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Abstract

We study the class coNPMV of complements of NPMV functions.
Though defined symmetrically to NPMV, this class exhibits very different
properties. We clarify the complexity of coNPMV by showing that it is es-
sentially the same as that of NPNIV. Complete functions for coNPMV are
exhibited and central complexity-theoretic properties of this class are stud-
ied. We show that computing maximum satisfying assignments can be done
in coNPMV, which leads us to a comparison of NPMV and coNPMV with
Krentel's classedlaxP andMinP. The difference hierarchy for NPMV is
related to the query hierarchy for coNPMV. Finally, we examine a func-
tional analogue of Chang and Kadin'’s relationship between a collapse of the
Boolean hierarchy over NP and a collapse of the polynomial-time hierarchy.

1 Introduction

Consider the complexity class NPMV of partial multivalued functions that are com-
puted nondeterministically in polynomial time. As this class captures the complex-
ity of computing witnesses of sets in NP, by studying this class, and more generally,
by studying relations among complexity classes of partial multivalued functions,
we directly contribute to understanding the complexity of computing witnesses. It
is well known that a partial multivalued functighbelongs to NPMV if and only
if it is polynomial length-bounded angtaph(f) = { (x,y) : y is a value off (z) }
belongs to NP.

Now consider the class coNPMV. We will give a formal definition in the pre-
liminaries section below. Itwill follow from the definition that a partial multivalued
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function f belongs to coNPMV if and only if it is polynomial length-bounded and
graph(f) belongs to coNP. Given this symmetry, graphs of functions in NPMV
are in NP while graphs of functions in coNPMV are in coNP, and given what
we know about NP and coNP, one might expect that coNPMV has essentially the
same complexity as NPMV. Indeed, it is easy to see that coONPMV = NPMV if
and only if NP = coNP. However, the point of this paper is to show that in many
ways coNPMYV is a more powerful class than is NPMV. One can derive more
information from computing the complement of a function in NPMV than from
computing the function. For one example of this phenomenon, we prove here that
coNPMV is not included ifPNMV unless the polynomial hierarchy collapses.
(This is an extension of a result of Fenner et al [FHOS97].) Thus, a coNPMV
oracle provides more information than an NPMV oracle. This is surprising since
function oracles, just as set oracles, provide knowledge about both their domains
and their co-domains.

We will define many-one reductions between multivalued functions. This will
be a straightforward adaptation of the many-one metric reducibility of Krentel
[Kre88]. In Section 3, we will consider many-one complete functions for coNPMV.

Consider the partial multivalued functioat, defined so thay is a value of
sat(p) if and only if y is a satisfying assignment of Boolean formya The
functionsatis complete for NPMV. Nevertheless, in Section 4 we will see that
sat and similar functions belong to coNPMV. Even the seemingly more powerful
FPYP-complete functiommaxsat that gives the maximum satisfying assignment of
aformula, is contained in coNPMV. However, we will see theitherNPMV nor
FP'P are contained in coNPMV, and hence coNPMV is not closed under metric
many-one reductions, unless the polynomial-time hierarchy collapses. Clearly,
these function classes have strange closure properties, which we describe below.

As an upper bound on the complexity of coNPMV, we show that, forkany2,

coNPMV C NPMV(2) C NPMV(k) C

NPMV(k +1) € NPMV(Poly) € NPMVNP,

where NPM\(k) is thek-th level of the difference hierarchy for NPMV as defined
by Fenner et al. [FHOS97].

On the other hand, even though there is an infinite hierarchy of complexity
classes between coNPMV and NPW(the difference hierarchy over NPMV does
not collapse unless the polynomial-time hierarchy collapses [FHOS97]), our results
suggest that the complexity of coONPMV is essentially the same as the complexity
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of NPMVNP: We prove in Section 5 that NPMV = 71 o coNPMV (wherer is
the projection function that maps a pair of strings to its first component). It follows
that NPMV/'P is the closure of coNPMV under metric many-one reductions.

In Section 6, we show that if the difference hierarchy for NPMV collapses,
then the NPMV oracle hierarchy collapses. This is the functional analogue of the
well-known result by Chang and Kadin relating a collapse of the Boolean hierarchy
over NP to a collapse of the polynomial-time hierarchy.

Finally, we remark that the phenomenon that universal quantification seems
to lead to larger function classes was previously observed by Toda. We show in
Section 7 how this observation follows from our results.

