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Complements of Multivalued Functions
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19 March, 1999

Abstract

We study the class coNPMV of complements of NPMV functions.
Though defined symmetrically to NPMV, this class exhibits very different
properties. We clarify the complexity of coNPMV by showing that it is es-
sentially the same as that of NPMVNP. Complete functions for coNPMV are
exhibited and central complexity-theoretic properties of this class are stud-
ied. We show that computing maximum satisfying assignments can be done
in coNPMV, which leads us to a comparison of NPMV and coNPMV with
Krentel’s classesMaxP andMinP. The difference hierarchy for NPMV is
related to the query hierarchy for coNPMV. Finally, we examine a func-
tional analogue of Chang and Kadin’s relationship between a collapse of the
Boolean hierarchy over NP and a collapse of the polynomial-time hierarchy.

1 Introduction

Consider the complexity class NPMV of partial multivalued functions that are com-1-1

puted nondeterministically in polynomial time. As this class captures the complex-
ity of computing witnesses of sets in NP, by studying this class, and more generally,
by studying relations among complexity classes of partial multivalued functions,
we directly contribute to understanding the complexity of computing witnesses. It
is well known that a partial multivalued functionf belongs to NPMV if and only
if it is polynomial length-bounded andgraph(f) = {〈x,y〉 : y is a value off(x)}
belongs to NP.

Now consider the class coNPMV. We will give a formal definition in the pre-1-2

liminaries section below. It will follow from the definition that a partial multivalued

1
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functionf belongs to coNPMV if and only if it is polynomial length-bounded and
graph(f) belongs to coNP. Given this symmetry, graphs of functions in NPMV
are in NP while graphs of functions in coNPMV are in coNP, and given what
we know about NP and coNP, one might expect that coNPMV has essentially the
same complexity as NPMV. Indeed, it is easy to see that coNPMV = NPMV if
and only if NP = coNP. However, the point of this paper is to show that in many
ways coNPMV is a more powerful class than is NPMV. One can derive more
information from computing the complement of a function in NPMV than from
computing the function. For one example of this phenomenon, we prove here that
coNPMV is not included inFPNPMV unless the polynomial hierarchy collapses.
(This is an extension of a result of Fenner et al [FHOS97].) Thus, a coNPMV
oracle provides more information than an NPMV oracle. This is surprising since
function oracles, just as set oracles, provide knowledge about both their domains
and their co-domains.

We will define many-one reductions between multivalued functions. This will1-3

be a straightforward adaptation of the many-one metric reducibility of Krentel
[Kre88]. In Section 3, we will consider many-one complete functions for coNPMV.

Consider the partial multivalued functionsat, defined so thaty is a value of1-4

sat(ϕ) if and only if y is a satisfying assignment of Boolean formulaϕ. The
functionsat is complete for NPMV. Nevertheless, in Section 4 we will see that
sat and similar functions belong to coNPMV. Even the seemingly more powerful
FPNP-complete functionmaxsat, that gives the maximum satisfying assignment of
a formula, is contained in coNPMV. However, we will see thatneitherNPMV nor
FPNP are contained in coNPMV, and hence coNPMV is not closed under metric
many-one reductions, unless the polynomial-time hierarchy collapses. Clearly,
these function classes have strange closure properties, which we describe below.

As an upper bound on the complexity of coNPMV, we show that, for anyk ≥ 2,1-5

coNPMV⊆ NPMV(2) ⊆ NPMV(k) ⊆

NPMV(k +1) ⊆ NPMV(Poly) ⊆ NPMVNP,

where NPMV(k) is thek-th level of the difference hierarchy for NPMV as defined
by Fenner et al. [FHOS97].

On the other hand, even though there is an infinite hierarchy of complexity1-6

classes between coNPMV and NPMVNP (the difference hierarchy over NPMV does
not collapse unless the polynomial-time hierarchy collapses [FHOS97]), our results
suggest that the complexity of coNPMV is essentially the same as the complexity

2
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of NPMVNP: We prove in Section 5 that NPMVNP = π1
2 ◦coNPMV (whereπ1

2 is
the projection function that maps a pair of strings to its first component). It follows
that NPMVNP is the closure of coNPMV under metric many-one reductions.

In Section 6, we show that if the difference hierarchy for NPMV collapses,1-7

then the NPMV oracle hierarchy collapses. This is the functional analogue of the
well-known result by Chang and Kadin relating a collapse of the Boolean hierarchy
over NP to a collapse of the polynomial-time hierarchy.

Finally, we remark that the phenomenon that universal quantification seems1-8

to lead to larger function classes was previously observed by Toda. We show in
Section 7 how this observation follows from our results.

2 Preliminaries

We fix Σ to be the finite alphabet{0,1}. Let < denote the standard lexicographic2-1

order onΣ∗. Forn ≥ 0 we defineΣn = {x ∈ Σ∗ | |x| = n}. By 〈·, ·〉 we denote a
standard pairing function onΣ∗ ×Σ∗.

