Gap-Definable Counting Classes*

Stephen A. Fenner!
Computer Science Department
University of Southern Maine

96 Falmouth Street

Portland, Maine 04103

Lance J. Fortnow!
Stuart A. Kurtz
Computer Science Department
University of Chicago
1100 East Fifty-eighth Street
Chicago, Illinois 60637

July 12, 1992

Abstract

The function class #P lacks an important closure property: it is not closed under
subtraction. To remedy this problem, we introduce the function class GapP as a natural
alternative to #P. GapP is the closure of #P under subtraction, and has all the other
useful closure properties of #P as well. We show that most previously studied counting
classes, including PP, C_P, and Mod; P, are “gap-definable,” i.e., definable using the
values of GapP functions alone. We show that there is a smallest gap-definable class,
SPP, which is still large enough to contain Few. We also show that SPP consists
of exactly those languages low for GapP, and thus SPP languages are low for any
gap-definable class. These results unify and improve earlier disparate results of Cai &
Hemachandra [7] and Kébler, Schoning, Toda, & Toran [15]. We show further that any
countable collection of languages is contained in a unique minimum gap-definable class,
which implies that the gap-definable classes form a lattice under inclusion. Subtraction
seems necessary for this result, since nothing similar is known for the #P-definable
classes.

1 Introduction

In 1979, Valiant [29] defined the class #P, the class of functions definable as the number of
accepting computations of some polynomial-time nondeterministic Turing machine. Valiant

*Journal of Computer and System Sciences, 48(1):116-148, 1994.

tSupported in part by NSF grant CCR-9209833. Some of this work was done while the first author was
a graduate student at the University of Chicago Computer Science Department, supported in part by a
University of Chicago Fellowship.

*Supported by NSF Grant CCR-9009936

showed many natural problems complete for this class, including the permanent of a zero-one
matrix. Toda [27] showed that these functions have more power than previously believed;
he showed how to reduce any problem in the polynomial-time hierarchy to a single value of
a #P function.

The class #P has its shortcomings, however. In particular, #P functions cannot take
on negative values and thus #P is not closed under subtraction. Also, one cannot express as
a #P function the permanent of a matrix with arbitrary (possibly negative) integer entries,
or even a simple polynomial-time function which outputs negative values.

In this paper, we analyze GapP, a function class consisting of differences—“gaps”—
between the number of accepting and rejecting paths of NP Turing machines. This class,
introduced in Section 3, is exactly the closure of #P under subtraction. GapP also has
all the other nice closure properties of #P, such as addition, multiplication, and binomial
coefficients. Beigel, Reingold, & Spielman first used gaps to great advantage in [6] to show
that PP is closed under intersection. Toda and Ogiwara have also formulated their results
in [28] using GapP instead of #P (see Section 3). We will argue that GapP is the right
way to think about #P-like functions.

Many complexity classes, such as NP, UP, BPP, PP, C_P, and ®P, have definitions
based on the number of accepting paths of an NP machine. In Section 4 we will look at
complexity classes defined in terms of the gap of an NP machine. Some classes such as
PP, C_P, and ®P have very simple characterizations in this manner. In particular, in
Section 5 we study a class SPP, alluded to but not specifically named in [15]. This class
has also been studied independently by Ogiwara & Hemachandra [19] under the name XP,
and by Gupta [12] under the name ZUP. We show that SPP, the gap analog of UP, is
the smallest of all reasonable gap-definable classes. SPP languages are exactly the low sets
for GapP (that is, L € SPP if and only if GapP% = GapP), and thus are low for any
gap-definable class. We also show that SPP equals the gap analog of Few, and this gives
us an alternate proof that Few is contained in &P ([7, 5, 4, 15]). From containment and
lowness considerations, we further conclude that P, UP, NP, and BPP are unlikely to be
gap-definable.

In Section 6 we address the question, first asked in [28], of whether the polynomial
hierarchy (PH) is randomly reducible to SPP. We show that this question cannot be
answered by relativizable techniques, that is, we show that there is an oracle relative to
which NP is not randomly reducible to SPP (Proposition 6.1), but with respect to a
random oracle, PH is low for SPP.

In Section 7, we consider the possibility that GapP is closed under certain operations
stronger than those discussed in Section 3. We show that such closure is equivalent to
certain unlikely complexity theoretic collapses. Similar and more extensive results were
obtained independently for GapP and #P in [19, 12].

In Section 8, we determine structural properties of the collection of all gap-definable
classes. We define GapCl, a simple, albeit nonconstructive, closure operation on sets (the
‘gap-closure’). From this we show that any countable set of languages C has a unique
minimum gap-definable class GapCl(C) containing it. We then show that the collection of
all gap-definable classes is closed under intersection and forms a lattice under inclusion. We
also show that some classes which are not obviously gap-definable in fact have this property.

Finally, we look at alternatives to the notion of gap-definability in Section 9. Narrower

notions of gap-definability can be advantageous, especially in light of the results in [28].
We define nice gap-definable classes—those for which the proofs in [28] go through. Nice
classes have several other desirable properties, and most of the usual gap-definable classes
are nice. On the negative side, we show that the structural results of Section 8 probably
do not hold for nice classes: the intersection of two nice classes is almost always as small as
possible—SPP.

We pose questions for further research in Section 10.

2 Notation and Definitions

We let £ = {0,1} and let ¥* denote the set of binary strings, which we identify with the
natural numbers via the usual binary representation. We let Z denote the set of integers. In
this section only, we will once or twice wish to emphasize that ¥* C Z, so we will then write
Z* in place of ¥*, and reserve X* to refer to the set of inputs to machines. For purposes
of computation, we will also have occasion to identify Z with X* in some standard way,
e.g., via the usual binary representation together with an extra sign bit. For z € X* we
write |z| for the length of z. A language is a subset of £*, and unless stated otherwise, all
functions have domain ¥*. Following custom, we sometimes identify a language L with its
characteristic function xr, so we have, for all z € X*,
df ar) 1 ifzel,

xe(e) = { 0 ifz¢L.
If A and B are sets, we let B — A denote the relative complement of A in B. If A C ¥*, we
usually use A as shorthand for ¥* — A. If A, B C ¥*, we use A @ B to denote the join of
A and B:

AoBE{2c|ccA}u{2z+1|z¢€ B}

We assume the reader is familiar with the basic concepts of computational complex-
ity theory, including Turing machines, complexity classes, polynomial-time reductions (m-
reductions and Turing reductions, and to a lesser extent, tt-reductions), complete sets,
nondeterminism, relativization, etc. We also assume that the reader has basic knowledge of
computable functions and recursively enumerable (r.e.) sets. There are a number of good
textbooks covering these subjects, including [13]. We use P and FP to denote the classes
of all polynomial-time computable languages and functions respectively. We use NP to
denote the class of all languages computable in nondeterministic polynomial time, and PH
denotes the polynomial hierarchy (see [25]).

We say informally that a class of languages or functions is relativizable if its definition
refers—explicitly or implicitly—to computation and/or computing machines. If C is a rel-
ativizable class and L C X*, we follow custom and define C¥ by replacing each machine
directly or indirectly referenced in the definition of C with an oracle machine with similar
properties except that the new machine has access to L as an oracle. We write C? simply
as C as is customary. If D is a language class, we write C? for the set ULeD{CL} as usual.
We say L is low for C if C' = C. A class of languages is low for C if every language in
the class is low for C. This notion was borrowed from recursion theory and was applied to
complexity classes in, for example, [15] (see [15] for further references).

We now define the machines we will be considering.

Definition 2.1 A counting machine (CM) is a nondeterministic Turing machine running
in polynomial time with two halting states: accepting and rejecting, and every computation
path must end in one of these states. An oracle machine having the above properties and
running in polynomial time uniformly for all oracles is called an oracle counting machine

(0CM).

A counting machine is simply an NP machine. We use this alternate terminology to
emphasize that the machine’s acceptance criterion is based on the number of accepting
and/or rejecting paths. The following notions all pertain to CM’s.

Definition 2.2 Let M be a CM. We define the function #M:%* — Z* to be such that
for all z € ¥*, #M(z) is the number of accepting computation paths of M on input z.
Similarly, Totalps: ¥* — Z7 is the total number of computation paths of M on input z.
The CM M is the machine identical to M but with the accepting and rejecting states
interchanged (thus M rejects whenever M accepts and vice versa).