2 Preliminaries

We fix ¥ to be the finite alphabd, 1}. Let < denote the standard lexicographic
order onx*. Forn > 0 we defineX™ = {z € ¥* | |z| =n}. By (-,-) we denote a
standard pairing function ofi* x »*.

We use the standard complexity classes P and NP for (nondeterministic) poly-
nomial time,Zg andAz — PYi-1 for the levels of the polynomial-time hierarchy,
and NRk) for the levels of the Boolean hierarchy, flor> 1.

Let f be arelation orC* x X*. We will call f a(partial) multivalued function
from X* to X*. By f(z) — y we denote thatr,y) € f and say thaf mapsz toy.

By set- f(z) we denote the set of outcomesfobnz, set- f(x) ={y: f(z) — y }.
Thegraph of f is graph(f) = {(x,y) : f(x) — y}. Thedomain of f, dom(f), is
the set ofz whereset- f(x) is nonempty. We will say thaf is undefined at: if
x ¢ dom(f). The domain of aclasg of functions islom(F) = {dom(f) | f € F}.

Given partial multivalued functiong and g, defineg to be arefinement of
f if dom(g) = dom(f) andgraph(g) C graph(f). Let F andg be classes of
partial multivalued functions. Purely as a conventiory, i§ a partial multivalued
function, we defing’ €. G if G contains a refinement gf, and we definegx C. G
if, for every f € F, f €. G. This notation is consistent with our intuition that
F C. G should entail that the complexity of computing values of functionf is
not greater than the complexity of computing values of functiorg. in

A transducefl’ is a nondeterministic Turing machine with a read-only input
tape, a write-only output tape, read-write work tapes, and accepting states in the
usual mannerZ’ computes a valug on an input stringe if there is an accepting
computation ofI” on = for which y is the final content off’s output tape. (In
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this case, we will writ'(z) — y.) Such transducers compute partial, multivalued
functions. (As transducers do not typically accept all input strings, when we write
“function,” “partial function” is always intended. If a functiofiis total, it will
always be explicitly noted.)

The following classes of partial functions were first defined by Book, Long,
and Selman [BLS84].

e NPMV is the set of all partial, multivalued functions computed by nonde-
terministic polynomial time-bounded transducers;

e NPSV s the set of alf € NPMV that are single-valued;

e FP is the set of all partial functions computed by deterministic polynomial
time-bounded transducers.

A function f belongs to NPMV if and only if it is polynomially length-bounded
andgraph( f) belongs to NP. In this paper we will adopt the convention, different
from other papers on the subject, that all outputs of a functiechNPMV on
inputz are of the same length, namepy|z|), wherep is some polynomial. This
convention is merely for convenience and can easily be removed in all our results
by using a padding argument.

The domain of every function in NPMV belongs to NP. An exampleds
which maps Boolean formulas to their satisfying assignments.

Fenner etal. [FHOS97] define thdference hierarchy ovakPMV as follows.

Let F be a class of partial multivalued functions. A partial multivalued function
fisincoF if there existg € F and a polynomiap such that for every,

set- f(x) = SPIPD) —set-g(z).

Let 7 andg be two classes of partial multivalued functions. A partial multivalued
functionhisin F AG, respectivelyF Vv G, ifthere exist partial multivalued functions
f € Fandg € G such that for every,

set- h(x) = set- f(x) Nset-g(x), respectively
set- h(z) = set- f(z) Uset-g(x).

Let 7 — G denoteF AcoG. Then, NPMVk) is the class of partial multivalued
functions defined in the following way:

4
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NPMV(1) = NPMV,
and, fork > 2,
NPMV(k) = NPMV —NPMV(k — 1).

Fenner et al. prove that, for evety> 1, f € NPMV(k) if and only if f is
polynomially length-bounded angtaph( f) € NP(k).

In particular, we are interested in the class coNPMV. Itfollows that a fungtion
belongs to coNPMYV if and only if it is polynomially length-bounded angph ( f)
belongs to coNP. Observe that the classes NPMV and coNPMV satisfy the nice
symmetry that graphs of functions in the former class are in NP and those in the
latter class are in cONP.

Just as the definition of the Boolean hierarchy over NP leads to the class
NP(Poly) (see [Wag90]), we now introduce the class NPW¥ly). It can be
shown that a function belongs to NPMVk) if and only if there is a 2-ary func-
tion f € NPMV such that

set- h(z) = set- f(z, k) — (set- f(x,k —1)
—(set- f(z,k—2)
— (- —set- f(x,1)--+))).