We use the standard complexity classes P and NP for (nondeterministic) poly-2-2

nomial time,Σp
k and∆p

k = PΣp
k−1 for the levels of the polynomial-time hierarchy,

and NP(k) for the levels of the Boolean hierarchy, fork ≥ 1.
Let f be a relation onΣ∗ ×Σ∗. We will call f a (partial) multivalued function2-3

from Σ∗ to Σ∗. By f(x) 7→ y we denote that(x,y) ∈ f and say thatf mapsx to y.
By set-f(x) we denote the set of outcomes off onx, set-f(x) = {y : f(x) 7→ y}.
Thegraph of f is graph(f) = {〈x,y〉 : f(x) 7→ y}. Thedomain off , dom(f), is
the set ofx whereset-f(x) is nonempty. We will say thatf is undefined atx if
x 6∈ dom(f). The domain of a classF of functions isdom(F) = {dom(f) | f ∈ F}.

2-4

Given partial multivalued functionsf andg, defineg to be arefinement of2-5

f if dom(g) = dom(f) andgraph(g) ⊆ graph(f). Let F andG be classes of
partial multivalued functions. Purely as a convention, iff is a partial multivalued
function, we definef ∈c G if G contains a refinement off , and we defineF ⊆c G
if, for every f ∈ F , f ∈c G. This notation is consistent with our intuition that
F ⊆c G should entail that the complexity of computing values of functions inF is
not greater than the complexity of computing values of functions inG.

A transducerT is a nondeterministic Turing machine with a read-only input2-6

tape, a write-only output tape, read-write work tapes, and accepting states in the
usual manner.T computes a valuey on an input stringx if there is an accepting
computation ofT on x for which y is the final content ofT ’s output tape. (In

3
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this case, we will writeT (x) 7→ y.) Such transducers compute partial, multivalued
functions. (As transducers do not typically accept all input strings, when we write
“function,” “partial function” is always intended. If a functionf is total, it will
always be explicitly noted.)

The following classes of partial functions were first defined by Book, Long,2-7

and Selman [BLS84].
2-8

• NPMV is the set of all partial, multivalued functions computed by nonde-
terministic polynomial time-bounded transducers;

• NPSV is the set of allf ∈ NPMV that are single-valued;

• FP is the set of all partial functions computed by deterministic polynomial
time-bounded transducers.

A functionf belongs to NPMV if and only if it is polynomially length-bounded2-9

andgraph(f) belongs to NP. In this paper we will adopt the convention, different
from other papers on the subject, that all outputs of a functionf ∈ NPMV on
inputx are of the same length, namely,p(|x|), wherep is some polynomial. This
convention is merely for convenience and can easily be removed in all our results
by using a padding argument.

The domain of every function in NPMV belongs to NP. An example issat,2-10

which maps Boolean formulas to their satisfying assignments.
Fenner et al. [FHOS97] define thedifference hierarchy overNPMV as follows.2-11

Let F be a class of partial multivalued functions. A partial multivalued function
f is in coF if there existg ∈ F and a polynomialp such that for everyx,

set-f(x) = Σp(|x|) − set-g(x).

Let F andG be two classes of partial multivalued functions. A partial multivalued
functionh is inF ∧G, respectivelyF ∨G, if there exist partial multivalued functions
f ∈ F andg ∈ G such that for everyx,

set-h(x) = set-f(x)∩ set-g(x), respectively

set-h(x) = set-f(x)∪ set-g(x).

Let F −G denoteF ∧ coG. Then, NPMV(k) is the class of partial multivalued
functions defined in the following way:

4
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NPMV(1) = NPMV,

and, fork ≥ 2,

NPMV(k) = NPMV−NPMV(k −1).

Fenner et al. prove that, for everyk ≥ 1, f ∈ NPMV(k) if and only if f is
polynomially length-bounded andgraph(f) ∈ NP(k).

In particular, we are interested in the class coNPMV. It follows that a functionf2-12

belongs to coNPMV if and only if it is polynomially length-bounded andgraph(f)
belongs to coNP. Observe that the classes NPMV and coNPMV satisfy the nice
symmetry that graphs of functions in the former class are in NP and those in the
latter class are in coNP.

Just as the definition of the Boolean hierarchy over NP leads to the class2-13

NP(Poly) (see [Wag90]), we now introduce the class NPMV(Poly). It can be
shown that a functionh belongs to NPMV(k) if and only if there is a 2-ary func-
tion f ∈ NPMV such that

set-h(x) = set-f(x,k)− (
set-f(x,k −1)

−(
set-f(x,k −2)

−(· · ·− set-f(x,1) · · ·))).
We say thath ∈ NPMV(Poly) if and only if there is a functionf ∈ NPMV and a
polynomialp such that

set-h(x) = set-f(x,p(|x|))− (
set-f(x,p(|x|)−1)

−(
set-f(x,p(|x|)−2)

−(· · ·− set-f(x,1) . . .
)))

.

The above-mentioned result by Fenner et al. can be extended to show thatf ∈
NPMV(Poly) if and only if f is polynomially length-bounded andgraph(f) ∈
NP(Poly).

The primary new contribution of Fenner et al. is the development of hierarchies2-14

of classes of functions that access classes of partial functions as oracles. This
development is based on the following description of oracle Turing machines with
oracles that compute partial functions. Assume first that the oracle is a single
valued partial functiong. Let⊥ be a symbol not belonging to the finite alphabetΣ.
In order for a machineM to access a partial function oracle,M has a write-only
input oracle tape, a separate read-only output oracle tape, and a special oracle call

5
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stateq. To queryg on a stringx, M enters stateq with x on the oracle input tape
in the usual fashion. The oracle then returns the valueg(x) on the oracle output
tape if the value exists, and writes⊥ on the tape otherwise. (It is possible thatM
may read only a portion of the oracle’s output if the oracle’s output is too long to
read with the resources ofM .) We shall assume, without loss of generality, thatM
never makes the same oracle query more than once on any possible computation
path.

