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Chapter 1
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Abstract  We survey several applications to quantum computing of
computational complexity theory, especially the complexity of problems
related to counting. We show how the connection of quantum compu-
tation to counting is very close. We define counting complexity classes,
relativization of both classical computation and quantum circuits, and
present a number of results from disparate sources, recast into a single
consistent formalism. We assume prior knowledge of the mathemati-
cal formalism of quantum mechanics, but we present the concepts of
computational complexity in an introductory manner.
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1.1 Introduction

This chapter is primarily aimed at people (physicists, perhaps) who
know more about quantum mechanics than they do about the theory of
computation. It explores a close relationship between quantum comput-
ing and the complexity (difficulty) of counting the number of solutions
to classical search problems. The latter is well studied, going back to
the 1970s [46]. Although the concept of a quantum computer has also
been around for a long time [8, 21], it was only in the 1990s that quan-
tum computing began to receive intense scrutiny. Our point (and we do
have one) is that the older study of computational complexity, especially
counting complexity, has a lot to say about quantum computers—their
ultimate strengths and limitations.

There are a number of good research papers on the complexity of
quantum computation, relating it to classical complexity. A primary
example is the thorough and detailed treatment of the quantum Turing
machine (QTM) model of Deutsch [15] given by Bernstein and Vazirani
[10]. Their paper proves a number of fundamental results—they give
clear evidence that QTMs are powerful enough to efficiently implement
any “reasonable” quantum algorithm; but more importantly, they con-
struct a universal QTM that can efficiently simulate any other QTM to
good approximation. An efficient universal quantum computer shows
that there is a small, finite handful of primitives that can combine to
implement any reasonable quantum algorithm efficiently—namely, the
quantum operations used by the universal machine. As a result, the
quantum computational model has an especially simple and easy-to-
analyze structure.

An extensive summary of results in quantum complexity can be found
in Gruska [29)].

The current chapter collects a number of results from other sources;
some of these are more recent improvements on earlier, better known
results. Although they appear in disparate sources, these results and
the techniques used to prove them are related to each other, and they
deserve to be brought together under a single framework. That is the
main purpose of this chapter. We give detailed proofs of selected results;
often, the technique used in the proof is just as interesting and useful as
the result itself.

We use the quantum circuit model [16] for describing quantum algo-
rithms. Yao [49] showed that quantum circuits were equivalent to QTMs,



1.2. PRELIMINARIES 5

each able to simulate the other efficiently to good approximation. By “ef-
ficiently” we mean with at most a polynomial slow-down of the machine
or a polynomial blow-up in circuit size. Quantum circuits are conceptu-
ally easier than Turing machines for rendering quantum algorithms, and
most researchers prefer them. In Section 1.2, after defining the basic cir-
cuit model for both classical Boolean circuits and quantum circuits, we
review the basic concepts of “standard” complexity theory: the classes
P and NP, oracles and relativization, reducibility, and completeness. We
then build on these concepts to define the function class GapP, which is
then used to describe counting problems. Lastly, we prove a close con-
nection between quantum computation and GapP—and hence counting
problems.

The rest of the chapter is loosely organized into two parts: the first
gives positive results about the power of quantum computation (Sec-
tion 1.4), and the second gives negative results (Section 1.5). In Sec-
tion 1.4, we give a proof of the existence (first shown by Green and
Pruim [26]) of a black-box problem that is quantum computable with
zero error but cannot be computed deterministically, even with free ac-
cess to an arbitrary NP oracle. The proof serves as a good illustration of
oracle construction—a venerable and often-used technique in complexity
theory. In Section 1.5, we use the equivalence of GapP and quantum
computation to prove a “lowness” property of efficiently quantum com-
putable sets. We show that free access to such a set is useless in solving
a counting problem—that is, any problem solvable by counting with ac-
cess to the set is also solvable by counting without such access. This
fact provides strong evidence that quantum computers are not powerful
enough to solve arbitrary counting problems.

Quantum complexity is an extremely rich field of study. Due to space
limitations, we make no attempt at a complete or unbiased survey. We
apologize in advance for leaving out many interesting results, even some
that are closely related to the current topic, for the sake of fewer and
more detailed proofs.

1.2 Preliminaries

We assume prior knowledge of the mathematical underpinnings of
quantum mechanics—Hilbert spaces, operator algebras, Dirac bracket
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notation, tensor products, and the like. All Hilbert spaces mentioned
in this chapter are finite-dimensional. We will also suppose some basic
knowledge of the theory of computation, including basic graph theoretic
concepts and Turing machines (TMs), and we will briefly review some
relevant concepts in complexity theory. More background can be found
in several good textbooks on the theory of computation [30, 42] and on
complexity theory in particular [4, 5, 24, 35].