We say that € NPMV(Poly) if and only if there is a functiorf € NPMV and a
polynomialp such that

set- h(z) = set- £z, p(|z])) — (set- £z, p(|2]) — 1)
~set- £z p(lz)) — 2)
— (- —set- f(z,1)...))).

The above-mentioned result by Fenner et al. can be extended to shoyvahat
NPMV (Poly) if and only if f is polynomially length-bounded angtaph(f) €
NP(Poly).

The primary new contribution of Fenner et al. is the development of hierarchies
of classes of functions that access classes of partial functions as oracles. This
development is based on the following description of oracle Turing machines with
oracles that compute partial functions. Assume first that the oracle is a single
valued partial functio. Let | be a symbol not belonging to the finite alphabet
In order for a machiné/ to access a partial function oracl, has a write-only
input oracle tape, a separate read-only output oracle tape, and a special oracle call

5

Chicago Journal of Theoretical Computer Science 1999-3



2-15

2-16

2-17

2-18

2-19

Definition 2-1

Fenner, et al. Complements of Multivalued Functiog2

stateq. To queryg on a stringe, M enters statg with = on the oracle input tape
in the usual fashion. The oracle then returns the valug on the oracle output
tape if the value exists, and writeson the tape otherwise. (It is possible thdt
may read only a portion of the oracle’s output if the oracle’s output is too long to
read with the resources 6f.) We shall assume, without loss of generality, that
never makes the same oracle query more than once on any possible computation
path.

If g is a single-valued partial function and is a deterministic oracle trans-
ducer as just described, then we é{g| denote the single-valued partial function
computed byM with oracleg.

Definition 1 [FHOS97] Letf and g be multivalued partial functionsf is Turing
reducible tog in polynomial time f <F g, if for some deterministic polynomial-
time oracle transduced/, for every single-valued refinemeyitof g, M|¢'] is a
single-valued refinement ¢t

Fenner et al. prove that? is a reflexive and transitive relation over the class
of all partial multivalued functions.

Let F be a class of partial multivalued functions. FBenotes the class of
partial multivalued functions that are<"-reducible to somegy € F. FP/ ¥
(respectively, Flﬁ[log]) denotes the class of partial multivalued functighthat
are<?P-reducible to some € F via a machine that, on input makest adaptive
queries (respectively) (log |z|) adaptive queries) to its oracle.

This definition template defines classes of multivalued partial functions such
as FPPMY and can easily be extended to define NPWNY . If K is a class of sets,
then FP is defined as usual, except that we allow it to compute partial functions
(at the discretion of the oracle machine).

We will use the following generalization of the many-one metric reducibility of
Krentel [Kre88] in order to discuss complete functions for classes of multivalued
functions.

Definition 2 Given partial multivalued functions ¢ : X* — X*, we sayf is metric
many-one reducible tg, or symbolically,f <P g, if there are functions; ¢, € FP
such that the multivalued partial functidgndefined by

h(z) = ta(x, (got1)(x))
is a refinement of , whereset- h(z) is defined as

{t2(z,y) 1 g(ta(2)) =y}
6
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If, in addition, we haveet- h(x) = set- f(z) for all x, we call it astrong metric
many-one reductigrdenoted by <F  g.

The motivation underlying this definition is that, given a valugaf), one can
compute in polynomial time a value ¢fx). In the case of a strong reduction, one
gets all values off (x) when varying over all values af(z). Obviously, f <P ¢
implies f <% g.

The classes that we have been considering relate in interesting ways to studies
of the complexity of optimization problems. In order to capture the complexity of
optimization problems, Krentel [Kre88] defined the complexity classes MaxP and
MinP as the functions computable by taking the maximum, respectively minimum,
over sets of feasible solutions of problems in NP. Further, Krentel extended these
classes to hierarchies of classes of optimization functions [Kre92]. Krentel defined
these functions using the notion ofreetric Turing machingwhich we now review.
Consider nondeterministic polynomial-time Turing machines that print an output
value on every path. We associate with every inner node of the computation tree
either the functionnin or the functionmax (for the classes MinP and MaxP, all
nodes are associated with the same function). Thus, metric Turing machines define
(total) functions from input words to integers via the usual bottom-up evaluation
of the machine’s computation tree. Since all the function classes considered in this
paper are partial, we extend the metric Turing machine just defined by allowing
the machine to output a special symbothat denotes that the computation on the
corresponding path ends with an undefined result. We extenahith@nd max
functionsin the obvious way: defimeax(z, L) = max(L,x)=xandmin(z, L) =
min(L,z) =z, forall z (including L itself). Vollmer and Wagner [VW93, VW95]
gave a detailed structural examination of Krentel’s hierarchy. Here, we just define
the class MaxP using an operator-characterization from [VW95]. MinP is defined
analogously.

h € MaxP <= 3f, g € FP: h(z) =maxg<y<,(z) f(7,9).