If g is a single-valued partial function andM is a deterministic oracle trans-2-15

ducer as just described, then we letM [g] denote the single-valued partial function
computed byM with oracleg.

Definition 1 [FHOS97] Letf andg be multivalued partial functions.f is Turing
reducible tog in polynomial time, f ≤P

T g, if for some deterministic polynomial-
time oracle transducerM , for every single-valued refinementg′ of g, M [g′] is a
single-valued refinement off .

Fenner et al. prove that≤P
T is a reflexive and transitive relation over the class2-16

of all partial multivalued functions.
Let F be a class of partial multivalued functions. FPF denotes the class of2-17

partial multivalued functionsf that are≤P
T-reducible to someg ∈ F . FPF [k]

(respectively, FPF [log]) denotes the class of partial multivalued functionsf that
are≤P

T-reducible to someg ∈ F via a machine that, on inputx, makesk adaptive
queries (respectively,O(log |x|) adaptive queries) to its oracle.

This definition template defines classes of multivalued partial functions such2-18

as FPNPMV and can easily be extended to define NPMVNPMV. If K is a class of sets,
then FPK is defined as usual, except that we allow it to compute partial functions
(at the discretion of the oracle machine).

We will use the following generalization of the many-one metric reducibility of2-19

Krentel [Kre88] in order to discuss complete functions for classes of multivalued
functions.

Definition 2 Given partial multivalued functionsf,g : Σ∗ 7→ Σ∗, we sayf is metricDefinition 2-1

many-one reducible tog, or symbolically,f ≤P
m g, if there are functionst1, t2 ∈ FP

such that the multivalued partial functionh defined by

h(x) = t2(x,(g ◦ t1)(x))

is a refinement off , whereset-h(x) is defined as

{ t2(x,y) : g(t1(x)) 7→ y} .

6
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If, in addition, we haveset-h(x) = set-f(x) for all x, we call it astrong metricDefinition 2-2

many-one reduction, denoted byf ≤P
sm g.

The motivation underlying this definition is that, given a value ofg(x), one can2-20

compute in polynomial time a value off(x). In the case of a strong reduction, one
gets all values off(x) when varying over all values ofg(x). Obviously,f ≤P

m g
impliesf ≤P

T g.
The classes that we have been considering relate in interesting ways to studies2-22

of the complexity of optimization problems. In order to capture the complexity of
optimization problems, Krentel [Kre88] defined the complexity classes MaxP and
MinP as the functions computable by taking the maximum, respectively minimum,
over sets of feasible solutions of problems in NP. Further, Krentel extended these
classes to hierarchies of classes of optimization functions [Kre92]. Krentel defined
these functions using the notion of ametric Turing machine, which we now review.
Consider nondeterministic polynomial-time Turing machines that print an output
value on every path. We associate with every inner node of the computation tree
either the functionmin or the functionmax (for the classes MinP and MaxP, all
nodes are associated with the same function). Thus, metric Turing machines define
(total) functions from input words to integers via the usual bottom-up evaluation
of the machine’s computation tree. Since all the function classes considered in this
paper are partial, we extend the metric Turing machine just defined by allowing
the machine to output a special symbol⊥ that denotes that the computation on the
corresponding path ends with an undefined result. We extend themin andmax
functions in the obvious way: definemax(x,⊥) = max(⊥,x) = x andmin(x,⊥) =
min(⊥,x) = x, for all x (including⊥ itself). Vollmer and Wagner [VW93, VW95]
gave a detailed structural examination of Krentel’s hierarchy. Here, we just define
the class MaxP using an operator-characterization from [VW95]. MinP is defined
analogously.

2-23

h ∈ MaxP ⇐⇒ ∃f, g ∈ FP: h(x) = max0≤y≤g(x) f(x,y).

3 Functions Complete for coNPMV

NPMV is precisely the class of functions that compute witnesses for NP sets in the3-1

following sense: For any setL ∈ NP there exist a setA ∈ P and a polynomialp
such that for allx, we have

x ∈ L ⇐⇒ ∃y ∈ Σp(|x|) : (x,y) ∈ A.

7
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Any y such that(x,y) ∈ A is called awitness forx (with respect toA). Clearly,
there is a functionfA ∈ NPMV such thatset-f(x) is exactly the set of witnesses
for x. On the other hand, any NPMV functionf defines a set in NP, namely
dom(f). As a consequence of this discussion, we see thatdom(NPMV) = NP.

Next, we extend the notion of a witness toΣp
2. For anyΣp

2 setL there exist3-2

a setB ∈ coNP and a polynomialp such that for allx, we havex ∈ L ⇐⇒ ∃y ∈
Σp(|x|) : (x,y) ∈ B. A y such that(x,y) ∈ B is called awitness forx (with respect
to B). What function class captures the computation of witnesses forΣp

2 sets?
SinceΣp

2 = NPNP, certainly witnesses can be computed in NPMVNP. However, we
will see below that the seemingly weaker class coNPMV already suffices to do so.