Notice that for all z € X%,
#M(z) + #M(z) = Totaly(z) = Totalzz(z),

and # M (z) is the number of rejecting paths of M on input =.

If M is a CM, we define the nondeterministic branching degree of M to be the maxi-
mum number of possible successors to any instantaneous description (ID) of M. For any
computation path p of M, we define rank(p) (the rank of p) to be the number of nonde-
terministic moves made along p, that is, rank(p) is the number of ID’s along p with more
than one successor (the halting ID’s have no successors). A CM M is in normal form if
it has nondeterministic branching degree at most two, and the rank of any computation
path of M is always equal to a fixed positive polynomial in the length of the input. Thus
if M is in normal form, then Totalps(z) = 24(1) for some positive polynomial ¢. From now
on, all machines will be denoted with the capital letters M and N, possibly with primes or
subscripts, and will be CM’s unless stated otherwise.

We now define some of the usual counting classes. These are not always the original
definitions, but can easily be shown to be equivalent to them. See [4] for more details.

Definition 2.3
o (Valiant [29]) #P & {#M | M is a CM}.

e (Gill [9]) PP is the class of all languages L such that there exists M and an FP
function f such that, for all z,

z €L« #M(z) > f(z).

The function f is the threshold of M.

o (Wagner [30]) C_P is the class of all languages L such that there exists M and an
FP function f such that, for all z,

t €L« #M(z) = f(z).

o (Beigel, Gill, Hertrampf [5]) For k > 2, define Mod;P to be the class of all languages
L such that there exists M such that, for all z,

€L < #M(z)# 0mod k.

The class Mod,P is also called @P (‘Parity P’). This class was defined by Papadimitriou
& Zachos [20] and by Goldschlager & Parberry [10] (see [4] for details). The following two
classes will also be of interest to us:

Definition 2.4

o (Allender [1]) For any language L, L € FewP if and only if there exist a CM M and
a polynomial p such that for all ¢ € ¥*, # M (z) < p(|z|) and

t€L < #M(z)>0.

o (Cai & Hemachandra [7]) For any language L, L € Few if and only if there exist a
CM M, a polynomial p, and a polynomial-time computable predicate A(z,y) such
that for all x € ¥*, #M(z) < p(|z|) and

€ L« Az, #M(z)).

Clearly, FewP C NP. This is not known for Few, but it is well-known that Few C
PNPlogl and in fact, Few C PFeWP [14],

3 Gaps
Definition 3.1 If M is a CM, define the function gapy;: X* — Z as follows:

df —
gapy = #M — #M.

The function gapy; represents the “gap” between the number of accepting and the
number of rejecting paths of M. We define the natural gap analog of the function class #P:

Definition 3.2
GapP & {gapyr | M is a CM}.

This class was defined independently in [12] and named Z#P. From now on in this
chapter, we follow the spirit of [6] and work almost exclusively with gaps. The advantages
are that gap functions can take on positive and negative values, and we can subtract gaps
without introducing the large offsets that we get when we are counting accepting paths
only. We can add and multiply gaps as well, thus GapP has a canonical ring structure.

Lemma 3.3 For every CM M, there is a CM N such that gapy = #M. (That is, #P C
GapP.)

Proof: Given an input z, the machine N guesses a path p of M(z). If p is accepting, N
accepts. Otherwise, N branches once, accepting on one branch and rejecting on the other.

We have, for all z,

gapn(z) = #N(z)— #N(z)
#N(z) - #M(z)
#M(z) + #7(z) - #T(2)
= #M(=).

O

It is clear that gaps are no harder to compute than numbers of accepting paths. Propo-
sition 3.5 gives (perhaps) the strongest statement of this fact.

Definition 3.4 If C and D are two function classes, define

df
CoD={fog|feC&geD},
where ¢ is some appropriate binary operation, i.e., addition, subtraction, composition, etc.

Proposition 3.5
GapP = #P — #P = #P — FP = FP — #P.

(Note that here the minus sign refers to elementwise subtraction, not to set theoretic com-
plement.)

Proof: For any M we have
gapy = #M — #M

by definition, so GapP C #P — #P. To show that #P — #P C #P — FP, let f and g be
#P functions. We can assume that f = #M and g = #N, where M and N are CM’s, and
N is in normal form with polynomial ¢ (just pad N with extra rejecting paths so that all
paths have rank g; the result is a normal form machine with the same number of accepting
paths). Let M’ be the machine which first branches once, then simulates M on one branch
and N on the other. We have, for any z,

f(z) —g(z) = (2) — #N(z)
(z) + #N(z) — 2a(I=)
= #M'(z)— 2D,

4M
4M

Therefore f — g € #P — FP, and the inclusion holds. To show that #P — FP C GapP, let
f be a #P function and let ¢ € FP. By Lemma 3.3 there is an M such that f = gapy,.
Let N be such that for all z € ¥*, N(z) resembles M(z) padded with g(z) rejecting paths.
Clearly, gapy = f — g. It now follows that the first two equalities hold. The last equality
holds since #P — #P is closed under negation. O

We might just as well have taken the first equality in Proposition 3.5 as the definition of
GapP, and altered the proofs below accordingly. This route was indeed taken in [28]. We
nonetheless prefer to use our original definition in this chapter, if only for the conceptual
ease of associating a single machine to every GapP function.

We now list the closure properties of GapP, deferring the proofs until afterwards. It is
well known that properties 1, 3, 4, and 5 below are also shared by #P. Property 2 clearly
is not shared by #P. It is this property that gives GapP its power. Property 6 seems
to depend heavily on Property 2, so we don’t believe it is shared with #P either. From
these properties, it is easy to see that the permanent of an arbitrary integer matrix can be
computed in GapP, although it cannot be computed in #P.

Closure Property 1 GapP o FP = GapP and FP C GapP.
Closure Property 2 If f € GapP then —f € GapP.

Closure Property 3 If f € GapP and q is a polynomial, then the function
df
g(2)= D f({z,y))
ly|<q(l=])
is in GapP.
Closure Property 4 If f € GapP and ¢ is a polynomial, then the function
df
g)= JI 7=y
0<y<q(|=|)
is in GapP.

Closure Property 5 If f € GapP, k € FP, and k(z) is bounded by a polynomial in |z|,
then the function

is in GapP.

Closure Property 6 If f,g € GapP and 0 < g(z) < ¢(|z|) for some polynomial g, then

the function
df

h(z) = f({(z,9(=)))

is in GapP.

Corollary 3.6 GapP is closed under addition, subtraction, and multiplication.

Proof: Let f; and f, bein GapP. Let N be a CM such that for all z, gapy((z,0)) = fi(z),
gapy((z,1)) = fa(z), and gapy((z,7)) = 0 for 7 > 2. For addition and multiplication, apply
Closure Properties 3 and 4, respectively, with g(z) > 2 arbitrary. Subtraction follows from
addition and Closure Property 2. O

Proof of Closure Property 1: Given a CM M and g € FP. Let N be such that N(z)
simulates M(g(z)) for all ¢ € ¥*. Clearly, N is a CM and gapy = gapys © g. The second
statement follows immediately from Lemma 3.3. O

Proof of Closure Property 2: Immediate from Proposition 3.5. O

Proof of Closure Property 3: If f = gap;; for some CM M, then there is a CM N
which first guesses a y of length not greater than g¢(|z|), then simulates M on input (z,y)
for each y guessed. Clearly, g = gapy. O

Proof of Closure Property 4: Given f = gapj,s, the machine N guesses, in sequence,
computation paths of M on the inputs (z,0), (z,1), (z,2), and so on through (z, ¢(|z|)).
N accepts if an even number of these paths are rejecting, and N rejects if an odd number
of these paths are rejecting. N is clearly a CM. The fact that ¢ = gapy can be shown by
induction on the value n = ¢(|z|) as follows: for n = 0, we have gapy(z) = f((z,0)) = g(z)
because N(z) behaves just as M((z,0)) does. If n > 0, assume true for n — 1, and let N’
be a machine that acts the same as N except that N’ only guesses paths of M on inputs
(z,0),...,(z,n —1). For convenience, let ay- & #N'(z), rn A #N'(z), apr U #M((z,n)),

and 7y & #M({z,n)). By the inductive hypothesis, we have

g(z) gapy(z)f((z,n))
= gapyi(z)gapy((z,n))
= (an' —rnv)(amr — Tar)
= (anam +ryry) — (anrm + Tiam).