We let N,Z,Q, R, C stand for the natural numbers {0,1,2, ...}, inte-
gers, rationals, reals, and complex numbers, respectively. For z € C, we
write Z for the complex conjugate of z, and we write |z| for v/zZ, the
absolute value of z.

We let || X || stand for the cardinality of finite set X. We fix an alpha-
bet ¥ = {0,1}, and let £* be the set of all finite strings of symbols from
Y. For any string w € X*, we let |w| denote the length of w (number of
symbols in w). For n € N, we let ™ denote the set of all strings of ¥* of
length n. We often identify classes of finitely describable objects—for ex-
ample, Boolean values, truth tables, natural numbers, integers, rational
numbers, algebraic numbers, graphs, TMs, and strings over various al-
phabets, as well as pairs, finite lists, and finite sets of these—with strings
in ¥* via reasonable and concise encodings. For example, we identify
natural numbers with strings via the usual binary representation, and
we identify the Boolean values true and false with 1 and 0, respectively.
We sometimes represent a natural number n in unary notation as 17,
i.e., a string of n 1s. We will also identify subsets of some (assumed) uni-
versal set (such as X" or ¥*) with their characteristic Boolean functions
over the universal set.

All polynomials mentioned will be univariate unless otherwise speci-
fied. If a polynomial p represents the running time (number of primitive
steps) of an algorithm or the lengths of strings, then we assume it has
all integer coefficients, and that p(n) > 0 for alln € N. If ¢ € R, we say
p > ¢ to mean that p(n) > cfor all n € N.

A circuit is a directed acyclic graph with some arbitrary ordering of
the vertices. If C' is a circuit, then the vertices with indegree zero are
the initial vertices, and those with outdegree zero are the final vertices.
We designate the first few initial vertices of C' as the inputs to C, the
first few final vertices as the outputs, and all other vertices are gates.
Gates that are not initial or final are called intermediate gates. The
edges are called wires. It may seem strange at first to allow initial and
final vertices that are not inputs or outputs, but this will be useful when
we describe our quantum circuit model. A Boolean circuit is a circuit
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where each intermediate gate is labeled with a Boolean connective A, V,
or -, and all intermediate gates have indegree two except —-gates, which
have indegree one. Noninput initial gates are labeled with the constant
0 (false), and final gates are unlabeled. A labeling of the inputs of a
Boolean circuit with Boolean values uniquely determines a labeling of
the outputs, computed in the usual manner. So a Boolean circuit with
n inputs and m outputs computes a unique function f : X" — 3™,

When we draw a circuit, the initial vertices are on the left and the
final vertices on the right. Input and output vertices are represented as
bare ends of wires.

1.2.1 Qubits, quantum gates, and quantum circuits

The following definitions are adapted primarily from Nielsen and
Chuang [33] and Aharonov, Kitaev, and Nisan [2]. We refer to those
sources for more detail and motivation.

For two Hilbert spaces H and 7, we denote the space of linear maps
from H to J as L(H,T), and we abbreviate L(H,H) by L(H), the space
of linear operators on ‘H. We will use the density matrix formulation of
quantum states; so we regard a quantum state in a Hilbert space H as
a Hermitian operator p € £(#H) that is positive semidefinite (p > 0) and
has unit trace (tr(p) = 1). A quantum operation from H to J is a linear
map A from L£(H) to £L(J) that is trace-preserving and completely pos-
itive (A is also called a superoperator). Intuitively, completely positive
means that if we embed # into some larger system, then the standard
lifting of A to the larger system preserves positive (semi)definiteness,
and thus states get mapped to states. Formally, this means that for any
Hilbert space K, the linear map A ® Ix : L(H Q K) = L(J ® K), where
Iy is the identity map on L£(K), preserves positive definiteness: for any
pELHRK),if p> 0, then (AR Ix)(p) > 0. [For ; € L(H) and
T2 € ,C(IC), (A ® I](;)(Tl ® T2) = A(Tl) ® T2.]