Let us consider setL again. We may safely assume that, for all(x,y) ∈ B,3-3

we havey ∈ Σp(|x|). SinceB ∈ coNP, it is then the graph of a coNPMV function
f , so thatset-f(x) is exactly the set of witnesses forx. Hence, coNPMV can
compute witnesses for sets inΣp

2. Conversely, for any coNPMV functionf , we
havedom(f) ∈ Σp

2. This is because, for anyx, x ∈ dom(f) ⇐⇒ ∃y ∈ Σp(|x|) : y ∈
set-f(x). Thus, coNPMV ispreciselythe class of functions that computes wit-
nesses forΣp

2 sets. As a consequence, we have the following proposition.

Proposition 1dom(coNPMV) = Σp
2.

Witnesses ofΣp
2-complete sets can give rise to complete functions for coNPMV.3-4

Consider, for example, the satisfiability problem QBF2 for Boolean formulas with
two quantifiers. Letϕ be a Boolean formula in the variables x= (x1, . . . ,xk) and
y = (y1, . . . ,yl). Then we define

ϕ(x,y) ∈ QBF2 ⇐⇒ ∃x ∀y : ϕ(x,y) = 1.

Let F2 be the multivalued function that computes witnesses, i.e., partial assign-
ments x= (x1, . . . ,xk), for QBF2 formulasϕ as above.

Theorem 1F2 is ≤P
sm-complete forcoNPMV.

Proof of Theorem 1 We have argued already thatF2 ∈ coNPMV. Letf be any
coNPMV function. There is an NP transducerM and a polynomialp such that
for all x, we haveset-f(x) = Σp(|x|) − set-M(x). We show how to compute a
y ∈ set-f(x) from F2(ϕx), for an appropriately constructed formulaϕx.

Define a machineM ′ on inputx as follows. First,M ′ guesses ay ∈ Σp(|x|).3-5

Then,M ′ simulatesM on inputx. If M outputsy on the simulated path, thenM ′
rejects. Otherwise,M ′ accepts.

8
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We have to define the reduction functionst1 andt2 as required in Definition 2.3-6

Functiont1 is the Cook-Levin reduction1 applied tox with M ′ as the underlying
machine. This will give a Boolean formulaϕx that, intuitively, describes the work
of M ′ on inputx. The variables ofϕx can be partitioned into two parts, for example,

• y1, . . . ,yk, that are used to describe thatM ′ guesses ay ∈ Σp(|x|), and

• z1, . . . , zl, that are used to describe the subsequent simulation ofM .

Furthermore, from any setting of the variablesy1, . . . ,yk of ϕx, we can reconstruct
in polynomial time they ∈ Σp(|x|) guessed byM ′. This is done by functiont2.

Let us fix a setting of the variablesy1, . . . ,yk and lety ∈ Σp(|x|) be the corre-3-7

sponding string guessed byM ′. Then we have

∀z1, . . . , zl : ϕx(y1, . . . ,yk, z1, . . . , zl) = 1

⇐⇒ M ′ accepts on all paths followingy

⇐⇒ y 6∈ set-M(x)

⇐⇒ f(x) 7→ y,

and hence,set- t2(x,F2 ◦ t1(x)) = set-f(x), wheret1(x) = ϕx.

Proof of Theorem 1 2

A crucial point in the above proof is that the Cook-Levin reduction maintains3-8

witnesses. That is, from a given assignment for the constructed formulaϕx, one
can recover a corresponding path of the nondeterministic machine. Thus, any
Σp

2-complete set sharing this property with QBF2 defines a coNPMV-complete
function in an analogous way.

As an example, consider the following setLf . For any NPMV functionf and3-9

any even-valued polynomialp such thatf maps strings of lengthn to strings of
lengthp(n), x ∈ Lf if and only if

∃y ∈ Σp(|x|)/2 ∀z ∈ Σp(|x|)/2 : f(x) 67→ yz.

In other words, stringy is not a prefix of an output off(x).
Clearly, for everyf ∈ NPMV, we have thatLf is in Σ2. Thus, in particular,3-10

taking f = sat, Lsat is Σp
2-complete and has the above-mentioned property. We

1This is the well-known reduction that transforms the computation of an NP machine to a
Boolean formula that is satisfiable iff the machine accepts; see, e.g., [Coo71].

9
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conclude that the corresponding witness function,not-pre-sat, is complete for
coNPMV, where (by definition)not-pre-sat(ϕ) 7→ y ⇐⇒ y is a truth assignment
of the first half ofϕ’s variables that is not a prefix of a satisfying assignment ofϕ.

Theorem 2not-pre-sat is≤P
sm-complete for the classcoNPMV.

Not-pre-satis a trivial transformation ofF2, so Theorem 2 can be seen directly3-11

via a straightforward metric reduction fromF2.

4 Properties of coNPMV

NPMV is closed under≤P
sm-reductions, but not under≤P

m-reductions; in fact, it4-1

is possible to haveg ∈ NPMV andf≤P
mg but graph(f) be noncomputable. (For

example, definef to mapx to two values, the first of which is either 0 or 1 and
solves the halting problem onx and the second of which is the constant 10. Then
clearlygraph(f) is not computable, but the constant function 10 is a refinement of
f in NPMV.) However, NPMVis closed under this reduction in a weaker sense,
defined below.

Definition 3 A classF is c-closedunder reducibility≤r, if g ∈ F and f ≤r g
impliesf ∈c F .

It is immediate from this definition that NPMV is c-closed under≤P
m-4-2

reductions. One might suspect that this same fact holds for coNPMV. How-
ever, it is quite unlikely that coNPMV is c-closed under this reducibility: oth-
erwise, sincesat ∈ coNPMV andsat is complete for NPMV, we would get that
NPMV ⊆c coNPMV. But this seems to be very unlikely, as the following extension
of a result of Fenner et al. [FHOS97] shows.