Now N (z) accepts whenever it guesses an even number of rejecting paths. This happens
either when there are an even number of rejections through (z,n — 1) and the last path is
accepting, or when there are an odd number of rejections through (z,n — 1) and the last
path is rejecting. Thus by the definition of N’, the total number of sequences accepted by
N(z) is exactly ayrapr + rnrar. Likewise, the total number of sequences rejected by N(z)
is ay'rpr + rvrap. Therefore g(z) = gapy(z). O

Of all the closure properties, Property 5 is perhaps the most useful and least obvious. It
states that, like #P, GapP is closed under binomial coefficients. To prove this closure prop-
erty, we will need a combinatorial lemma (Lemma 3.7). We define the binomial coefficient

(:c) céf:t:(:z:—1)(:1:—2)---(:1:—'y—l—l)

y y!

as follows:

’

which makes sense for all real numbers z and all nonnegative integers y. (If y = 0 then

(Z) =] by convention.) Lemma 3.7 is proved using Vandermonde’s convolution [11, page

174], which states that for integers a,b and k& > 0,

(-5 065

An intuition behind this equality is that choosing a committee of k people from a group of
a women and b men is the same as first choosing ¢ women then k& — ¢ men independently
for each possible 3.

Lemma 3.7 For all integers r,j,k with k > 0,

()= ()0

Proof: Negate the first binomial coefficient on the right hand side (see [11, page 174]) to

get
:Zk .

Now apply Vandermonde’s convolution to get
k . .
Z -r—1\({r+74+1) [J
N\ i k—i) \k)’

It is important to note that the identity of Lemma 3.7 holds for all integers j and
nonnegative integers k.

O

Proof of Closure Property 5: Note that if M; is a CM running in time ¢ & t(n), and

K k(z) is an FP function, then there is a nondeterministic machine M5 running in time
O(kt) such that for all inputs z of length n,

#My(z) = (#Z;()m))

The machine M; simply guesses a sequence of k paths of M7, and accepts if and only if the
paths are in strictly increasing lexicographical order and all of them are accepting. Note
further that if £(z) and ¢(n) are polynomially bounded, then M, is a CM.

Let f = gapy;. By setting r A #M(z), j U gapy(z), and k U k(z) in Lemma 3.7
above, we get
f@)) JK2 i (#H(@)) (#M(z) + 1
(k(;c)) =200 i kz)—i |

By the previous paragraph and Lemma 3.3, there is a machine N that can generate a gap
equal to each of the binomial coefficients on the right-hand side. By Closure Properties 1

through 4, it can combine these gaps to generate the whole right-hand side as a gap. (The
machine N computes the factors by padding M with one accepting path, padding M with
i accepting paths, then computing the resulting binomial coefficients.) O

The following “delta” functions will be useful in many places later on: for integers &

and B with 0 < k < B, define
B, \df ([¢\[B -z

for all z € Z. Notice that

0 if0<z<k,
P(z)=4 1 ife ==k,
0 ifk<z<B.

We now use these delta functions to prove Closure Property 6, which says that GapP is
closed under a limited form of composition.

Proof of Closure Property 6: Notice that for any z,

g
F((z,9(2)) =Y f({=,1)8(9(2)),
=0
where ¢ = ¢(|z|). The statement follows by the previous closure properties. O

Closure Property 6 immediately gives a number of other limited closure properties,
among them a strengthening of Closure Property 5.

Corollary 3.8 If f,g € GapP and 0 < g(z) < ¢(|z|) for some polynomial q, then the

functions (e)
/(@ an z)9(=)
(0 ana 1o

are in GapP.

Proof: Apply Closure Property 6 with f and g, where

f i (1)

for the first function, and

for the second. O

10

4 Counting Classes

Most counting classes that have been studied previously can be defined using the gap
function alone. We will call such classes gap-definable.

Definition 4.1 A class C of languages is gap-definable if there exist disjoint sets A, R C
¥* X Z such that, for any language L, L € C if and only if there exists a CM M with

zel = (z,gapu(z)) € 4,
z¢ L = (z,8apu()) € R,

for all z € ¥*. We let Gap(A4, R) denote the class C.

We call A and R respectively the accepting and rejecting sets. We allow them to
be completely arbitrary, perhaps nonrecursive. We say that a CM M is (A, R)-proper
if (z,gapp(z)) € AU R for all z € ¥*, and we define

Lar(M) % {z € 87| (2, gapy () € A}.

To relativize Definition 4.1 to an arbitrary fixed oracle, we permit M to be an OCM
with access to that oracle. It must be noted, however, that A and R are arbitrary sets
independent of any machine. Therefore we have two natural ways of defining gap-definability
for a relativized class: we say that a relativized class is uniformly gap-definable if it is gap-
definable with respect to any oracle, but with the sets A and R fixed and independent of the
oracle; a relativized class is nonuniformly gap-definable if it is gap-definable with respect
to any oracle, where A and R are chosen after the oracle and thus may vary depending on
the oracle. This distinction will be important in Section 5, especially for Corollary 5.7. For
now, unless otherwise stated, when we relativize a class Gap(A4, R) to an oracle, A and R
will remain fixed independent of the oracle, in accordance with our remarks at the beginning
of Section 2.

There are other more restricted notions of gap-definability that are possible. For a
discussion of some of these alternate definitions, see Section 9.

Proposition 4.2 The classes PP, C_P, and Mod;P (for k > 2) are all (uniformly) gap-
definable; in fact, the following are true for any language L:

1. L € PP <= (IM)(Vz)[z € L < gapy(z) > 0].
2. Le C_P < (IM)(Vz)[z € L < gapy(z) = 0].
3. L € ModxP <= (IM)(Vz)[z € L < gapy(z) # 0 mod k|.

The proof of Proposition 4.2, given below, is straightforward with the aid of a normal
form lemma. Unlike the case with #P machines, we cannot assume that GapP machines
are in normal form (a normal form machine always generates an even gap, for example).
The following lemma is almost as good.

Lemma 4.3 Let f be a function from X* to Z. Then f = gap;s for some CM M in normal
form if and only if f = 2gapy for some arbitrary CM N.

11

Proof: Suppose M is a CM in normal form, and let g(|z|) be the rank of any path of M
on input . The machine N guesses a partial path p of M (z) up through the first g(|z|) — 1
nondeterministic choices. Let p; and py be the two extensions of p made by the last branch
of M. If both p; and p, are accepting, then N accepts; if they are both rejecting, N rejects;
otherwise, N branches once to one accepting and one rejecting path. From this it is clear
that gapyr = 2gapy-

Conversely, let N be a CM (not necessarily in normal form). We can assume without
loss of generality that N has branching degree at most two. Let ¢ be a polynomial which is
strictly greater than the running time of N. The machine M simulates N(z), branching as
N does, to guess a path p of N. Then M branches further, extending p with 24(=l)-rank(p)
paths, all of rank ¢(|z|). If p is an accepting path, M makes exactly a(|z[)—rank(p)-1 4 1 of
these paths to be accepting; if p rejects, then M makes 29(|z)-rank(p)=1 _ 1 of these paths
accepting. The contribution to gapys(z) of the paths extending p is respectively +2 or —2,
depending on whether p accepts or rejects. Therefore, M(z) generates twice the gap of
N(z), and M is in normal form. O

Proof of Proposition 4.2: All the left-to-right implications follow immediately from
Lemma 3.3 and the fact that we can subtract a polynomial time computable function
from a gap. The first two right-to-left implications are clear by Lemma 4.3; we take the
threshold function f to be 2%/z)-1 where g is the polynomial associated with the normal
form machine. We show the third right-to-left implication by building a CM whose number
of accepting paths is congruent mod k to the gap of a given CM as follows: given a CM M,
let N be a CM that first generates k branches, then simulates M on one branch and M on
the other & — 1 branches. Clearly,

#N = #M + (k- 1) - #M = gapy + k- #M,

s0
#N = gapy; mod k.

The implication follows.
This proof clearly relativizes, so all the classes mentioned in Proposition 4.2 are uni-
formly gap-definable. O

Lemma 4.3 allows us to characterize GapP in terms of predicates in P.

Proposition 4.4 If f:X* — Z is any function, then f € GapP if and only if there is a
predicate R(z,y) € P and a positive polynomial q such that for all z € ¥,

£(2) = 5 (|{v € 0,1390: Rz,)} - [{w € {0,1320D: “R(z,9)}) .