3 Functions Complete for coNPMV

NPMV is precisely the class of functions that compute witnesses for NP sets in the
following sense: For any sét € NP there exist a sed € P and a polynomiapb
such that for allz, we have

zel <+« JyexPl?): (zy) e A
7
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Any y such that(z,y) € A is called awitness forz (with respect tad). Clearly,
there is a functiory4 € NPMV such thatet- f(x) is exactly the set of witnesses
for . On the other hand, any NPMV functiof defines a set in NP, namely
dom(f). As a consequence of this discussion, we seedhai NPMV) = NP.
Next, we extend the notion of a witnessX§. For anyX} setL there exist
a setB € coNP and a polynomial such that for allz, we haver € L <— dy €
sp(#) . (z,9) € B. Aysuchthatz,y) € Bis called awitness forz (with respect
to B). What function class captures the computation of witnesseXfwsets?
Sincex) = NP'P, certainly witnesses can be computed in NPW¥VHowever, we
will see below that the seemingly weaker class coNPMYV already suffices to do so.
Let us consider set again. We may safely assume that, for(ally) € B,
we havey e (7)) SinceB € coNP, it is then the graph of a coNPMV function
f, so thatset- f(x) is exactly the set of witnesses for Hence, cONPMV can
compute witnesses for setsitf. Conversely, for any coNPMV functiofi, we
havedom(f) € X5. This is because, for any = € dom(f) <= Ty € 21D y €
set- f(x). Thus, coNPMV ispreciselythe class of functions that computes wit-
nesses foE} sets. As a consequence, we have the following proposition.

Proposition 1dom(coNPMV) = 3.

Witnesses of5-complete sets can give rise to complete functions for coNPMV.
Consider, for example, the satisfiability problem QBé&r Boolean formulas with
two quantifiers. Letr be a Boolean formula in the variables=x(z1,...,z;) and
y=(y1,...,y). Then we define

2(X,Y) € QBF, <= 3xVy: p(x,y) = L.

Let F5 be the multivalued function that computes witnesses, i.e., partial assign-
ments x= (z1,...,xx), for QBF, formulasy as above.

Theorem 1F5 is gg’m-complete focoNPMV.

Proof of Theorem 1 We have argued already thiat cONPMV. Let f be any
coNPMYV function. There is an NP transduder and a polynomiap such that
for all x, we haveset- f(z) = 2P(#)) —set- M(x). We show how to compute a
y € set- f(x) from Fy(p, ), for an appropriately constructed formuta.

Define a machind/’ on inputz as follows. First, M’ guesses g € (2],
Then, M’ simulatesM on inputz. If M outputsy on the simulated path, thevl’
rejects. Otherwise)!” accepts.

8
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We have to define the reduction functignsndts as required in Definition 2.
Functiont, is the Cook-Levin reductidnapplied toz with /" as the underlying
machine. This will give a Boolean formula, that, intuitively, describes the work
of M’ oninputz. The variables ap,. can be partitioned into two parts, for example,

e y1,...,ys that are used to describe thet guesses g € >7()), and
e 21,...,2], that are used to describe the subsequent simulatidn. of

Furthermore, from any setting of the variablgs. . .,y of ¢, we can reconstruct
in polynomial time they € XP(1) guessed by\/’. This is done by functiot,.

Let us fix a setting of the variables, ..., y; and lety € X7 be the corre-
sponding string guessed By’. Then we have

Var, ooz @a(Yt, e Uk 21,--521) = 1
<= M’ accepts on all paths following
— y¢&set-M(x)
= flz)—y,

and henceset-ty(x, Fhoti(x)) = set- f(x), wheret; (z) = ¢,.

Proof of Theorem 1 O

A crucial point in the above proof is that the Cook-Levin reduction maintains
witnesses. That is, from a given assignment for the constructed formulane
can recover a corresponding path of the nondeterministic machine. Thus, any
>P-complete set sharing this property with QB#fefines a coNPMV-complete
function in an analogous way.