Theorem 3 NPMV⊆ coNPMV⇐⇒ NPMV ⊆c coNPMV⇐⇒ NP= coNP.

Proof of Theorem 3 We cycle through the implications. The first implication is
trivial. For the second, letL ∈ NP. Define function

χL(x) =
{

1 if x ∈ L
⊥ otherwise.

Then we haveχL ∈ NPMV, and hence, by assumption,χL ∈ coNPMV. There-
fore,graph(χL) ∈ coNP, which implies thatL ∈ coNP sincex ∈ L ⇐⇒ (x,1) ∈
graph(χL).

10
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Now suppose that NP = coNP and letf ∈ NPMV. Thengraph(f) ∈ NP and,4-3

therefore, in coNP by assumption. Thusf ∈ coNPMV.

Proof of Theorem 3 2

Corollary 1 coNPMVis c-closed under≤P
m-reducibility if and only ifNP= coNP.

We observe that the proof of Theorem 3 shows also that NPSV⊆ coNPMV⇐⇒4-4

NP= coNP, even though it is fairly easy to see that NPSVt, the class of all total
NPSV functions,iscontained in coNPMV. We also note that Theorem 3 extends to
higher levels of the difference hierarchies over NPMV and NP, that is, NPMV(k) ⊆
coNPMV(k) ⇐⇒ NPMV(k) ⊆c coNPMV(k) ⇐⇒ NP(k) = coNP(k). By a result
of Kadin [Kad88], a collapse of the Boolean hierarchy implies a collapse of the
polynomial-time hierarchy. Hence, there is likely to be a whole hierarchy between
coNPMV and NPMVNP.

Theorem 4For all k ≥ 2, we have

coNPMV⊆NPMV(2) ⊆ NPMV(k) ⊆
NPMV(k +1) ⊆ NPMV(Poly) ⊆ NPMVNP.

Furthermore, all of the inclusions are strict unless the polynomial-time hierarchy
collapses.

Proof of Theorem 4 It remains to show the last inclusion. Letf ∈ NPMV(Poly).
Then the graph off is in NP(Poly), which is known to be equal to PNP[log] [Wag90].
Obviously,f can be computed by an NPMV algorithm with access to a PNP[log]

oracle: simply guess an output off and, querying its graph, check that the guess

is correct. Thus, NPMV(Poly) ⊆ NPMVPNP[log] ⊆ NPMVNP.

Proof of Theorem 4 2

Under the likely assumption thatNP 6= coNP, we see, by Theorem 3, that the4-5

class NPMV is not included in coNPMV, even though the functionsat, which is
complete for NPMV, belongs to coNPMV. This phenomenon happens again for
maxsat, the function that maps a Boolean formula to its lexicographically largest
satisfying assignment. Fenner et al. [FHOS97] show thatmaxsat∈ NPMV(2). In
fact, it is even in coNPMV. However, we will show that the corresponding classes,
namely MaxP or FPNP, are included in coNPMV if and only ifNP = coNP.

4-6

11
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Theorem 5maxsat∈ coNPMV.

Proof of Theorem 5 Consider an NPMV machineM that, on input of a formula
ϕ, guesses an assignmenty for ϕ. If y does not satisfyϕ, thenM accepts and
outputsy. Otherwise, ify does satisfyϕ, M guesses another assignmenty′ > y.
If y′ also satisfiesϕ, M outputsy; otherwise,M rejects (and outputs nothing).

M outputs every assignment except the maximum satisfying one (if there is4-7

one). Hence,maxsat∈ coNPMV.

Proof of Theorem 5 2

Krentel [Kre92] showed that FPNP = FPMaxP[1]. Since FPNPMV = FPNP4-8

[FHOS97] andmaxsatis complete forMaxP, we have that FPNPMV ⊆ FPcoNPMV[1].
That is, polynomially many queries of a FP function to NPMV can be replaced by
one query to coNPMV. Hence, as we have mentioned, coNPMV seems to be a
more powerful class than NPMV. We will give more evidence for this in the next
section.

4-9

Corollary 2 MaxP ⊆ coNPMV⇐⇒ MinP ⊆ coNPMV⇐⇒ NP= coNP.

Proof of Corollary 2 IfMaxP ⊆ coNPMV, then NPMV⊆c MaxP ⊆ coNPMV,
and, therefore, NPMV⊆c coNPMV. But by Theorem 3, this implies NP = coNP.
Conversely, if NP = coNP, then NPMVNP = NPMVNP∩coNP= NPMV. This implies
MaxP ⊆ NPMV and, since the hypothesis also implies NPMV = coNPMV, that
MaxP ⊆ coNPMV.

Proof of Corollary 2 2

We conclude this section with an observation regarding the relationship be-4-10

tween MaxP and NPMV. First, note that trivially NPSV⊆ MaxP∩MinP since
the output of an NPSV function is both the minimum and the maximum. Simi-
larly, NPMV ⊆c MaxP∩MinP. The more interesting question is whether these
inclusions are strict. This is quite likely.

Theorem 6MaxP ⊆ NPMV ⇐⇒ MinP ⊆ NPMV ⇐⇒ NP= coNP.