A qubit is any quantum physical system S representable by a two-
dimensional Hilbert space Hg, e.g., photon polarization, spin of a spin-
% particle, etc. We will assume some preferred observable on Hg with
eigenvalues 0 and 1 (the value of the qubit), and we will fix an orthonor-
mal basis of Hg of corresponding eigenvectors |[0g) and |1g), respec-
tively. This will be called the standard basis. We will usually drop the
subscripts, in which case the system S is understood implicitly. We let
Py = |0)(0] and P; = |1){1] be the orthogonal projection operators onto
the subspaces spanned by |0) and |1), respectively.
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A combined system H; ® --- ® H,, of n qubits has dimension 2" and
has a natural product basis of vectors

[00---00) = [01)[02) - - - |07—-1)|0n)
|00---01) = |01)[02) - - -|0n—1)|1)
[00---10) = [01)[02) - - - [15—1)|On)
00---11) =01)[02) - - - [1n—1}|1n}

11---11) = [1)[12) - [1acs)lL)

We will call such a system an n-qubit system, the above basis being
its standard basis. We may also write each basis vector above as [i)
for 0 < i < 27, corresponding to the binary representation of i using
n bits. For any binary string = of length at most n, we let P, be the
orthogonal projection operator onto the subspace spanned by those basis
states |z) where z has = as a prefix—that is, the subspace spanned by
{|2) : z has prefix z}.

For any Hilbert space H, a standard basis |v), ..., |v,) of H naturally
lifts to a standard basis {|v;){v;| :1<14,j <n} of L(H). This means
that we can identify quantum operations with matrices over the standard
bases involved, and composition of quantum operations corresponds to
matrix multiplication.

One can assume that all information in a quantum computation is
stored in qubits, so we will restrict each quantum operation to map from
one multiqubit system to another (perhaps the same one). A quantum
circuit C is a circuit whose inputs and outputs are labeled with distinct
qubits, whose gates are labeled with quantum operations drawn from
some prespecified set, and where the wires leading into each gate are
ordered. If the gate has n input wires and m output wires, then its
quantum operation will map n-qubit states to m-qubit states. If C' has
k inputs, then an input state of C' is some k-qubit state.

We can restrict our quantum gates to three types of quantum opera-
tions:

Unitary. Maps an n-qubit state p € £L(H) to the state UpUt € L(H),
where U € L(H) is some unitary operator that we call the un-
derlying unitary operator. (The matrix entry of a unitary gate
corresponding to the pair of basis vectors |z){z'| and |y){y'| is

(=|Uly)='|Uly').)
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Ancilla Introduction. Maps an n-qubit state p to the n+41-qubit state
p ® |0)(0].2 For example,

0 | 10)0]

Partial Trace. Maps an n + 1-qubit state p € L(H; @ Hs) to the n-
qubit state try, (p) € Hy.3 For example,

P1 P1

P2 — tr

(Note that one can effectively trace out several qubits at once
simply by tracing out each qubit one at a time; so our “primitive”
Partial Trace operation need only act on a single qubit.)

Two important examples of unitary gates are the 1-qubit Hadamard
gate

|a) (0] H 3(10) + (=1)*[1)({0] + (=1)*(1])

with underlying U = % H _i] , and the 2-qubit controlled NOT gate
A1 (Uz)

6 __ o @
b —p—adbd
1000
. . 0100 . .
with underlying U = 0001 The ancilla and partial trace gates
0010

act on all the available wires, even though they connect just to wires
that are being created or deleted. Other quantum operations can be
expressed as compositions of these three types. For instance, the 1-qubit
measurement gate, which maps p to PopPo+ P1pP;, can be implemented
by the circuit

2More accurately, this gate maps the unique zero-qubit “vacuum” state in the Hilbert
space C to the one-qubit state |0)(0|.

3Similarly to ancilla introduction, this gate is more accurately described as mapping
any one-qubit state to the zero-qubit state in C.
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p PypPy + PipPy

Which unitary operations are “reasonable?” This is a somewhat
thorny question. The search for a practical implementation of a quan-
tum circuit is still in its infancy, so it is not currently clear what types
of gates can be easily built and which cannot. In lieu of practical ex-
perience, we must therefore rely on mathematical heuristics. Certainly,
we should try to restrict ourselves to some minimal (preferably finite)
set, of simple operations. It is likely that in practice a quantum gate can
only act on a small number of qubits at a time. The matrix entries of a
quantum gate should be “simple” numbers in some sense: they should
at least be polynomial-time approximable (see below); more preferably,
they should be rational numbers with small numerators and denomina-
tors, or perhaps algebraic numbers of small degree. Finally, it is much
more likely that a gate can be reliably fabricated if it can be simulated
in a fault-tolerant manner (there is a large body of literature on fault-
tolerant quantum computing; see [36] for a good survey).