As an example, consider the following det. For any NPMV functionf and
any even-valued polynomial such thatf maps strings of length to strings of
lengthp(n), z € Ly if and only if

By € oPD/2 vy € sIeD/2, f(g) o gz,

In other words, string is not a prefix of an output of (x).
Clearly, for everyf € NPMV, we have thatll is in ¥3. Thus, in particular,
taking f = sat, Lsa is ©5-complete and has the above-mentioned property. We

1This is the well-known reduction that transforms the computation of an NP machine to a
Boolean formula that is satisfiable iff the machine accepts; see, e.g., [Coo71].

9
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conclude that the corresponding witness functinat-pre-sat is complete for
coNPMV, where (by definitionhot-pre-saty) — y < y is a truth assignment
of the first half of’s variables that is not a prefix of a satisfying assignmei.of

Theorem 2not-pre-sat is<?  -complete for the classoNPMV.

Not-pre-sats a trivial transformation of5, so Theorem 2 can be seen directly
via a straightforward metric reduction frof.

4  Properties of coNPMV

NPMV is closed undex?’, -reductions, but not undet? -reductions; in fact, it

is possible to have € NPMV and f<P ¢ but graph(f) be noncomputable. (For
example, defing to mapzx to two values, the first of which is either 0 or 1 and
solves the halting problem anand the second of which is the constant 10. Then
clearlygraph( f) is not computable, but the constant function 10 is a refinement of
f in NPMV.) However, NPMVis closed under this reduction in a weaker sense,
defined below.

Definition 3 A classF is c-closedunder reducibility<,, if g € F and f <, g
impliesf €. F.

It is immediate from this definition that NPMV is c-closed undgﬁl-
reductions. One might suspect that this same fact holds for coNPMV. How-
ever, it is quite unlikely that coNPMYV is c-closed under this reducibility: oth-
erwise, sincesat € coONPMV andsat is complete for NPMV, we would get that
NPMV C.coNPMV. Butthis seemsto be very unlikely, as the following extension
of a result of Fenner et al. [FHOS97] shows.

Theorem 3 NPM\WC coNPMV <= NPMV C,. coNPMV <= NP = coNP.

Proof of Theorem 3 We cycle through the implications. The first implication is
trivial. For the second, let € NP. Define function

(z) = 1 fzel
XLAT) =Y | otherwise

Then we havey;, € NPMV, and hence, by assumption; € coNPMV. There-
fore, graph(xz) € coNP, which implies that € coNP sincer € L < (x,1) €
graph(xr).

10
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Now suppose that NP = coNP and fee NPMV. Thengraph(f) € NP and,
therefore, in cONP by assumption. Thfi& coONPMV.

Proof of Theorem 3 O
Corollary 1 coNPMMs c-closed undex® -reducibility if and only ifNP = coNP,

We observe that the proof of Theorem 3 shows also that NESONPMV <—-
NP = coNP, even though it is fairly easy to see that NPSke class of all total
NPSV functionsis contained in coNPMV. We also note that Theorem 3 extends to
higher levels of the difference hierarchies over NPMV and NP, thatis, NBM¥
coNPMV(k) <= NPMV (k) C.coNPMV(k) <= NP(k) = coNRk). By aresult
of Kadin [Kad88], a collapse of the Boolean hierarchy implies a collapse of the
polynomial-time hierarchy. Hence, there is likely to be a whole hierarchy between
coNPMV and NPMV*,

Theorem 4For all &£ > 2, we have

coNPMV CNPMV(2) € NPMV/(k) C
NPMV (% +1) € NPMV(Poly) € NPMV"F.

Furthermore, all of the inclusions are strict unless the polynomial-time hierarchy
collapses.

Proof of Theorem 4 It remains to show the last inclusion. LetNPMV (Poly).
Then the graph of is in NP(Poly), which is known to be equal td'¥1°8 [Wag90].
Obviously, f can be computed by an NPMV algorithm with access td"a®!
oracle: simply guess an output ffand, querying its graph, check that the guess

is correct. Thus, NPM{Poly) € NPMVP" " ¢ NPMVP.,

Proof of Theorem 4 O

Under the likely assumption thatP # coNP, we see, by Theorem 3, that the
class NPMV is not included in coNPMYV, even though the functiaty which is
complete for NPMV, belongs to coNPMV. This phenomenon happens again for
maxsaf the function that maps a Boolean formula to its lexicographically largest
satisfying assignment. Fenner et al. [FHOS97] showrtieatsatc NPMV/(2). In
fact, itis evenin coNPMV. However, we will show that the corresponding classes,
namely MaxP or FI¥, are included in coNPMV if and only ifP = coNP.