Proof: Immediate by Lemma 4.3. O

There is yet another characterization of GapP as the class of functions computed by
uniform families of retarded arithmetic programs as described by Babai and Fortnow [2,
section 3].

Subtraction has been quite useful in simplifying many existing proofs about counting
classes. As an easy example, consider the following proof that C_P C PP:

12

Proof: Given L € C_P as witnessed by f € GapP, define

df
g(z) = 1 [f(=)]*
Clearly, g € GapP, and for all z,
el << g(z)>0.

Thus L ¢ PP. O

The reader may wish to compare the proof above with the one in [23].

More significantly, Toda and Ogiwara [28] have simplified their results using GapP. We
state their main results here, using slightly altered notation. We first define a subfamily of
the gap-definable classes.

Definition 4.5 Let Q C Z be any set. Define
GapIn[Q] £ Gap(2* x Q, %" x (Z — Q)).

Thus GapIn[Q] identifies those gap-definable classes where the accepting and rejecting
sets partition ¥* X Z and the acceptance criterion is independent of the input. Next, we
define the BP operator from [28], which is a modification of the BP operator of Schéning
[22]:

Definition 4.6 ([28], Definition 2.1) Let K be any class of languages. A language L is
in BP - K if for every polynomial e, there exist a set A € K and a polynomial p such that
for every z € X*,

{w: |w| =p(jz]) & (z € Lo (z,w) e A)}| > 2°(=D(1 — g=<(l=l)),
Remark: Schoning’s BP operator is defined similarly, except that the polynomial e is

replaced with the constant 2. The class BPP (bounded error probabilistic polynomial
time) can be defined naturally as BP - P.

Toda and Ogiwara showed the following technical lemma:

Lemma 4.7 ([28, Lemma 2.3]) Let F be any function in GapPYH and let e be any
polynomial. Then there exist a function H € GapP and a polynomial s such that for every
z € X,

{w: Jw| = s(j2]) & H((z,w)) = F(z)}| > 2°0=D(1 - 27<(=D).

Their main theorem follows easily:
Theorem 4.8 ([28, Theorem 2.4]) Let @ be an arbitrary subset of Z. Then
GapIn[Q]PH C BP - GapIn[Q)].

This theorem states that PH is “randomly low” for every gap-definable class of the form
GapIn[@]. One must bear in mind, however, that the result probably does not extend to
all gap-definable classes. See Section 6 below.

13

5 SPP

In Definition 4.1, the accepting and rejecting sets need not partition X* X Z. That is, we can
define new gap-definable counting classes by putting restrictions on the behavior of CM’s.
We will be interested chiefly in the following class:

Definition 5.1 SPP is the class of all languages L such that there exists M such that, for
all z,

rel = gapy(z)=1,
t¢ L — gapy(z)=0.

An SPP-like machine was first described in [15], and as mentioned earlier, SPP is the
same class as XP and ZUP, studied independently in [19] and [12] respectively. These
papers study closure properties of #P and GapP. Recently, Kébler, Schoning, & Toran
[17] showed that the Graph Automorphism problem (does a given graph have any nontrivial
automorphisms) is in SPP. They also showed that the Graph Isomorphism problem is in
the class LWPP, defined at the end of this section.

Clearly SPP C C_Pnco-C_P. It is also clear by Lemma 3.3 that UP C SPP C Mod;P
for any k. Notice that if we replace gapy, with #M in the definition of SPP, we get UP.
Thus on purely syntactic grounds, we might have called this class Gap-UP, although UP
bears little resemblance to its gap analog (SPP is closed under complements, for example).
In the same spirit, we may define the gap analog of the class Few:

Definition 5.2 Gap-Few is the class of all languages L such that there exists a CM M, a
polynomial time predicate A(z, k), and a polynomial ¢ such that, for all ¢ of length n,

0 < gapy(z) < g(n),

and
t e L < A(z,gapy(z)).

If we replace gap;; with # M above, we get the class Few. Clearly, Few C Gap-Few by
Lemma 3.3. It is not obvious, however, that Gap-Few is a gap-definable class. The reason
is that we must fix the accepting and rejecting sets in advance to work for all predicates
A(z, k). It is not clear how we can do this. Theorem 5.9, however, provides a relativizable
proof that Gap-Few = SPP, which implies Gap-Few is gap-definable, and indeed uniformly
gap-definable.

The sets A and R of Definition 4.1 can be chosen arbitrarily (as long as they are disjoint).
This freedom allows for many small, uninteresting gap-definable classes. For example, if L
is any language, then {L} is clearly gap definable:

{L} = Gap(L x Z,L x Z).
To avoid these cases, we concentrate on reasonable gap-definable classes.

Definition 5.3 A gap-definable class C is reasonable if) € C and ¥* € C.

14

All the gap-definable classes introduced above are clearly reasonable. The next theorem
implies that SPP is the smallest reasonable gap-definable class.

Theorem 5.4 Let C & Gap(A, R) be a gap-definable class. The following are equivalent:
1. C is reasonable.
2. SPP CC.

3. There exist f,g € GapP such that (z, f(z)) € A and (z,g(z)) € R for all ¢ € ¥*.

Proof: Weshowl —= 3 — 2 —1.

(1 = 3): Let M and N be CM’s recognizing) and X*, respectively. Let f & gapy and
g = gapy-

(3 = 2): Suppose L € SPP is recognized by the CM M with gap either 0 or 1. By
Corollary 3.6, there is a CM N such that

gapy = gapy - (f —9) + g

Thus L € C as witnessed by the machine N.
(2= 1): Obvious. O

We still have a great deal of freedom in choosing A and R to get reasonable gap-
definable classes. In fact, it will be shown in Section 8 that any countable collection of
languages is contained in a reasonable gap-definable class, which in turn implies that there
are uncountably many reasonable gap-definable classes.

The next theorem says that SPP consists of exactly those languages which are low for
GapP.

Theorem 5.5

SPP = {L | GapPL = GapP}.

Remark: It is unlikely that #PSPP = #P, or even that #PUP = #P. It follows
immediately from arguments in [16] that the latter equality implies UP = co-UP.

Proof of Theorem 5.5: We first show that SPP contains all GapP-low languages.
Suppose L is a language such that GapPl = GapP. Let M be an OCM that, on input
z, queries the oracle on . If z is in the oracle, M accepts; if is not in the oracle, M
generates one accepting and one rejecting path. Clearly,

1 ifzel,
0 otherwise.

gappyr(z) = {

By hypothesis, there is a CM N which computes the same gap as M T but without an oracle.
Thus L € SPP as witnessed by N.

15

Conversely, we show that if M is an OCM and L is a language in SPP, there is a CM
N (without an oracle) such that

gapy = gapyr-

This part of the proof has the same flavor as the proof that @P@P = @P in [20]. Let M,
be an SPP machine recognizing L. We may assume without loss of generality that for any
oracle A and input z of length n, M4(z) makes exactly k(1™) oracle queries on each path,
where k € FP.

Fix n and let k & kE(1™). The CM N does the following—in sequence—on input z of
length n:

1. Guesses a sequence ay, ..., ax of bits (oracle query answers).

2. Guesses a legal path of M, substituting a; for the answer to the ith oracle query ¢; of
M. (Let p be the computation path of N defined thus far.)

3. Generates a gap G, extending p, where G, is defined as follows: for 1 < i < k let

& | gapp, (%) if a; =1,
9i = Y ifa =
1 - gappy, (¢:) ifa; =0.

If p ends in an accepting state of M, G, & Hle gi- If p ends in a rejecting state,
df k
- Hi:l gi-

Gp =
For each path p above, N can clearly generate the corresponding gap G, by simulating A;
in polynomial time, as is evident by the expressions for G, and the closure properties of
GapP.
We have
g’l. =

0 otherwise.

Thus for any path p above, G, = £1 if all of M;’s queries were answered correctly along
p (i.e., according to the language L), and G, = 0 otherwise. Thus paths with incorrectly
answered queries do not contribute anything to the gap of N, and the remaining gap is
simply that of ML.

More carefully, the gap generated by M on input is the sum of the gaps generated for
each path p, i.e.,

gapy(z) = Z (gap generated from path p) = Z Gp.
P

p

The sum on the right can be divided into three parts depending on the type of the path p.
Let A be the set of all paths p ending in an accepting state of M where all of M’s oracle
queries along p are answered according to L. Let R be the set of all p ending in a rejecting
state of M with all oracle queries answered according to L. Let E consist of the remaining
paths, i.e., the ones where some query along p is not answered according to L. We have,
for any =,

16

gapy(z) = ZGP‘|' ZGP‘|' ZGP

pEA pER peE

= Y 1+) (-1)+> 0

pEA pER peEE
= #M"(z) - #M" () +0
= gappyr(z).