Much good work has been done at isolating sets of quantum gates that
do well under all these heuristics and that can efficiently simulate much
bigger classes of operations to arbitrarily close approximation [12, 38].
We will have more to say on this later. There is an obvious trade-off
here, however; restricting the repertoire of gates may require increasing
the size and complexity of the circuits and may also lose the exactitude
of the computation. An example of this is with the Quantum Fourier
Transform (QFT) [39], which is a useful module for a wide variety of
quantum algorithms. The QFT on n qubits can be implemented exactly
with a reasonably simple circuit containing Hadamard gates and con-
trolled conditional phase shift gates with phase shift e27/2"  where n
grows with the size of the input. There can be no fixed finite palette of
gates, however, that can be used to build circuits for computing QFT
exactly for all n. This is because all the matrix elements of such a cir-
cuit would belong to some fixed finitely generated field extension of Q,
but the field generated by the matrix elements of QFT (ranging over
all input sizes) is not finitely generated over Q. Thus, a circuit family
computing QFT exactly requires an infinite palette of gates, although a
finite palette suffices to compute QFT to good approximation (which is
enough for all current applications) [14, 39].



1.2. PRELIMINARIES 11

1.2.2 Classical complexity

There are several definitions of Turing machine, all equivalent. For
concreteness, we use the model (single one-way infinite tape) of Sipser
[42]. One can also forget about Turing machines and think more ab-
stractly about algorithms if one wishes.

1.2.2.1 P and NP

A language or decision problem is any subset of ¥*. A language can
also naturally be viewed as a predicate, that is, a Boolean- or 0,1-valued
function on X*. A Turing machine M decides or computes a language L
if M halts on all inputs (either accepting or rejecting the input), and, for
each w € ¥*, w € L if and only if M accepts input w. Let ¢t : ¥* — R
be any function. A language L is computable in time t if there is a TM
M deciding L such that M halts in at most t(w) steps on any input w.

A language is computable in polynomial time if it is computable in
time t(w) = p(|w|) for some polynomial p. We let P denote the class of
all polynomial-time computable languages. P is a complezity class that
captures the notion of “easy to compute deterministically,” at least in a
broad theoretical sense. Decision problems in P have fast, deterministic
algorithms. The class P is quite robust in the sense that its definition
does not really depend on which model of computation is used (TMs,
random access machines,; uniform Boolean circuit families, Pascal pro-
grams, etc.); all reasonable computational models give rise to the same
class P.

Many decision problems are not known to be in P but are in the more
inclusive complexity class NP. A language L is in NP if and only if there
is a predicate (language) R € P and a polynomial p such that, for all
T € X*,

zel < (FyeX)[R(zy)],

where r = p(|z|). (We tacitly assume a suitable encoding of pairs of
strings as single strings.) If a string z is in L, then we call a y satisfying
R(z,y) a certificate or witness to x’s membership in L. One thinks of
a TM M computing R as a “verifier” that, when handed some alleged
proof that x € L, can verify the correctness of the proof in a short
amount of time. Thus, P is the class of problems whose instances are
easily decided, and NP is the class of problems whose solutions can be
easily verified. A typical NP problem is: given an undirected graph G
and integer s, does G have a clique (complete subgraph) of size s? This
problem is known as the CLIQUE problem (it is customary to name
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problems with all capital letters). If G did in fact have a clique of size
s, then an easy-to-verify witness would be a description of an actual
s-clique in G. Such a clique may be difficult to find, but it is easy to
verify. The CLIQUE problem is not known to be in P.

If C is a complexity class, then coC is the class of complements of
languages in C, i.e.,

coC={X"—L:LeC}.

Clearly P = coP C NP N coNP. It is not known whether the CLIQUE
problem is in coNP.

It is a major open question in complexity theory, and in mathematics
as a whole, whether or not P = NP. The common intuition is that the
two classes are not equal, but a proof of this has yet to be found.

All complexity classes that we mention in this chapter are subclasses
of PSPACE, the class of problems solvable by using only a polynomial
(in the input size) amount of memory, but unlimited time.

