,1}, \ldots, w_{2, k}, \ldots, w_{m, 1}, \ldots, w_{m, k}\right\rangle$ be any $(\operatorname{pref}(r))^{m}$-partition of w (at least one such partition exists by Observation 7). We have that each $w_{i, j} \in$ $L\left(\Sigma_{j}^{*}\right)$. If $\left(\sigma_{\Sigma}\right)^{\ell} \preceq w$ for some $\ell \geq 0$, then there is some monotone nondecreasing map $p:\{1, \ldots, \ell k\} \rightarrow\{1, \ldots, m k\}$ such that the t 'th symbol of $\left(\sigma_{\Sigma}\right)^{\ell}$ occurs in the $p(t)$ th component of P. Now we must have $p(t) \neq t$ for all $1 \leq t \leq \ell k$: writing $t=q k+s$ for some $1 \leq s \leq k$, we have that the t^{\prime} th symbol of $\left(\sigma_{\Sigma}\right)^{\ell}$ is n_{s}, but the t^{\prime} th component of P is $w_{q+1, s} \in L\left(\Sigma_{s}^{*}\right)$, and $n_{s} \notin \Sigma_{s}$. Thus the t^{\prime} th symbol in $\left(\sigma_{\Sigma}\right)^{\ell}$ does not occur in the t^{\prime} 'th component of P, and so $t \neq p(t)$. Now it follows from the monotonicity of p that $p(t)>t$ for all t. In particular, $\ell k<p(\ell k) \leq m k$, and so $\ell<m$. This shows that $m_{r}(w) \geq \ell_{\Sigma}(w)+1$.

Let m be as in the previous paragraph. We build a particular $(\operatorname{pref}(r))^{m}$-partition $P_{\text {greedy }}=\left\langle w_{1,1}, \ldots w_{1, k}, w_{2,1}, \ldots, w_{2, k}, \ldots, w_{m, 1}, \ldots, w_{m, k}\right\rangle$ of w by the greedy algorithm below. In the algorithm, for integers $1 \leq i \leq m$ and $1 \leq j \leq k$ we let

$$
(i, j)^{\prime}= \begin{cases}(i, j+1) & \text { if } j<k \\ (i+1,1) & \text { otherwise } .\end{cases}
$$

This is the successor operation in the lexicographical ordering ordering on the pairs (i, j) with $1 \leq j \leq k:\left(i_{1}, j_{1}\right)<\left(i_{2}, j_{2}\right)$ if either $i_{1}<i_{2}$ or $i_{1}=i_{2}$ and $j_{1}<j_{2}$.
$(i, j) \leftarrow(1,1)$
While $i \leq m$ do
Let $w_{i, j}$ be the longest prefix of w in Σ_{j}^{*}
Remove prefix $w_{i, j}$ from w
$(i, j) \leftarrow(i, j)^{\prime}$
End while
Since some $(\operatorname{pref}(r))^{m}$-partition of w exists, this algorithm will clearly also produce a $(\operatorname{pref}(r))^{m}$-partition of w, i.e., the while-loop terminates with $w=\varepsilon$. Furthermore, w does not become ε until the end of the $(m, 1)$-iteration of the loop at the earliest; otherwise, the algorithm would produce a $(\operatorname{pref}(r))^{m-1}$-partition of w, contradicting the minimality of m. Finally, for all (i, j) lexicographically between $(1,1)$ and $(m-1, k)$ inclusive, letting $\left(i^{\prime}, j^{\prime}\right)=$ $(i, j)^{\prime}$, we have that $w_{i^{\prime}, j^{\prime}}$ starts with n_{j}. This follows immediately from the greediness (maximum length) of the choice of $w_{i, j}$. Therefore, we have σ_{Σ} is a subsequence of each of the strings $\left(w_{1,2} \cdots w_{2,1}\right),\left(w_{2,2} \cdots w_{3,1}\right), \ldots,\left(w_{m-1,2} \cdots w_{m, 1}\right)$, and so $\left(\sigma_{\Sigma}\right)^{m-1} \preceq w$, which proves that $m_{r}(w) \leq \ell_{\Sigma}(w)+1$.