Proof of Theorem 6 If NP= coNP, then FPNP ⊆ NPMV [Sel94]; thus, especially
MaxP∪MinP ⊆ NPMV.

12
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Now supposeMaxP ⊆ NPMV (the case forMinP is analogous). LetL ∈ coNP.4-11

Define

f(x) =
{

0 if x ∈ L
1 otherwise.

Thenf ∈ MaxP and hence, by assumption, is in NPMV. Sincex ∈ L if and only
if f(x) = 0, we haveL ∈ NP.

Proof of Theorem 6 2

The last two results relativize; analogous results hold for higher levels of the4-12

NPMV hierarchy and Krentel’s min/max hierarchy [FHOS97, VW95]. For the
relativized version of Theorem 6 one has to use techniques from Krentel [Kre92]
and Vollmer and Wagner [VW95].

5 A Characterization of coNPMV

As we have already seen in the preceding section, coNPMV seems to be a more5-1

powerful class than NPMV. This is somewhat surprising in light of the aforemen-
tioned symmetry in the definitions of coNPMV and NPMV by their graphs.

The following theorem shows that coNPMV is in fact very close to NPMVNP.5-2

This is surprising as well, as we have already seen in Theorem 4 that there is a
hierarchy of function classes between coNPMV and NPMVNP.

If f is a multivalued function andg is a single-valued function, theng ◦ f is5-3

defined bygraph(g ◦ f) = {〈x,g(y)〉 : f(x) 7→ y}. Let π1
2 denote the projection

function that maps a pair of strings to its first component. Byπ1
2 ◦ coNPMV we

denote
{

π1
2 ◦f : f ∈ coNPMV

}
.

Theorem 7 NPMVNP = π1
2 ◦coNPMV.

Proof of Theorem 7 The right-to-left containment follows from Theorem 4 and
the fact that the projection of any NPMVNP function is still in NPMVNP; hence,
π1

2 ◦coNPMV⊆ NPMVNP.
For the other direction, letf ∈ NPMVNP. By a standard argument,graph(f) ∈5-4

Σp
2, and thus there is a polynomialq and a predicateR ∈ coNP such that for anyx

andy ∈ Σq(|x|)

f(x) 7→ y ⇐⇒ ∃z ∈ Σq(|x|) : R(x,y,z).
13
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Definef ′ such that for anyx and anyy, z ∈ Σq(|x|)

f ′(x) 7→ 〈y,z〉 ⇐⇒ R(x,y,z).

SoR witnesses thatf ′ ∈ coNPMV. Butf(x) = π1
2 ◦ f ′(x), which shows that5-5

f ∈ π1
2 ◦coNPMV.

Proof of Theorem 7 2

The reason why it is likely that coNPMV is a proper subclass of NPMVNP is5-6

not because outputs of coNPMV functions give too little information, but rather
that they give too much. We can compute an arbitrary NPMVNP function simply
by throwing away part of the output of a coNPMV function. This is what the
projection operator accomplishes, and it is most likely necessary.

If we apply Theorem 7, many properties of NPMVNP now carry over to5-7

coNPMV. In Section 3 we have shown functionsF2 andnot-pre-satcomplete
for coNPMV. Since the projection function is in FP, we get that those functions
are complete for NPMVNP as well.

Corollary 3 NPMVNP is the c-closure ofcoNPMVunder≤P
m-reducibility and the

closure ofcoNPMVunder≤P
sm-reducibility.

In particular, we get the following corollary.5-8

Corollary 4 FPcoNPMV[k] = FPNPMVNP[k] for all k ≥ 1, andFPcoNPMV = FPNPMVNP

=
FPNPNP

.

Observe, by contrast, that FPNPMV = FPNP = FPMinP = FPMaxP, so coNPMV5-9

and NPMV define different∆-levels of the functional polynomial hierarchy.
Fenner et al. [FHOS97] have shown that NPMV(2) ⊆ FPNPMV ⇐⇒ Σp

2 = ∆p
2.5-10

Note that, in contrast for the corresponding language classes, we have NP(k) ⊆ PNP

for all k. We can now improve the result of Fenner et al.

Corollary 5 coNPMV⊆ FPNPMV ⇐⇒ Σp
2 = ∆p

2.

Proof of Corollary 5 IfΣp
2 = ∆p

2, then

coNPMV⊆ FPcoNPMV = FPNPMVNP

= FPΣp
2

= FP∆p
2 = FPNP = FPNPMV,

14
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where the last equality is Theorem 1 in [FHOS97] and the second equally follows
from the relativized version of the same theorem. Conversely, if coNPMV⊆
FPNPMV, thendom(coNPMV) ⊆ PNP = ∆p

2, so thatΣp
2 ⊆ ∆p

2.

Proof of Corollary 5 2

Corollary 6 For anyk ≥ 1, we have

NPMVNP ⊆FPcoNPMV[1] ⊆ FPcoNPMV[k] ⊆
FPcoNPMV[k+1] ⊆ FPcoNPMV = FPNPNP

.

Furthermore, all inclusions are strict unless the polynomial-time hierarchy col-
lapses.