1.2.2.2 Reducibility and completeness

Let A and B be any languages. We say that A is Turing reducible
(T-reducible) to B (A <t B) if there is an algorithm to compute A
in polynomial time that can freely ask questions about membership in
B. The algorithm is called a reduction of A to B.* We now formalize
this concept. An oracle Turing machine (OTM) is a TM M equipped
with an additional writable tape (the gquery tape), and three special
states ¢» (the query state), gyes and gno. Suppose B is any language.
A computation of M with (or relative to) B is defined similarly to an
ordinary computation, except that at any time during the computation
M may ask a question of the form, “Is € B?” for some string z € ¥*,
and receive the answer as follows: first, M writes = on its query tape
then enters state g-; in the next step, M enters either gy.; if ¢ € B
or qno if © € B. B is called an oracle, and we say that M queries the
oracle, where z is the query. The answer to the query is “recorded” by
the resulting state gyes Or gno-

We define polynomial time in this model as before, based on the input
to the computation, independent of the oracle, and we stipulate that any
reduction must run in polynomial time. Turing reducibility captures the

4Tt is more common to say “polynomial-time reducible” and use the notation A <% B
in this case. Our use is justified because all our reductions will run in polynomial
time.
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notion of relative difficulty. A <t B means that A is easy relative to
B. Here is another way to say it: A is no more difficult than B, or
equivalently, B is at least as difficult as A. It is easy to see that if
A <t B and B € P, then A € P. Contrapositively, if A <t B and
A ¢ P, then B ¢ P. The class PP is the class of all languages T-
reducible to B.

A restricted form of T-reducibility is called m-reducibility (“many-
one” reducibility). We say that A is m-reducible to B (A <,, B) if
A <7 B by areduction M which, on any input, makes exactly one query
to B, accepts if the answer is yes, and rejects otherwise. Equivalently,
A <, B if there is a polynomial-time computable function f : ¥* — ¥*
such that, for every w € ¥*, we A < f(w) € B.

If C is a complexity class and L is a language, then we say that L
is C-hard if A <,; L for all A € C. If in addition L € C, then L
is C-complete. The CLIQUE problem, among many other interesting
problems, is known to be NP-complete. If any NP-complete problem is
shown to be in P, then this would prove that P = NP. We can define
hardness and completeness for Turing reducibility as well, in which case
we would say that L is T-hard or T-complete for C.

1.2.2.3 Counting classes

Many interesting complexity classes can be defined in terms of the
number of witnesses to instances of NP problems. To reify this concept,
Valiant [46] defined the class #P consisting of functions f : ¥* — N as
follows: a function f belongs to #P if and only if there is a P predicate
R and a polynomial p such that for all z € ¥*,

1@ = |{v e = : R@,n)} |-

For example, the number of cliques of a given size s in a given graph G
is a #P function of (G,s). A variant of #P that is more algebraically
useful is the class GapP [18] consisting of functions f : ¥* — Z. A
function f is in GapP if and only if f = g — h for some g,h € #P. By
manipulating predicates in the right way, the following closure properties
of GapP are routinely verified:

PROPOSITION 1.1
18]

1. The identity function Z — 7 is in GapP, and if f : X* — Z is
computable in polynomial time and g € GapP, then go f € GapP.
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These two facts imply that f € GapP also. Furthermore, #P C
GapP.

2. If f € GapP, then —f € GapP.

3. If g, h € GapP, then g+ h € GapP. More generally, if f € GapP,
and p is a polynomial, then s € GapP, where

s@= Y fay)

y:|y|<p(|z])

4. If g,h € GapP, then gh € GapP (gh is the pointwise product of g
and h, not the composition). More generally, if f € GapP and g
is a polynomial, then p € GapP, where

a(|z)
o) = I £
i=0

In other words, GapP contains all easy-to-compute functions and is
closed under negation, uniform exponential sums, and uniform polyno-
mial products. We will use the following useful fact about GapP in the
proof of Theorem 1.2.

LEMMA 1.1
[[18]] If f € GapP, then there is a P predicate R and a polynomial p
such that

flz) = % (IHy € =" : Rz, )} = [{y € =" : =R(z,9)}) ,

for all x € T* with r = p(|z]).

PROOF Let S1,5, € P be predicates and ¢ a polynomial such that
f(x) =|{y € 2 : Si(z,y) H| = |[{y € £° : Sa(z,y)}|| for all x € £* with
s =q(|z|)- Let p= g+ 1, and let R be the predicate

“On input (z, z) with z,z € X*:
1. Let r = p(|z]).
2. If |z| # r then reject.
3. If z = Oy for some y and S;(z,y), then accept.
4. If z = 1y for some y and —S2(x,y), then accept.
5. Reject.”
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A straightforward calculation shows that R and p satisfy the lemma.