Definition 11. Let $R=r_{1} \cdots r_{k}$ and S be two SC regexps, where each r_{i} is PSC. We say that S is a one-step refinement of R if S results from either

- removing some bounded r_{i} from R, or
- replacing some unbounded r_{i} in R by $\left(\operatorname{pref}\left(r_{i}\right)\right)^{n}$ for some $n \in \mathbb{N}$.

We say that S is a refinement of R (and write $S<R$) if S results from R through a sequence of one or more one-step refinements.

One may note that if $S<R$, then $L(S) \subseteq L(R)$, although it is not important to the main proof.

Lemma 12. The relation < of Definition 11 is a well-founded partial order on the set of SC regexps (of height at most ω^{ω}).

Proof. Let $R=r_{1} \cdots r_{k}$ be an SC regexp, and let $e_{1} \geq e_{2} \geq \cdots \geq e_{k}$ be the ranks of all the r_{i}, arranged in nonincreasing order, counting duplicates. Define the ordinal

$$
\operatorname{ord}(R):=\omega^{e_{1}}+\omega^{e_{2}}+\cdots+\omega^{e_{k}},
$$

which is in Cantor normal form and always less than ω^{ω}. If $R=\varepsilon$, then $\operatorname{ord}(R):=0$ by convention. Let S be an SC regexp. Then it is clear that $S<R$ implies ord $(S)<\operatorname{ord}(R)$, because the ord of any one-step refinement of R results from either removing some addend $\omega^{0}=1$ or replacing some addend ω^{e} for some positive e (the rightmost with exponent e) in the ordinal sum of $\operatorname{ord}(R)$ with the ordinal $\omega^{e-1} \cdot n$, for some $n<\omega$, resulting in a strictly smaller ordinal. From this the lemma follows.

2 Main Proofs

The following lemma is key to proving Theorem 1.
Lemma 13 (Key Lemma). Let $R=r_{1} \cdots r_{k}$ be a $S C$ regexp where at least one of the r_{i} is unbounded. Suppose $L \subseteq L(R)$ is \preceq-closed. Then either

1. $L=L(R)$ or
2. there exist refinements $S_{1}, \ldots, S_{k}<R$ such that $L \subseteq \bigcup_{i=1}^{k} L\left(S_{i}\right)$.

Before proving Lemma 13, we see how it is used to prove Theorem 1.
Proof of Theorem 1. Let $L \subseteq L\left(\Sigma^{*}\right)$ be \preceq-closed. We prove by induction on the refinement relation that: for any SC regexp R, if $L \subseteq L(R)$ then L is regular. The theorem follows by setting $R=\Sigma^{*}$. Fix $R=r_{1} \cdots r_{k}$, and suppose that $L \subseteq L(R)$. If all of the r_{i} are bounded, then $L(R)$ is finite and hence L is regular. Now assume that at least one r_{i} is unbounded and that the statement holds for all $S<R$. If $L=L(R)$, then L is certainly regular, since R is a regexp. If $L \neq L(R)$, then by Lemma 13 there are $S_{1}, \ldots, S_{k}<R$ with $L \subseteq \bigcup_{i=1}^{k} L\left(S_{i}\right)$. Each $L \cap L\left(S_{i}\right)$ is \preceq-closed (being the intersection of two \preceq-closed languages) and hence regular by the inductive hypothesis. But then,

$$
L=L \cap \bigcup_{i=1}^{k} L\left(S_{i}\right)=\bigcup_{i=1}^{k}\left(L \cap L\left(S_{i}\right)\right)
$$

and so L is regular.
Proof of Lemma 13. Fix R and L as in the statement of the lemma. Whether Case 1 or Case 2 holds hinges on whether or not a certain quantity associated with each string in $L(R)$ is unbounded when taken over all strings in L.

For any string $w \in L(R)$ and any R-partition $P=\left\langle w_{1}, \ldots, w_{k}\right\rangle$ of w, define

$$
\begin{equation*}
M_{P}^{\mathrm{bd}}(w):=\min _{i: r_{i} \text { is bounded }}\left|w_{i}\right|, \tag{2}
\end{equation*}
$$

and define

$$
\begin{equation*}
M_{P}^{\text {unbd }}(w):=\min _{i: r_{i} \text { is unbounded }} m_{r_{i}}\left(w_{i}\right) . \tag{3}
\end{equation*}
$$

In (2), for any bounded r_{i}, we have $w_{i} \in L\left(r_{i}\right)$ and thus $\left|w_{i}\right| \in\{0,1\}$. If there is no bounded r_{i}, we'll take the minimum to be 1 by default.