11
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Theorem 5maxsate coNPMV.

Proof of Theorem 5 Consider an NPMV machihgthat, on input of a formula
©, guesses an assignmentor . If y does not satisfyy, then M accepts and
outputsy. Otherwise, ify does satisfyp, M guesses another assignmeht- y.
If v/ also satisfies, M outputsy; otherwise M rejects (and outputs nothing).

M outputs every assignment except the maximum satisfying one (if there is
one). Hencemaxsatc CONPMV.

Proof of Theorem 5 O

Krentel [Kre92] showed that B8 = FPMaPll Sjnce FPPMV — FPWP
[FHOS97] andnaxsats complete fotVlaxP, we have that FIFMY C FproNPMVIL],
That is, polynomially many queries of a FP function to NPMV can be replaced by
one query to coNPMV. Hence, as we have mentioned, cONPMV seems to be a
more powerful class than NPMV. We will give more evidence for this in the next
section.

Corollary 2 MaxP C coNPMV <= MinP C coNPMV <= NP = coNP.

Proof of Corollary 2 IfMaxP C coNPMV, then NPMVC,. MaxP C coNPMV,
and, therefore, NPM\L. coNPMV. But by Theorem 3, this implies NP = coNP.
Conversely, if NP = coNP, then NPMY = NPMVNPeONP — NPMV. This implies
MaxP € NPMV and, since the hypothesis also implies NPMV = coNPMYV, that
MaxP C coNPMV.

Proof of Corollary 2 O

We conclude this section with an observation regarding the relationship be-
tween MaxP and NPMV. First, note that trivially NPSVMaxP N MinP since
the output of an NPSV function is both the minimum and the maximum. Simi-
larly, NPMV C. MaxPNMinP. The more interesting question is whether these
inclusions are strict. This is quite likely.

Theorem 6 MaxP C NPMV <= MinP € NPMV <= NP = coNP.

Proof of Theorem 6 If NP= coNP, then FI¥” C NPMV [Sel94]; thus, especially
MaxP UMinP C NPMV.
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Now supposélaxP C NPMV (the case foMinP is analogous). Let € coNP.

Define
0 fzel
flz) = { 1 otherwise

Then f € MaxP and hence, by assumption, is in NPMV. Since L if and only
if f(x)=0,we haveL € NP.

Proof of Theorem 6 O

The last two results relativize; analogous results hold for higher levels of the
NPMV hierarchy and Krentel's min/max hierarchy [FHOS97, VW95]. For the
relativized version of Theorem 6 one has to use techniques from Krentel [Kre92]
and Vollmer and Wagner [VW95].

5 A Characterization of coNPMV

As we have already seen in the preceding section, coNPMV seems to be a more
powerful class than NPMV. This is somewhat surprising in light of the aforemen-
tioned symmetry in the definitions of coNPMV and NPMV by their graphs.

The following theorem shows that coNPMV is in fact very close to NPV
This is surprising as well, as we have already seen in Theorem 4 that there is a
hierarchy of function classes between coNPMV and NPfIV

If fis a multivalued function and is a single-valued function, theyo f is
defined bygraph(go f) = {(z,9(v)) : f(z) — y}. Letri denote the projection
function that maps a pair of strings to its first component. iy coNPMV we
denote{ 7} o f : f € cONPMV }.

Theorem 7 NPMVF = 7] o coNPMV.

Proof of Theorem 7 The right-to-left containment follows from Theorem 4 and
the fact that the projection of any NPNW function is still in NPMVW?; hence,
71'% ocoNPMV C NPMVNP,

For the other direction, let ¢ NPMV"P, By a standard argumenf;aph(f) €
>, and thus there is a polynomigknd a predicaté& € coNP such that for any
andy e (=)

flx)y—y<=3dz€ ya(lzl) R(z,y,2).
13
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Define f/ such that for any: and anyy, z € 4=
fl(x) = (y,2) <= R(z,y,2).

So R witnesses that’ € coNPMV. But f(z) = 74 o f/(z), which shows that
f € ™3 0 CONPMV.

Proof of Theorem 7 O

The reason why it is likely that coNPMV is a proper subclass of NPRig
not because outputs of coNPMYV functions give too little information, but rather
that they give too much. We can compute an arbitrary NPMnction simply
by throwing away part of the output of a coNPMV function. This is what the
projection operator accomplishes, and it is most likely necessary.