O

Corollary 5.6
GapPSPP = GapP.

Corollary 5.7 If C is any uniformly gap-definable class, then CSPP _ ¢

Proof: Let C = Gap(4,R) for some A,R C Z, let L ¢ SPP, and let S € CX. By the
remarks in Section 4, there is an OCM M such that for all z € X*,

2€S = gapas(e) € 4,

t¢S — gapyw(z) € R.

By Corollary 5.6, we have gapysr = gapy for some unrelativized CM N. Thus N witnesses
that SeC. O

Corollary 5.8 SPP is closed under polynomial-time Turing reductions.

Proof:
SPP C PSPP Cc sppSPP C spp
by Corollary 5.7. Thus SPP = PSPP_ O

It should be noted that there may be languages not in SPP which are low for some
particular gap-definable classes. For example, Kobler, et al. [17] showed that Graph Iso-
morphism (GI) is low for PP and C_P (see below), and it is not known that GI € SPP.
As another example, all ®P sets are low for @P ([20]), and it is not likely that SPP = ¢P.
Also, the class WPP, defined later in this section, is low for PP ([26]), and we don’t believe
that SPP = WPP. The same is true for BPP, defined in the remark following Definition
4.6 (see later in this section). Kobler et al. [15] showed that BPP is low for PP, and it is
unlikely that BPP C SPP.

We now generalize [15] to Theorem 5.9 below regarding gaps.

Theorem 5.9

SPP = Gap-Few.

17

Proof: Clearly SPP C Gap-Few. Let L be in Gap-Few as witnessed by the CM M, the

polynomial time predicate A(z, k), and the polynomial g. Let A((m, k)) be the 0-1-valued

function corresponding to the truth value of A(z, k). Finally, let f(z) A A(z,gapy(z)). By

Closure Property 6, f € GapP, furthermore, f(z) = 1 if ¢ € L, and f(z) = 0 otherwise.
Thus L € SPP as witnessed by f. O

Corollary 5.10

Few C SPP.

Corollary 5.11 Few is contained in any reasonable gap-definable class. In particular,
o Few C C_P ([15, 5, 4]).

o Few C ModyP for any k > 2 ([7, 5, 4]).

Proof: Immediate from Theorem 5.4 and Corollary 5.10. O

Corollary 5.11 also follows from related work of Beigel, Gill, & Hertrampf [5]: Few C

PCPaw for any predicate @ such that @(0) = 0 and @(1) = 1. See [4] for a definition of

PCPa@). The next corollary subsumes all the lowness results in [15].

Corollary 5.12 Few is low for any uniformly gap-definable class. In particular, Few is

low for each of the classes PP, C_P, and &P ([15]).

Proof: Immediate from corollaries 5.7 and 5.10. O

The proof of Theorem 5.9 relativizes to show that SPPX = Gap-Few?* for any oracle
X, thus Gap-Few is uniformly gap-definable.

Because of Theorem 5.4 and its corollaries, there are several counting classes that are
not gap-definable unless certain unlikely complexity theoretic inclusions hold. For example,
if BPP is gap-definable, then UP C BPP, and if BPP is uniformly gap-definable, then
BPPUP = BPP. Of course, these facts about BPP also hold for P, UP, and NP.

The following class is a simple generalization of SPP:

Definition 5.13 WPP (“wide” PP) is the class of all languages L such that there exists
a CM M and a function f € FP with 0 ¢ range(f) such that for all z,

zel = gapu(z)= f(2),
t¢L — gapy(z)=0.

Toda has studied this class, which he names Two, and has a clever proof that WPP is
low for PP [26] (see Appendix). It is clear that SPP C WPP C C_P Nco-C-P, and both
inclusions appear to be proper. We may also define a restricted version of WPP, where the
function f in the definition can depend only on the length of z. We’ll call this class LWPP.
It appears that SPP # LWPP as well. The proof of Theorem 5.5 can be modified easily

18

to show that LWPP is low for PP and C_P. K&bler, et al. [17] show that GI and other
related problems are low for these classes by showing that GI € LWPP.

Unfortunately, we cannot modify the proof of Theorem 5.5 to show that LWPP is low
for WPP or for LWPP. The reason lies in the way these classes are relativized. If L is a
fixed language in LWPP, we say that A € WPPZ if and only if there exists an everywhere
nonzero function f:¥* — Z, computable in polynomial time relative to L, and a GapP*
function g such that, for all z € X*,

zed = g¢(z)= f(2),
t¢d A = g(z)=0.

The problem is that L can be used in the computation of f. There is no reason to believe
that A is then in WPP witnessed by a polynomial-time unrelativized function f. The
same goes for the class LWPPLIWPP we can, however, adapt the proof of Theorem 5.5
to show that SPPLWPP — TWWPP. Thus LWPP is closed under polynomial-time Turing
reductions, and so any problem Turing reducible to GI is in LWPP.

At first blush, the classes WPP and LWPP appear not to be gap-definable, since the
accepting and rejecting sets cannot be fixed once and for all, but rather must vary depending
on the choice of the function f. We show in Section 8.1, however, that WPP and LWPP
are indeed nonuniformly gap-definable. The nonuniformity appears necessary, because to
relativize the definitions of the two classes properly to an oracle X, one must allow f to be
a function in FP¥ as above, thus the accepting set depends on the oracle.

6 Randomized Counting

One might wonder whether Theorem 4.8 holds for a class such as SPP, i.e., is it true that
sppPH C BP . SPP, or even that PH C BP - SPP? Toda & Ogiwara address this
question in [28] and conclude that this is probably not the case since the definition of any
SPP language includes a promise that the gap of some machine is either 0 or 1, and the
proof of Theorem 4.8 relies on there being no such promise for a language in GapIn[@]. As
further evidence that SPP is not as hard as PH, we now show that there is an oracle relative
to which NP ¢ BP - SPP. (An observation in [28] implies that BP - SPP = BP - SPP
since SPP is closed under majority-tt-reductions.) In fact, the oracle constructed in [3] will

do.

Proposition 6.1 There exists an oracle A such that NP4 ¢ (BP - SPP)4.

Proof: The following implications all relativize:

NP C BP .SPP — PpNP C pBPSPP

SPP
, pNP pBPP

_, pNP pppSPP
_, pNP ppSPP
— PNP Cpp.

19

The last implication follows from Corollary 5.7. Beigel [3] constructed an oracle relative to
which PNP ¢ PP. Relative to this same oracle then, NP ¢ BP - SPP. O

The most we can say at present is that the statement PH C SPP is “almost” true. If
we let F' be the characteristic function of some PH language L in Lemma 4.7, we get the
following corollary:

Corollary 6.2 (to Lemma 4.7) For every L € PH and polynomial e, there exist a func-
tion H € GapP and a polynomial s such that, for all z,

{w: lw| = s(lel) & H((z,w)) = xp(e)}| > 20=D(1 — 2-<(=D),

We may make the following definition: for any relativizable class C, a language L is in
Almost(C) if and only if
]ir[L ec4=1.

Here, the probability is taken over all oracles A where each ¢ € ¥* is independently put
into A with probability 1/2. The next proposition follows by standard techniques from a
relativization of Lemma 4.7.

Proposition 6.3 With respect to a random oracle, PH is low for GapP, i.e.,

1?2I[Ga,pPPHR = GapP¥] = 1.

Proof: Lemma 4.7 can be relativized to any oracle categorically. That is, given any

function FX computed by some appropriate oracle machine M¥ so that FX ¢ GapPPHX
for all X uniformly, and given any polynomial e, there exist a polynomial s and an OCM
N such that for all of length n and all oracles A,

‘{w Cw| = s(n) & GA((z,w)) = FA(;(;)H > 2#(m)(1 — g<(n)y,

where G4 ¥ gapya. We may also assume that all queries to A in the computation of
G4((z,w)) are bounded by the running time of M. Let r be a polynomial bounding the
running time of M. Define, for any oracle A and any z of length =,

GA(z) £ GA((z, wa)),

where

wa ‘gl A(IEOT(H)+1)A({EOT(H)+Z) . 'A(IEOT(H)-H(H)).