Proof of Corollary 6 It remains to show the strictness of the inclusions. Suppose
FPcoNPMV[1] ⊆ NPMVNP. This is equivalent to FPNPMVNP[1] ⊆ NPMVNP by Corol-
lary 4, which implies PΣ

p
2[1] ⊆ Σp

2. But thenΠp
2 = Σp

2 = PH. For the other inclu-

sions, suppose FPcoNPMV[k] = FPcoNPMV[k+1]. Then FPNPMVNP[k] = FPNPMVNP[k+1].
By a theorem of Fenner et al. [FHOS97], this implies that FPΣp

2[k] = FPΣp
2[k+1],

which, by a relativization of Kadin’s theorem [Kad88], implies that the polynomial
hierarchy collapses.

Proof of Corollary 6 2

Thus we see, combining Theorem 4 and Corollary 6, that all classes of the dif-5-11

ference hierarchy over NPMV are included in the query hierarchy over coNPMV,
in fact, already in its first level. There are (under reasonable assumptions) no in-
clusions in the opposite direction. Concerning the relationship between the query
hierarchy over NPMV and the difference hierarchy over NPMV, we know from
Fenner et al. [FHOS97] that all classes of the first hierarchy are included in certain
classes of the second hierarchy. Any inclusion in the opposite direction implies
coNPMV⊆ FPNPMV, which again implies a collapse of the polynomial hierarchy,
by Corollary 5.

6 Relationships between the Functional Difference and
Polynomial-Time Hierarchies

Chang and Kadin [CK96] showed that if the Boolean hierarchy over NP collapses6-1

to thek-th level, then the polynomial hierarchy collapses to thek-th level of the
15
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Boolean hierarchy over NPNP: if NP(k +1) = NP(k), then PH= NPNP(k). It is a
simple consequence of known results that a similar connection exists for the cor-
responding functional hierarchies, namely NPMV(k) andΣMVk = NPMVΣp

k−1 .

Theorem 8For any k ≥ 1, if NPMV(k + 1) = NPMV(k), then ΣMV3 =
NPMVNP(k).

Proof of Theorem 8 NPMV(k + 1) = NPMV(k) is equivalent to NP(k + 1) =
NP(k) [FHOS97], which impliesΣp

3 = NPNP(k) [CK96] (relativized). By con-
sidering the graphs of functions [FHOS97], we immediately get thatΣMV3 =
NPMVNP(k).

Proof of Theorem 8 2

Since NPNP(k) ⊆ PNPNP[k], a consequence of Chang and Kadin’s theorem is6-5

that, if NP(k +1) = NP(k), thenΣp
3 = PNPNP[k] (indeed, they prove this directly in

their paper before treating the stronger result). The functional analogue of such
a collapse would beΣMV3 = FPNPMVNP[k] or, equivalently,ΣMV3 = FPcoNPMV[k].
We cannot expect this as a direct consequence of Theorem 8, since the difference
and query hierarchies are not intertwined in this context. Nevertheless, such an
analogous result does hold. To see this, we have to modify the proof of the Chang
and Kadin theorem.

Theorem 9If NPMV(k+1) = NPMV(k), thenΣMV3 = NPMV◦FPcoNPMV[k−1].

Proof of Theorem 9 In order to explain how Chang and Kadin’s proof gives
this result, we recall some of their definitions, with some minor modifi-
cations in notation (for greater detail, we refer the reader to their paper
[CK96]). Denote the≤p

m-complete language for NP(k) (respectively, coNP(k))
as LNP(k) (respectively,LcoNP(k)). For example,LNP(1) = SAT and LNP(2) ={〈x1,x2〉 : x1 ∈ SAT andx2 ∈ SAT

}
. Since, by hypothesis, NP(k) = coNP(k), it

follows thatLNP(k) ≤p
m LcoNP(k). The basic idea underlying the Chang and Kadin

proof is that such a reduction induces a reduction from an initial segment of SAT
to an initial segment ofSAT. This is done inductively via the notion of a “hard
sequence,” which is aj-tuple that, together with a≤p

m-reduction from NP(k) to
coNP(k), can be used to find a≤p

m-reduction from NP(k − j) to coNP(k − j).

Definition 4 Let LNP(k) ≤p
m LcoNP(k) via some polynomial time functionh. Then

we call〈1m,x1, . . . ,xj〉 a hard sequencewith respect toh for lengthm of orderj,
if either j = 0 or the following conditions hold:
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1. 1 ≤ j ≤ k −1,

2. |xj | ≤ m,

3. xj ∈ SAT,

4. 〈1m,x1, . . . ,xj−1〉 is a hard sequence with respect toh, and

5. for all y1, . . . ,y` ∈ Σ∗ where` = k − j, and for all1 ≤ i ≤ `, |yi| ≤ m,
π`+1 ◦h(〈y1, . . . ,y`,xj , . . . ,x1〉) ∈ SAT.

A hard sequence is calledmaximalif it cannot be extended to a hard sequence6-3

of a higher order. In this case, the order of the sequencej is said to be maximal.
We can now outline the proof. Chang and Kadin’s Lemma 3 [CK96] states6-4

that, given a maximal hard sequence for an appropriate (polynomially bounded)
length, an NP machine can recognize an initial segment of the canonical complete
language for NPNP. That is, with the aid of such a sequence, we can replace aΣp

2
machine with an NP machine. Thus, it suffices to find a maximal hard sequence
to collapse the NP’s of aΣMV3 = NPMVΣp

2 machine.
Our principle observation is this:Hard sequences of any given order can be ob-6-5

tained by a single query to acoNPMVoracle. This result can easily be seen as fol-
lows. Define the functionH : 1+ ×N 7→ Σ∗ such thatH(1m, j) 7→ 〈1m,x1, . . . ,xj〉
if and only if 〈1m,x1, . . . ,xj〉 is a hard sequence for lengthm of orderj. It fol-
lows from Definition 4 that the set of hard sequences is in coNP [CK96]; hence,
graph(H) ∈ coNP, so thatH ∈ coNPMV. Therefore, we can obtain a maximal
hard sequence for the appropriate polynomial lengthm = p(|x|) by querying a
coNPMV oracle for a value ofH(1m, j) for j varying from1 to k − 1. We then
feed the resulting maximal hard sequence, along with the original inputx, to an
NPMV machine that can, via the induced reduction from coNP to NP, collapse the
NP oracles in an NPMVNPNP

computation.