If we apply Theorem 7, many properties of NPM/now carry over to
coNPMV. In Section 3 we have shown functiohs and not-pre-satcomplete
for coNPMV. Since the projection function is in FP, we get that those functions
are complete for NPMW as well.

Corollary 3 NPMV is the c-closure ofoNPMV under<P -reducibility and the
closure ofcoNPMV under<F, -reducibility.

—Ssm

In particular, we get the following corollary.

Corollary 4 FPONPMVIE]l — ppVPMVYI] for g ;> 1, and FPONPMY — FRNPMVY
S

Observe, by contrast, that FP"Y = FPV? = pPMinP — ppMaxP g coNPMV
and NPMV define different\-levels of the functional polynomial hierarchy.

Fenner et al. [FHOS97] have shown that NP{2YC FPPMY «— 518 = AL,
Note that, in contrast for the corresponding language classes, we h&yp®NP""
for all k. We can now improve the result of Fenner et al.

Corollary 5 coNPMVC FPY¥PMWY «— 510 = AL,
Proof of Corollary 5 If£) = AL, then

CONPMV C FPONPMY — ppNPWVY _ ppl
— FP2: — FPVP — FPNPWY

14
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where the last equality is Theorem 1 in [FHOS97] and the second equally follows
from the relativized version of the same theorem. Conversely, if cONRMV
FPY"MV thendom(coNPMV) C PN = A so thatsh C AD.

Proof of Corollary 5 O

Corollary 6 For anyk > 1, we have
NPMvNP gFFpONPMV[l] C FPZONPMV[k] C
FPeONPMVIk+1] — EpeoNPMV _ FPNPNF"

Furthermore, all inclusions are strict unless the polynomial-time hierarchy col-
lapses.

Proof of Corollary 6 It remains to show the strictness of the inclusions. Suppose
FPeoNPMVIL] « NPMVNP, This is equivalent to FIEMY [ ¢ NPMVNP by Corol-

lary 4, which implies P2l] C 35, But thenII} = X5 = PH. For the other inclu-
sions, suppose EPPMVIE] — pproNPMVIE+L] - Then ppIPMVTIK] — ppNPMVITR-L]

By a theorem of Fenner et al. [FHOS97], this implies that#P = FP=2[k+1],
which, by a relativization of Kadin’s theorem [Kad88], implies that the polynomial
hierarchy collapses.

Proof of Corollary 6 O

Thus we see, combining Theorem 4 and Corollary 6, that all classes of the dif-
ference hierarchy over NPMV are included in the query hierarchy over coNPMV,
in fact, already in its first level. There are (under reasonable assumptions) no in-
clusions in the opposite direction. Concerning the relationship between the query
hierarchy over NPMV and the difference hierarchy over NPMV, we know from
Fenner etal. [FHOS97] that all classes of the first hierarchy are included in certain
classes of the second hierarchy. Any inclusion in the opposite direction implies
coNPMV C FP"MV ‘which again implies a collapse of the polynomial hierarchy,
by Corollary 5.

6 Relationships between the Functional Difference and
Polynomial-Time Hierarchies

Chang and Kadin [CK96] showed that if the Boolean hierarchy over NP collapses
to thek-th level, then the polynomial hierarchy collapses to khi level of the
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Boolean hierarchy over N¥B: if NP(k + 1) = NP(k), then PH= NP"P(k). Itis a
simple consequence of known results that a similar connection exists for the cor-

responding functional hierarchies, namely NPMYand>XMV;, = NPMV>k-1,

Theorem 8For any k£ > 1, if NPMV(k + 1) = NPMV(k), then XMV3 =
NPMVNP(E).

Proof of Theorem 8 NPMVWk + 1) = NPMV(k) is equivalent to NPk + 1) =

NP(k) [FHOS97], which implies=h = NPYP(k) [CK96] (relativized). By con-
sidering the graphs of functions [FHOS97], we immediately get i 5 =

NPMVNP(E).

Proof of Theorem 8 O

Since NPP(k) € P"*"IH| a consequence of Chang and Kadin's theorem is
that, if NP(k + 1) = NP(k), thens = PN ¥] (indeed, they prove this directly in
their paper before treating the stronger result). The functional analogue of such
a collapse would bEMV; = FPPMVIE] or equivalentlyMVy = FPONPMVIE],
We cannot expect this as a direct consequence of Theorem 8, since the difference
and query hierarchies are not intertwined in this context. Nevertheless, such an
analogous result does hold. To see this, we have to modify the proof of the Chang
and Kadin theorem.