Clearly there is an OCM N such that G4 = gapy.a for all A. Fix z of length n. The string
w4 is made up of bits consisting of the values of A on arguments which are not used in
either the computation of F4(z) or the computation of G4((z,w)) for any w of length s(n).
Because of this independence, we have

%I[GR(m) + FR(z)] < 27,

20

Letting ¢ be any natural number and letting e(n) df 2n + ¢ + 1, we have
%r[éﬂ + FE]
= 1jir[(ﬂw)GR(w) # FB(z)]
< ~R R
< Y Y PrGRe) # F(a)

n=0z:|z|=n

i Z 2—2n—c—1

n=0z:|z|=n

[+5)
_ Z 2—n—c—1
n=0

= 27°,

IN

which in turn implies that
1-27¢ < %r[FR = GE]
< %r[FR € GapPF].

Since Pry[FE ¢ GapPR] is independent of ¢, we may take ¢ arbitrarily large to get
%r[FR € GapP®| = 1.

X
Since GapPPH = U FX where the F’s are computed by only countably many machines
M described above, we obtain

I??I[GapPPHR = GapP®] = 1.

O

Corollary 6.4 Almost(SPPPH) = Almost(SPP).

Proof: Let L be any language. We have

L e SPPPHA for ae. A
PH*
<~ xr € GapP for ae. A
< x € GapP“ for a.e. 4

by Proposition 6.3. O

Subsequent research [8] implies that Almost(SPP) is also nonuniformly gap-definable.

For the next corollary, a natural way to relativize Almost(C) to an oracle A is to say
that L € (Almost(C))4 if and only if Prg[L € CF®4] = 1. With this definition, Almost(P)
relativizes the same way as BPP with the usual machine-based definition.

Corollary 6.5 PH is low for Almost(SPP).

21

Proof: It can be easily shown that (Almost(SPP))PH is a subclass of Almost(SPPTH)
and a superclass of Almost(SPP). The corollary follows from the equality of the two latter
classes. O

Corollary 6.6 PH C Almost(SPP).

Corollary 6.7 With respect to a random oracle, PH C SPP, in fact, PH is low for SPP.

Proof: For a.e. A we have

PH4 C SPPPE” _ (1| x; € GapPPH"} = {L | xz € GapP4} = SPPA.

7 Closure Properties of GapP

It is natural to ask if, in addition to the closure properties enumerated in Section 3, GapP
has any other closure properties. For example, is GapP closed under unrestricted compo-
sition with itself? Is GapP closed under left composition with functions in FP? We know
from Section 3 that GapP is closed under left composition with the “bounded” delta func-
tion 6kB . Is GapP also closed under left composition with the “unbounded” delta function

6(m)¥{ 1 ifz =0,

0 otherwise,

defined for all z € Z?

The answer to all of these questions is no, unless certain unlikely complexity theoretic
identities hold. Ogiwara & Hemachandra [19] have studied closure questions such as these
in detail, primarily for the class #P. They and Gupta [12] also address closure properties
of GapP. We obtained Theorem 7.1 independently of their work. See [19] for a nice, unified
treatment of these questions.

In Theorem 7.1 below, if P(Z) is any predicate, we define the function

0 otherwise.

[P(2)] df { 1 if P(&) is true,
For example, [z = 0] = §(z) as defined above. Also recall that we have identified ¥* with
Z for computational purposes.

Theorem 7.1 The following are equivalent:
1. {6} o GapP C GapP.
2. {Azy.[t = y|} o (GapP x GapP) C GapP.

3. GapP o GapP C GapP.

22

WA

. {Az.[0 < 2]} o GapP C GapP.

5. {Azy.[z < y]} o (GapP X GapP) C GapP.

6. SPP = PP.
7. SPP =C_P.
8. (Azy.[z = y]) o (#P x #P) C GapP.

9. FP o GapP C GapP.

Proof Sketch: In what follows, f and g are arbitrary functions in GapP.

]

A

2:

T

1:

[7(z) = 9(2)] = 8(f(z) — 9(=))-

2 9(f(2)) = Xyez 9(y) - [y = f(=)].

: Follows from the fact that § € GapP.

£ 0 < f(2)] = Sysoly = £(2)].

2 [f(=) < g(2)] = [0 < g(z) — f(=)].

2 0(f(e)) =1-1[0 < f(z)] - [(=) < 0].

: If L € PP witnessed by f € GapP, then L € SPP witnessed by [0 < f(z)].

Follows from the fact that C_.P C PP.

The C_P set {z | f(z) = 0} is in SPP witnessed by the function [f(z) = 0] =

8(f(z)). Hence § o f € GapP.

2 — 8:

8§ — 1:

3 — 9:

9 — 1:

O

Follows from the fact that #P C GapP.
If f = fi — f where f1, fo € #P, then [f(z) = 0] = [fi(z) = fa(2)].
Follows from the fact that FP C GapP.

Follows from the fact that § € FP.

Ogiwara & Hemachandra [19] and independently Gupta [12] show further that state-
ments 6 and 7 are equivalent to the polynomial counting hierarchy collapsing to SPP (see
either source for definitions).

23

8 Structure of the Gap-Definable Classes

In this section we examine the collection G of all gap-definable classes, partially ordered by
inclusion. We show that any countable class of languages is contained in a unique minimum
gap-definable class (its ‘gap-closure’). From this we show that G is closed under intersection,
and further that G is a lattice under inclusion, i.e., any two gap-definable classes have a
gap-definable least-upper-bound and a gap-definable greatest-lower-bound.

In Section 8.1 we will define a gap-closure operator, GapCl, which maps countable
classes of languages to other countable classes of languages. There we will show that GapCl
satisfies the following axioms for any countable classes D and &:

1. GapCl(D) is gap-definable.

2. D C GapCl(D).

3. If D is gap-definable, then GapCl(D) = D.

4. D C £ = GapCl(D) C GapCl(€) (GapCl is monotone).

In order to prove these results, we must build accepting and rejecting sets that are not
recursive (see Section 8.1). (Despite this fact, the complexity of GapCl(C) is not a great
deal higher that that of C; in particular, if C consists only of recursive sets, than so does
GapCl(C).) We use the same technique in Section 8.1 to show that the classes WPP and
LWPP are (nonuniformly) gap-definable.

We can use GapCl to get structural information about the gap-definable classes, sum-
marized in the following theorem:

Theorem 8.1
1. GapCl(GapCl(D)) = GapCl(D) (GapCl is idempotent).

2. If D is a countable class, there is a unique minimum gap-definable class which contains

D.

3. Any countable collection of gap-definable classes has a gap-definable least-upper-
bound (under inclusion).

4. The intersection of an arbitrary collection of gap-definable classes is gap-definable.

5. The gap-definable classes form a lattice (under inclusion).

Proof:
1. Follows immediately from axioms 1 and 3.

2. Clearly, D C GapCl(D) by axiom 2, and GapCl(D) is gap-definable by axiom 1. If
£ is any gap-definable class containing D, then by axioms 3 and 4, GapCl(D) C
GapCl(€) = £. Therefore, GapCl(D) is the least gap-definable class containing D.

3. Let {D;}; 5. be a collection of gap-definable classes. All the D; are countable, so
D = U;ez+ D; is countable, and GapCl(D) is the required least-upper-bound.

24

4. Let {D;};c; be an arbitrary collection of gap-definable classes, and let D a Nicr Ds.
For all ¢ € I, we have D C D;, so by axioms 3 and 4, we have GapCl(D) C
GapCl(D;) = D;. Thus GapCl(D) C D, and so GapCl(D) = D by axiom 2. Thus D
is gap-definable by axiom 1.

5. This follows immediately from the previous two claims. The least-upper-bound of
two classes is the gap-closure of their union, and the greatest-lower-bound is their
intersection.

O

The operator GapCl satisfies some other nice properties besides axioms 1-4. For exam-
ple, if D is closed downward under ptime m-reductions, then GapCl(D) is similarly closed
(Theorem 8.5 in Section 8.1). Thus we know immediately that GapCl(NP) is closed under
ptime m-reductions, for instance.

8.1 The Gap-Closure Operator, GapCl

Let W be an immune set, i.e., W has the following two properties:
1. W is infinite.
2. W has no infinite recursively enumerable subsets.