Proof of Theorem 9 2

7 A Remark on Counting Classes

The results of our paper show that in the context of relational structures computed7-1

by polynomial-time machines, in a sense the universal mode is more powerful than
the existential one. In the context of counting classes, a similar phenomenon has

17
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been observed by Seinosuke Toda [Tod91]. In this section, we briefly show that
Toda’s result is a special case of one of our observations.

Recall the following general definition of counting classes from [Tod91,7-2

VW93]:
Let K be a class of sets. Then,# ·K consists of those functionsf for which7-3

there exist a setA ∈ K and a polynomialp such that, for allx,

f(x) =
∣∣{y

∣∣ |y| ≤ p(|x|)∧〈x,y〉 ∈ A
}∣∣.

It is obvious that# ·P = #P. Moreover it can be shown that# ·NP = spanP,
wherespanP is the class of functions that count the number of distinct outputs of
a nondeterministic polynomial-time transducer.

We have the following relationship to our classes of functions:7-4

Proposition 2

1. # ·NP consists of exactly those functionsh for which there exists a function
f ∈ NPMV such that for allx, h(x) =

∣∣set-f(x)
∣∣.

2. # ·coNPconsists of exactly those functionsh for which there exists a function
f ∈ coNPMV such that for allx, h(x) =

∣∣set-f(x)
∣∣.

Now we have the following surprising result, which was already proved by7-5

Toda [Tod91, Theorem 4.1.6]:

Corollary 7 # ·coNP= #PNP.

Proof of Corollary 7 Proof is immediate by the preceding proposition and the fact
that coNPMV is the class of functions that compute witnesses forΣp

2 computations.
See the discussion before Proposition 1.

Proof of Corollary 7 2

Acknowledgments

We appreciate the contributions of J. Ramachandran to the results presented here.
F.G. thanks the Computer Science Department of Boston University for its hospi-
tality in the course of this work.

18

Chicago Journal of Theoretical Computer Science 1999-3



Fenner, et al. Complements of Multivalued Functions (Ref)

Acknowledgment of support: The authors’ contributions to this paper were sup-
ported by the following grants and institutions: Stephen Fenner in part by the
NSF under grants CCR 92-09833 and CCR 95-01794; Steven Homer in part by
the NSF under grant NSF-CCR-9400229; Alan L. Selman in part by the NSF
under grant NSF-CCR-9400229; Thomas Thierauf in part by DAAD, Acciones
Integradas 1995, 322-AI-e-dr; and Heribert Vollmer by the Alexander von Hum-
boldt foundation under a Feodor Lynen scholarship.

References

[BLS84] R. Book, T. Long, and A. Selman. Quantitative relativizations of com-
plexity classes.SIAM Journal on Computing, 13(3):461–487, 1984.

[CK96] R. Chang and J. Kadin. The boolean hierarchy and the polynomial hier-
archy: A closer connection.SIAM Journal on Computing, 25(2):340–
354, 1996.

[Coo71] S. Cook. The complexity of theorem-proving procedures. InProceed-
ings of the 3rd ACM Symposium Theory of Computing, pages 151–158,
New York, 1971. ACM Press.

[FHOS97] S. Fenner, S. Homer, M. Ogihara, and A. Selman. Oracles that compute
values.SIAM Journal on Computing, 26(4):1043–1065, 1997.

[Kad88] J. Kadin. The polynomial time hierarchy collapses if the Boolean
hierarchy collapses.SIAM Journal on Computing, 17(6):1263–1282,
1988.

[Kre88] M. Krentel. The complexity of optimization problems.Journal of
Computer and System Sciences, 36:490–509, 1988.

[Kre92] M. Krentel. Generalizations of OptP to the polynomial hierarchy.
Theoretical Computer Science, 97:183–198, 1992.

[Sel94] A. Selman. A taxonomy of complexity classes of functions.Journal
of Computer and System Sciences, 48(2):357–381, 1994.

[Tod91] S. Toda.Computational Complexity of Counting Complexity Classes.
Ph.D. thesis, Tokyo Institute of Technology, Department of Computer
Science, Tokyo Institute of Technology, Tokyo, Japan, 1991.

19

Chicago Journal of Theoretical Computer Science 1999-3



Fenner, et al. Complements of Multivalued Functions (Ref)

[VW93] H. Vollmer and K. Wagner. The complexity of finding middle elements.
International Journal of Foundations of Computer Science, 4:293–307,
1993.

[VW95] H. Vollmer and K. Wagner. Complexity classes of optimization func-
tions. Information and Computation, 120:198–219, 1995.

[Wag90] K. Wagner. Bounded query classes.SIAM Journal on Computing,
19:833–846, 1990.

20

Chicago Journal of Theoretical Computer Science 1999-3