Lemma 1.2 below will show us that GapP is very useful in describing
quantum computation. Meanwhile, GapP can provide simple character-
izations of most counting complexity classes. We’ll define only the two
most relevant ones here: PP [25] and C_P [48].

e A language L is in PP if there is an f € GapP such that, for all
T € X,
z€L < f(z)>0.

e A language L is in C_P if there is an f € GapP such that, for all
T € X¥,
z€L < f(z)=0.

A typical problem in PP is: “Given an undirected graph G and natural
numbers s and n, does G contain more than n distinct cliques of size
s?7” A typical problem in C_P is: “Given an undirected graph G and
natural numbers s and n, does G contain exactly n distinct cliques of
size s?7”

To illustrate the uses of GapP we present a simple proof of the fol-
lowing well-known facts about counting classes:

PROPOSITION 1.2
[[25, 41, 48]] NP C coC_P C PP and C_P C PP.

PROOF Let L be a language in NP with corresponding P predicate
R and polynomial p. R and p also naturally define a function f € #P
such that z € L < f(z) >0 <= f(z) =0 for all z € ¥*. By
Closure Property (1) of Proposition 1.1, f is also in GapP, so L € coC_P
via f.

Now let L be any language in coC=P. There is a ¢ € GapP such
that € L <= g(x) # 0 for all x € ¥*. By Closure Property (4) of
Proposition 1.1, the function g?> € GapP, and z € L <= (g(z))? > 0.
Thus L € PP via the function g2.

The proof that C_P C PP is similar, except that we use the GapP
function 1 — g2 instead of g2.

For our purposes, the most important property of GapP is that it is
closed under uniform multiplication of a polynomial number of matrices,
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each of which can have exponential size. Roughly speaking, if a small
number of large matrices have entries computed by a GapP function,
then their product’s entries are also computed by a GapP function. Since
quantum operations are essentially matrix multiplication, this means we
can simulate them with GapP.

We now make this notion precise. Suppose a is a GapP function that
takes two parameters ¢, j € N represented in binary, and possibly other
parameters Z. Then for numbers m,n € N (which may depend on Z) we
let [ a(#) ]™" denote the m x n matrix whose (i, j)th entry is a(&; 1, j),
for 0 <i<mand 0 <j < n. A lemma similar to the following was
proved by Fortnow and Rogers [22].

LEMMA 1.2
Let a(Z,y;1,7) be a GapP function and let s(Z,y) be a polynomial-time
computable function. Then there is a GapP function b(Z,y;i,7) such
that for all ¥ and for all r € N,
[b(Z,17) 7 =
[af,17) "X [a@ 17 7 (@ 1)

where sy = s(Z,1%) for 0 < £ < 7.

PROOF For 0 < i, < s, and 0 < iy < 89, the (i,,%9)th entry on
the right hand side of the above equation is

s1—182—1 Sp—1—1
E E E H a(&, u; iy, Gu—1)-
31=0 i2=0 ir—1=0 u=1

This is a uniform exponential size sum of uniform polynomial size prod-
ucts of a GapP function. By the closure properties of GapP given in
Proposition 1.1, it is a GapP function of Z, 17, 4,., and ip.

1.2.2.4 Relativization

Many results in complexity theory are “oracle” results. Let A be
any language and C be one of the classes we have defined thus far in
terms of P predicates. We can define the class C4 analogously with our
definition of C, except that we now allow the P predicate R free access
to A as an oracle; that is, R is now a P4 predicate. This is a natural
way of relativizing a class C to an oracle A, just as we relativized P
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earlier. If a language L is in C4, then we say that “L € C relative to A.”
Most standard techniques and results in complexity theory carry over
when the classes involved are relativized to any oracle. For example,
GapPA has all the closure properties of Proposition 1.1 relativized to A,
including #P# C GapP“. Thus the proof of Proposition 1.2 also easily
relativizes to any oracle A to show that Np4 C coC_P* C PP# and
C_P4 C PP4.

An oracle result is a statement about complexity classes that holds
relative to some oracle. Oracle results have great heuristic value in
complexity theory: if some property P about complexity classes holds
relative to some oracle, then this provides some evidence that P holds
without an oracle (unrelativized); at least it shows that the standard,
relativizable techniques of complexity theory will not suffice in refuting
P, because otherwise P would be false relative to all oracles. In 1975,
Baker, Gill, and Solovay [3] constructed an oracle A such that P4 #
NP#. This result suggests that it will not be easy to show that P =
NP. However, in the same paper, they constructed another oracle B
such that PZ = NP, which suggests that it will not be easy showing
that P # NP, either. These two oracles underscore the difficulty of
the P versus NP question. Any resolution of this question will need
new, possibly radically new, techniques.® Most of the current open
problems in complexity theory relativize in both directions, and hence
are probably difficult to solve. There are many oracle results relating
to quantum complexity classes, some of which we will present after we
define relativization in the quantum computation model.