It is well-known that such sets exist (see [21, 24]); for example, we can take
df *
W={zecX| K(z)>|z|/2},

where K (z) is the Kolmogorov complexity of with respect to some fixed universal DTM
(see [18]). We let W = {wq, ws,ws, ...}, where w; < wy < wz <
Now suppose D = {L1, Ly, L3, ...} is a countable collection of languages. Define

Ap € {(z,w;) | @ € L;}

and

Rp S {(z,wi) | = ¢ Li},
and define GapCl(D) & Gap(Ap, Rp).

Fact 8.2 If M is an (Ap, Rp)-proper CM, then range(gap,,) is a finite subset of W.

Proof: Clearly, range(gapys) C W by the definitions of Ap and Rp. Since gap,s is a
computable function, its range is recursively enumerable and hence finite by the second
property of W. DO

Theorem 8.3 The operator GapCl satisfies axioms 1-4 above.

25

Proof:
1. GapCl(D) is gap-definable by definition.

2. f L € D={Ly,Ly,...}, then L = L; for some ¢ > 1. Any CM M that generates a
constant gap of w; is (Ap, Rp)-proper, and L = L, r,(M). Thus L € GapCl(D).

3. Suppose D = {L1, Ly,...} = Gap(4,R) for some A and R, and let My, M,,... be
(A, R)-proper CM’s such that L; = Ly r(M;) for all ¢ > 1. Suppose L is a language
in GapCl(D). We have

L = Lay,rp(M)
for some (Ap, Rp)-proper CM M. By Fact 8.2 above, there is some k > 1 such that
range(gapys) C {w1,...,wk}. Consider a CM N such that

k
gapn(z) =) 6,% (gapar(2))gapa, (),

=1
where the §,* are the delta functions defined in Section 3. Such an N clearly exists.
Given an input z, suppose gapy(z) = w;, for some 1 < 39 < k. Then gapy(z) =
gapyy, (z). Furthermore,

el = (z,gapy(z)) € 4p

= (z,w;,) € Ap

= €L

= (z,gapu, (2)) € A

= (z,gapy(z)) € A.

Similarly, # ¢ L —> (z,gapy(z)) € R. Thus N is (A, R)-proper and L = L4 r(N),
so L € Gap(4,R) =D.

4. Suppose D = {L1,Ls,...} and & = {L}, L}, ...} are countable language classes and
D C &. Assume L = Ly, (M) for some (Ap, Rp)-proper CM M. We show that
L € GapCl(€). As before, there exists a k such that range(gapy,) C {w1,...,ws}.
Since D C €&, there exist ny,...,n, such that L; = L;” for1 <i<k. Let N bea CM
such that

k
gapy(z) =) 6k (gapy(z))wn,.
=1

By an argument similar to the one above, we have that N is (Ag, Rg)-proper and

L= LAe,Rg(N)' Thus L € GapCI(E)
O

The preceding proof relativizes to any oracle, but only nonuniformly. This is because
given an oracle, we must choose W to be immune relative to that oracle. Thus the accepting
and rejecting sets that we construct must depend on the oracle. This means that the gap-
closure of a class is not necessarily uniformly gap-definable.

We now use the same technique to show that WPP and LWPP are nonuniformly
gap-definable.

26

Proposition 8.4 The classes WPP and LWPP are (nonuniformly) gap-definable.

Proof: We show that WPP = GapCl(WPP). The proof for LWPP is similar. Let
WPP = {L, Ly, ...} such that for all > 0 and = € ¥*,

zecLl; = gapy(e)= fi(z),

Z Q/ L’L - gale(m) = OJ
for CM’s My, M,,... and FP functions fi, fa,.... As in the proof of Theorem 8.3, let
A Lawpp,Bwpp (M) for some CM M, and let k be as before. Define F € FP by

k
F(z) & I1 (=)

Let N be a CM such that

gapy(z) =
k
Z 6wi(gapm(z)) - gapar(z) - H fi(z)
im1 1<j<k & j#i

By arguments similar to Theorem 8.3, L € WPP as witnessed by the CM N and FP
function F. O

What closure properties of a class D are inherited by GapCl(D)? We can show the
following:

Theorem 8.5 Let D be a countable class of languages.

1. IfD is closed downward under ptime m-reductions, then GapCl(D) is closed downward
under ptime m-reductions.

2. If D is closed under complements, then GapCl(D) is closed under complements.

3. If D is closed downward under ptime 1-tt-reductions, then GapCl(D) is closed down-
ward under ptime 1-tt-reductions.

Proof: We only prove the first statement. The other two are similar. Suppose D, as
above, is closed under ptime m-reductions, L € GapCl(D), and f is any function in FP.
We must show that f~'[L] € GapCl(D). Let L = La, r,(M) and k be as before. Since
D is closed under ptime m-reductions, there exist ni,...,ny such that L, = f~![L;] for
1<i<k. Let N be a CM such that

k
gapy(z) = D 5wk (gappr(f()))wn,.

=1

By arguments similar to those for Theorem 8.3, we get f~*[L] = L, rp,(N). O

Subsequent research [8] has shown that GapCl also preserves closure under union, inter-
section, join, and finite difference. Moreover, the definition of GapCl and gap-definability
can be greatly simplified for classes closed under union and intersection.

27

9 Alternative Notions of Gap-Definability

There are three natural conditions one can add to the definition of gap-definability:
1. The accepting and rejecting sets A and R must partition ¥* X Z, i.e., AUR = ¥* X Z.

2. The criteria for acceptance/rejection must be independent of the input, i.e., A =
¥*x A" and R = ¥* X R/ for disjoint sets A’, R’ C Z.

3. The sets A and R must be of low complexity.

The second and third conditions both lead to proper restrictions of the notion of gap-
definability, even when one considers only reasonable gap-definable classes (exercise). This
is not known for the first condition, however (see Section 10). Each restriction has its
own advantages: the first restriction guarantees that all CM’s are (4, R)-proper, and hence
the resulting classes are all recursively presentable, at least relative to A and R; the second
restriction guarantees that the resulting classes are closed under joins, finite differences (pro-
vided the classes are reasonable), and polynomial-time m-reductions; the third restriction
ensures that the resulting classes are of reasonably low complexity. The first two conditions
taken together yield the classes GapIn[Q] (see Definition 4.5) considered by Toda & Ogi-
wara [28], which we will call nice classes. As well as having all the properties mentioned
above, nice classes also have complete sets (under polynomial time m-reductions). Despite
these restrictions, all the well-known gap-definable classes—PP, C_P, and ModzP—are
nice, and have simple acceptance/rejection criteria.

A disadvantage of these restrictions is that the theorems of Section 8 apparently do not
hold for any of them. At present, we see no way of getting around the use of (nonrecursive)
immune sets to verify the properties of GapCl. It also appears that the intersection of two
nice classes is most likely not nice, in fact, we have the following proposition:

Proposition 9.1 If Q1,Qy C Z are chosen independently at random, then
GapIn[@:] N GapIn[Q;] = SPP
with probability 1.

Proposition 9.1 follows immediately from Lemmas 9.3 and 9.4, below, with a simple
application of Fubini’s Theorem. Recall that we identify ¥* with Z.

Definition 9.2 Fix an oracle A C X*. A set S C Z is immune relative to A if
1. S is infinite, and
2. every A-r.e. subset of S is finite.

The set S is bi-immune relative to A if both S and Z — S are immune relative to A.
Lemma 9.3 For every set A C X*,

l?gr[S is bi-immune relative to A] = 1.

28

Proof: Fixan A-r.e.set W C Z and let S C Z be chosen at random. Since there are only
countably many finite and cofinite sets, S and Z — S are both infinite with probability 1.

Clearly,
PIWCS v WCZ-5]= 9~ IWl+1

if W is finite, and Prg[W C § v W C Z — §] = 0 if W is infinite. Since there are only
countably many infinite A-r.e. sets, we have

1;;[5 is not bi-immune relative to A]
= l?gr[(ElW infinite A-re) WCS v WCZ- 5]

< _

< ‘Z PIWCS v WCZ-5]
W inf A-r.e.

= 0,

so the lemma holds. O

Lemma 9.4 For every Q1,Q2 C Z, if @1 ¢ {0,Z} and Q, is bi-immune relative to Q1,
then
GapIn[@4] N GapIn[Q,] = SPP.

Proof: Clearly, SPP C GapIn[Q:]NGapIn[Q4] by Theorem 5.4 and the fact that GapIn[Q4]
and Gapln[@Q;] are both reasonable gap-definable classes.
Let L C ¥* be a language in GapIn[@1] N GapIn[@3]. There exist f,g € GapP such
that for all z € ¥*,
ze L f(z) € Q<= g() € Qu.