Now define

$$
\begin{equation*}
M(w):=\max _{P: P \text { is an } R \text {-partition of } w} M_{P}^{\mathrm{bd}}(w) \cdot M_{P}^{\mathrm{unbd}}(w) . \tag{4}
\end{equation*}
$$

We will show that if

$$
\begin{equation*}
\limsup _{w \in L} M(w)=\infty \tag{5}
\end{equation*}
$$

then Case 1 of the lemma holds. Otherwise, Case 2 holds.

Suppose that (5) holds. Let $x \in L(R)$ be arbitrary. Then there is a $w \in L$ such that $|x|<M(w)$. For this w there is an R-partition $P=\left\langle w_{1}, \ldots, w_{k}\right\rangle$ of w such that $M_{P}^{\mathrm{bd}}(w)=1$ and $M_{P}^{\text {unbd }}(w)>|x|$. Let $\left\langle x_{1}, \ldots, x_{k}\right\rangle$ be some R-partition of x. For all $1 \leq i \leq k$, we then have

- $\left|x_{i}\right| \leq 1=\left|w_{i}\right|$ if r_{i} is bounded, and
- $\left|x_{i}\right| \leq|x| \leq m_{r_{i}}\left(w_{i}\right)-1 \leq \ell_{\Gamma}\left(w_{i}\right)$ if $r_{i}=\Gamma^{*}$ for some alphabet Γ.
(The last inequality of the second item follows from Lemma 10). In either case, we have $x_{i} \preceq w_{i}$ (the second case following from Observation 3), and thus $x \preceq w$. Since $w \in L$ and L is \preceq-closed, we have $x \in L$. Since $x \in L(R)$ was arbitrary, this proves that $L=L(R)$, which is Case 1 of the lemma.

Now suppose that (5) does not hold. This means that there is a finite bound B such that $M(w) \leq B$ for all $w \in L$. So for any $w \in L$ and any R-partition $P=\left\langle w_{1}, \ldots, w_{k}\right\rangle$ of w, either $M_{P}^{\mathrm{bd}}(w)=0$ or $M_{P}^{\mathrm{unbd}}(w) \leq B$. Suppose $M_{P}^{\mathrm{bd}}(w)=0$. Then $w_{i}=\varepsilon$ for some i where r_{i} is bounded. Let S_{i} be the one-step refinement of R obtained by removing r_{i} from R. Then clearly, $w \in L\left(S_{i}\right)$. Now suppose $M_{P}^{\text {unbd }}(w) \leq B$, so that there is some unbounded r_{j} such that $m_{r_{j}}\left(w_{j}\right) \leq B$. This means that $w_{j} \in L\left(\left(\operatorname{pref}\left(r_{j}\right)\right)^{B}\right)$ by Definition 9. Let S_{j} be the one-step refinement obtained from R by replacing r_{j} with $\left(\operatorname{pref}\left(r_{j}\right)\right)^{B}$. Then clearly again, $w \in L\left(S_{j}\right)$. In general, we define, for all $1 \leq i \leq k$,

$$
S_{i}= \begin{cases}r_{1} \cdots r_{i-1} r_{i+1} \cdots r_{k} & \text { if } r_{i} \text { is bounded } \\ r_{1} \cdots r_{i-1}\left(\operatorname{pref}\left(r_{i}\right)\right)^{B} r_{i+1} \cdots r_{k} & \text { otherwise. }\end{cases}
$$

We have shown that there is always an i for which $w \in L\left(S_{i}\right)$. Since $w \in L$ was arbitrary, Case 2 of the lemma holds.

Acknowledgment

I thank Bill Gasarch for interesting discussions.

References

[1] A. G. Higman. Ordering by divisibility in abstract algebra. Proc. of the London Math. Society, 3:326-336, 1952.

[^0]: *Computer Science and Engineering Department, Columbia, SC 29208. fenner@cse.sc.edu