Oracles are also useful for defining new complexity classes. If C and
D are complexity classes, then we define C? = |J{C#: 4 € D}. For
example, PNF is the class of all languages that are easily decidable given
access to an NP oracle. A typical problem in PNP is: “Given a graph
G and s € N, is s the size of the largest clique in G?” This problem is
not known to be either in NP or in coNP, but it can be decided using
binary search on s with access to the CLIQUE problem as an oracle.

5There are some nonrelativizing techniques. A prime example is the technique of
low-degree polynomial interpolation, which has been used to show that all PSPACE
languages have interactive proofs [32, 37], even though there is an oracle relative to
which some languages in coNP do not have interactive proofs [23]. Despite their early
promise, however, and despite their great utility in other areas, these techniques have
yet to resolve any open questions about more “traditional” time-bounded complexity
classes.
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1.2.2.5 Quantum algorithms and FQP

Classical algorithms can be expressed efficiently with Boolean circuits,
where an input string of length n is regarded as the Boolean settings
of the input nodes of an n-input circuit. Since an algorithm should
run on inputs of any length, we model the algorithm by an infinite
family Cy,C1,Ca, ... of Boolean circuits, where C; has 4 input nodes
and handles all input strings of length 4. If the algorithm decides a
language, then each C; should have exactly one output; an output value
of 1 signifies acceptance, and 0 signifies rejection. If an algorithm is
efficient (polynomial time, say) and we wish to express it efficiently by
a family of circuits, then we must have some efficient way of generating
each circuit in the family. A family {C;};y of circuits is p-uniform if
there is a polynomial time algorithm which, on input 1*, outputs a full
description of C;. In this case, note that each C; is not too large, and so
can be simulated efficiently. Indeed, we have the following well-known
proposition (see, e.g., [47]):

PROPOSITION 1.3
For any language L, L € P if and only if L is decided by a p-uniform
family of Boolean circuits.

Quantum algorithms can be expressed using quantum circuits. Here,
an input string z of length n is “fed” into an n-input quantum circuit by
setting the quantum state of the input wires (qubits) to |z){z|. Our prac-
tical considerations in Section 1.2.1 suggest that a quantum operation
cannot operate reliably on more than a few qubits at a time; therefore,
we set a fixed limit on the indegree and outdegree of any quantum gate
in any quantum circuit. A constant of three is convenient, although
two actually suffices; and in fact, the only two-qubit gate needed is the
controlled NOT gate [6]. For efficient quantum computation, we again
insist on a p-uniform family of quantum circuits.

The p-uniformity requirement raises some subtle issues. First, one
may ask if p-uniformity is too strict; perhaps some gquantum process
for circuit fabrication is more powerful than a classical one. Second,
our requirement implies that each quantum gate must be completely
represented by a finite (polynomial size) amount of classical information,
whereas the matrix representation of a general quantum operation may
contain arbitrary complex numbers, which are not finitely representable.
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To address the first issue, we must have a precise concept of a circuit-
fabricating quantum process. Such a process should be algorithmic and
allow for all possible inputs (of all possible lengths). Here we can turn to
the QTM model [15], which was historically the first reasonable model
of quantum computation. A single, finitely describable QTM can handle
inputs of any and all lengths, so a QTM can be used to fabricate quantum
circuits. It was later shown by Yao [49] that QTMs can be simulated
efficiently by p-uniform families of quantum circuits (and vice versa).
Thus, a family of quantum circuits fabricated by a quantum process
as above is no more or less computationally powerful than a p-uniform
family of quantum circuits.

The second issue is explained based on physics and some intuition.
Since quantum computers do not currently exist, the first physical pro-
cess for building a quantum computer must be described and imple-
mented classically. So it is reasonable to suppose that any physical
procedure for efficiently fabricating a quantum computer, including cal-
ibrating the various components, must ultimately rely on an efficient
classical algorithmic description. In keeping with these considerations,
Bernstein and Vazirani settled upon the requirement that all the tran-
sition amplitudes in a QTM should be polynomial-time approximable
[10]. [A complex number z is polynomial-time approzimable if there is a
polynomial time algorithm that on input 1" outputs three integers s, z,y
such that |2’ — z| < 27", where 2/ = 27%(z +4y).] An additional de facto
requirement is that any QTM M only uses a finite set of transition am-
plitudes, since these amplitudes are part of the finite description of M’s
transition function. These two requirements are not overly strict. All
currently known and forseeable quantum algorithms easily fit this re-
quirement. Furthermore, any algorithm that violated this requirement
would, at the very least, require significant justification, and even then
it may not be universally accepted by the research community.