The first biconditional implies that L is recursive in {1, which in turn implies that both

g[L] and g[L] are @Q;-r.e. But since g[L] C @, and g[L] C Z — @4, both sets are finite,
and thus g has finite range. It is then clear that L € Gap-Few, and so by Theorem 5.9,

LeSPP. O

10 Open Questions

There are several interesting questions regarding gap-definable classes.

e Because WPP and LWPP are only nonuniformly gap-definable, it is not at all clear
that WPPSPP — WPP. The best we are able to show is that WPPSPP CcCC-Pn

co-C-P.
o Is WPP uniformly gap-definable?
e Does WPP = SPP, or even LWPP = SPP?

o Is WPP closed under polynomial-time Turing reductions?

29

o Is there a GapP function Turing equivalent to an NP-complete language?

e How does BPP relate to the gap-definable classes? In particular, is it the case that
GapCl(BPP) = PP?

o Does GapCl preserve closure under less restricted reductions, e.g., ptime tt-reductions?

e Is there a reasonable gap-definable class which does not satisfy the first condition in
Section 97 Is SPP such a class?

o Are there two nice classes whose intersection is known not to be nice?

o Are there other interesting gap-definable classes not previously studied?

A WPP
We reproduce here Toda’s result [26] mentioned in Section 5.
Theorem A.1 (Toda) PPWPP — pp,

The theorem follows immediately from the following three lemmas:

Lemma A.2 PPWPP _ ¢ PXZPP, where C- is Wagner’s counting operator [30], and

PWPP s the closure of WPP under conjunctive tt-reductions. O

Lemma A.3 PYPP — wpP.

Proof Sketch: Suppose L <%, S via the function r(z) & (¢1,---,9m), and S € WPP
witnessed by the FP function f and GapP function g. Then L € WPP witnessed by the

FP function h(z) & [lger(2) f(g) and the GapP function k(z) & [eer(z)9(a). O

Lemma A.4 C - WPP = PP.

Proof Sketch: Obviously PP = C-P C C - WPP. Conversely, let L be in C - WPP.
Then there exist A € WPP and a polynomial p such that for all « of length =,

¢ecl ‘{w € {0,1}*™) | z#w € A}‘ > gp(n)—1,

Moreover, there exist functions F' € GapP and f € FP such that for all y, f(y) # 0 and
1. F(y) is either 0 or f(y), and

2. ye A<= F(y) = f(y).

30

We can assume without loss of generality that f(y) > 0 for all y. Let ¢ be a polynomial
satisfying ¢(n) > p(n) for all n, and 24™) > f(z#w) for all z of length n and w of length
p(n). Then, define a function G as follows: for all z of length n,

df n
G(z) = Z [224()/f(m#w)-l . F(z#w).
we{0,1}2(n)
Obviously, G € GapP. It is now easy to show that for all z of length n,
ze L < G(z)> (2P(M1 1 1). 2%

Therefore L €¢ PP. O

Acknowledgments

We would like to thank Seinosuke Toda, Richard Beigel, Nick Reingold, and Lane Hemachan-
dra for many helpful discussions and suggestions. We would also like to thank Krzysztof
Lorys for pointing out an error in an earlier version of the paper.

References

[1] E. W. Allender. The complexity of sparse sets in P. In Structure in Complezity Theory,
volume 223 of Lecture Notes in Computer Science, pages 1-11. Springer- Verlag, June
1986.

[2] L. Babai and L. Fortnow. Arithmetization: A new method in structural complexity
theory. Computational Complexity, 1(1):41-67,1991. A previous version appeared in
Proceedings of the 31st annual IEEE Symposium on Foundations of Computer Science,
pages 26-34, 1990.

[3] R. Beigel. Perceptrons, PP and the polynomial hierarchy. In Proceedings of the 7th
Structure in Complexity Theory Conference, pages 14-19, 1992.

[4] R. Beigel and J. Gill. Counting classes: Thresholds, parity, mods, and fewness. Un-
published manuscript, October 1990.

[5] R. Beigel, J. Gill, and U. Hertrampf. Counting classes: Thresholds, parity, mods, and
fewness. In Proceedings of the Seventh Annual Symposium on Theoretical Aspects of
Computer Science, volume 415 of Lecture Notes in Computer Science, pages 49-57.
Springer-Verlag, 1990.

[6] R. Beigel, N. Reingold, and D. Spielman. PP is closed under intersection. In Proceedings
of the 23rd annual ACM Symposium on Theory of Computing, pages 1-9, 1991.

[7] J. Cai and L. Hemachandra. On the power of parity polynomial time. Mathematical
Systems Theory, 23(2):95-106, 1990.

31

[8] S. Fenner, L. Fortnow, and L. Li. Gap-definability as a closure property. Unpublished,
1992.

[9] J. Gill. Computational complexity of probabilistic complexity classes. SIAM Journal
on Computing, 6:675—695, 1977.

[10] L. M. Goldschlager and I. Parberry. On the construction of parallel computers form
various bases of Boolean functions. Theoretical Computer Science, 43:43-58, 1986.

[11] R. L. Graham, D. E. Knuth, and O. Patashnik. Concrete Mathematics. Addison-Wesley
Publishing House, 1989.

[12] S. Gupta. The power of witness reduction. In Proceedings of the 6th Annual IEEE
Structure in Complexity Theory Conference, pages 43-59, 1991.

[13] J. Hopcroft and J. Ullman. Introduction to Automata Theory, Languages, and Com-
putation. Addison-Wesley, 1979.

[14] J. Kobler. Strukturelle Komplezitdit von Anzahlproblemen. PhD thesis, Universitat
Stuttgart, 1989. Page 62.

[15] J. Kobler, U. Schéning, S. Toda, and J. Tordn. Turing machines with few accept-
ing computations and low sets for PP. Journal of Computer and System Sciences,
44(2):272-286, 1992.

[16] J. Kobler, U. Schéning, and J. Tordn. On counting and approximation. Acta Infor-
matica, 26:363-379, 1989.

[17] J. K&bler, U. Schéning, and J. Toran. Graph Isomorphism is low for PP. In Proceedings
of the Ninth Annual Symposium on Theoretical Aspects of Computer Science, volume
577 of Lecture Notes in Compuler Science, pages 401-411. Springer- Verlag, 1992.

[18] M. Li and P. M. B. Vitanyi. Applications of Kolmogorov complexity in the theory
of computation. In A. L. Selman, editor, Complezity Theory Retrospective, chapter 6,
pages 147-203. Springer- Verlag, 1990.

[19] M. Ogiwara and L. A. Hemachandra. A complexity theory of feasible closure properties.
In Proceedings of the 6th Annual IEEE Structure in Complezity Theory Conference,
pages 16-29, 1991.

[20] C. H. Papadimitriou and S. K. Zachos. Two Remarks on the Power of Counting, pages
269-276. Lecture Notes in Computer Science 145. Springer-Verlag, 1983.

[21] H. Rogers. Theory of Recursive Functions and Effective Computability. McGraw-Hill,
1967. Reprinted. MIT Press. 1987.

[22] U. Schoéning. Probabilistic complexity classes and lowness. Journal of Computer and
System Sciences, 39:84-100, 1988. Also appeared in Proceedings of the 2nd Annual
IEEE Structure in Complexity Theory Conference, pages 2-8, 1987.

32

[23] J. Simon. On Some Central Problems in Computational Complezity. PhD thesis,
Cornell University, Ithaca, N. Y., January 1975. Available as Cornell Department of
Computer Science Technical Report TR75-224.

[24] R. Soare. Recursively Enumerable Sets and Degrees. Springer-Verlag, 1987.

[25] L. Stockmeyer. The polynomial-time hierarchy. Theoretical Computer Science, 3:1-22,
1977.

[26] S. Toda, 1990. Private communication.

[27] S. Toda. PP is as hard as the polynomial-time hierarchy. SIAM Journal on Computing,
20(5):865-877, 1991.

[28] S. Toda and M. Ogiwara. Counting classes are at least as hard as the polynomial-time
hierarchy. SIAM Journal on Computing, 21(2):316-328, 1992.

[29] L. Valiant. The complexity of computing the permanent. Theoretical Computer Science,
pages 189-201, 1979.

[30] K. Wagner. The complexity of combinatorial problems with succinct input represen-
tation. Acta Informatica, 23:325-356, 1986.

33