Theorem 9If NPMV/(k + 1) = NPMV/(k), thenEMVs = NPMV o FPeoNPMVE—1],

Proof of Theorem 9 In order to explain how Chang and Kadin's proof gives
this result, we recall some of their definitions, with some minor modifi-
cations in notation (for greater detail, we refer the reader to their paper
[CK96]). Denote the<h,-complete language for NR) (respectively, coNF:))

as Lyp(r) (respectively, Leong))-  For example,Lyp) = SAT and Lypz) =
{(x1,22) : 21 € SAT andz; € SAT }. Since, by hypothesis, NR) = coNR(k), it
follows that Lye(z,) <b, Leonpr)- The basic idea underlying the Chang and Kadin
proof is that such a reduction induces a reduction from an initial segment of SAT
to an initial segment oSAT. This is done inductively via the notion of a “hard
sequence,” which is g-tuple that, together with &?,-reduction from NPk) to
coNP(k), can be used to find €}, -reduction from NPk — j) to coNRk — j).

Definition 4 Let Lyp(z) <h, Leonpr) Via some polynomial time functidn Then
we call(1™,z1,...,z;) a hard sequenceith respect td: for lengthm of order j,
if either j = 0 or the following conditions hold:

16
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1.1<j<k-1,

2. |zj| <m,

3. 7 € SAT,

4. (1™, x1,...,xj_1) is a hard sequence with respect/tpand

5. forallyy,...,yp € ¥* wherel = k— j,and forall1 < i < /¢, |y;| <m,
7T€+1Oh((fyla---7?/£7$ja---7$1>) € SAT.

A hard sequence is calledaximalif it cannot be extended to a hard sequence
of a higher order. In this case, the order of the sequégnesaid to be maximal.

We can now outline the proof. Chang and Kadin's Lemma 3 [CK96] states
that, given a maximal hard sequence for an appropriate (polynomially bounded)
length, an NP machine can recognize an initial segment of the canonical complete
language for NF". That is, with the aid of such a sequence, we can replagé a
machine with an NP machine. Thus, it suffices to find a maximal hard sequence
to collapse the NP’s of &MV3 = NPMV>2 machine.

Our principle observation is thisiard sequences of any given order can be ob-
tained by a single query to@NPMV oracle. This result can easily be seen as fol-
lows. Define the functiodi/ : 17 x N — ¥* such that? (1, j) — (1", 21,...,x;)
if and only if (1™, z1,...,z;) is a hard sequence for length of order ;. It fol-
lows from Definition 4 that the set of hard sequences is in coNP [CK96]; hence,
graph(H) € coNP, so that? € coNPMV. Therefore, we can obtain a maximal
hard sequence for the appropriate polynomial lengtk- p(|x|) by querying a
coNPMYV oracle for a value off (1™, j) for j varying from1 to k£ — 1. We then
feed the resulting maximal hard sequence, along with the original inpiatan
NPMV machine that can, via the induced reduction from coNP to NP, collapse the

NP oracles in an NPMV" computation.

Proof of Theorem 9 O

7 A Remark on Counting Classes
The results of our paper show that in the context of relational structures computed

by polynomial-time machines, in a sense the universal mode is more powerful than
the existential one. In the context of counting classes, a similar phenomenon has
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been observed by Seinosuke Toda [Tod91]. In this section, we briefly show that
Toda’s result is a special case of one of our observations.

Recall the following general definition of counting classes from [Tod91,
VWa3J:

Let K be a class of sets. The#,-K consists of those functiong for which
there exist a setl € I and a polynomiap such that, for all,

F@)={y | vl <p(z]) A (z,y) € A}

It is obvious that#-P = #P. Moreover it can be shown th&-NP = spanP,
wherespan P is the class of functions that count the number of distinct outputs of
a nondeterministic polynomial-time transducer.

We have the following relationship to our classes of functions:

Proposition 2

1. #-NP consists of exactly those functiolgor which there exists a function
f € NPMV such that for allr, h(z) = |set- f(z)|.

2. #-coNPconsists of exactly those functignfor which there exists a function
f € coNPMV such that for allz, h(z) = |set- f(z)|.

Now we have the following surprising result, which was already proved by
Toda [Tod91, Theorem 4.1.6]:

Corollary 7 #-coNP= # PP,

Proof of Corollary 7 Proof is immediate by the preceding proposition and the fact
that coNPMV is the class of functions that compute witnessesfaomputations.
See the discussion before Proposition 1.

Proof of Corollary 7 O
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