These requirements are also not overly lax; the univeral QTM con-
structed by Bernstein and Vazirani [10], which can efficiently approxi-
mate any QTM satisfying these requirements, uses only classical tran-
sitions (amplitudes in {0,1}) and the one-qubit Hadamard transition

(amplitudes in {—%, \/Li ).

Yao’s simulation of a QTM by a quantum circuit family and vice
versa [49] does not disturb the set of amplitudes involved too much,
except for arithmetic operations. In particular, all the gates used in a
p-uniform quantum circuit family simulating a QTM can have matrix
entries drawn from some finite set depending only on the QTM being
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simulated. These entries will also lie in the field over QQ generated by the
transition amplitudes of the QTM. The converse also holds: such a p-
uniform quantum circuit family F' can be efficiently simulated by a QTM
whose transition amplitudes all lie in the field over QQ generated by the
matrix entries in the gates of F'. We will therefore adopt the reasonable
requirement that for every circuit family there is a fixed finite set of
amplitudes from which all matrix entries of all gates in the family are
drawn.

Bernstein and Vazirani’s universal QTM together with Yao’s results
imply that there is a single finite set of amplitudes that works for all
efficient quantum circuit families. In fact, circuits with Toffoli gates
(described in Section 1.2.3 below) and Hadamard gates suffice to simu-
late the universal QTM, and hence they suffice for all efficient quantum
computation. A Toffoli gate itself can be simulated (exactly) using

e the one-qubit Hadamard gate H,
e the controlled NOT gate A1(o,), and

e the one-qubit conditional phase shift, or 7/8 gate with underlying

unitary matrix o/t = [(1) eig/‘*] [6, 33].

Thus we call these three gates a universal set in analogy with classical
Boolean circuits. The gates in this set can all be implemented fault-
tolerantly [12]. Several other universal sets have been found [6]. (One
should add to any such list some gates for nonunitary operations, such
as measurement and partial trace.) There are other universal sets where
all amplitudes in the underlying unitary matrices are drawn from the
set {—1,—%,-2,0,2,%,1} [43].

For any subset B C C, we say that a quantum circuit family F is
over B if all matrix elements of all gates of all circuits in F are elements
of B. We will get stronger negative results if we do not insist on a
fixed finite universal set of gates for all circuit families, but rather allow
different kinds of gates in different circuit families. We will, however,
generally restrict B to be the field of algebraic numbers. Algebraic
numbers are all polynomial-time approximable (by Newton’s method, for
example), and such a set of operations is clearly universal. Moreover, all
currently known quantum algorithms are expressed directly and easily
using algebraic amplitudes.

We now define the input-output behavior of a quantum circuit C
with n inputs and m outputs. Each gate g of C represents a quantum
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operation from a multiqubit Hilbert space H to a multiqubit space .7,
taking any state p of H to the state g(p) of J. Let g1,...,9s be a
(topologically sorted) list of the gates of C, so that no output wires of
any g; are inputs to g; for j < 4. Suppose the input qubits are in state
po of space Hgo. We first apply g1 by expressing Hg as the tensor product
H{ @ Hy, where Hy) is the space of qubits entering gate g1 and Hj is the
space of qubits bypassing ¢g;. The gate g; maps states of H{ to states of
some space Hj, in which case the state of all the qubits after applying
g1 is p1 = (91 ® I)(po) of the Hilbert space Hi = H| @ Hj .

We then apply g2 to the state p; in a similar manner, again keeping
track of the qubits bypassing g», to obtain a state p2 of a Hilbert space
Ha. We then apply gate g3, and so on. After all the gates have been
applied, we obtain a state ps of a space H; of at least m qubits, where
the first m qubits, say, are the designated outputs. (The state ps is
independent of the ordering of the gates as long as they are topologically
sorted; for if two gates could be swapped in the ordering, then they act on
disjoint sets of qubits and hence the corresponding operations commute.)
Finally, we observe the values of the m output qubits (a simultaneous
projective measurement), from which we obtain some random variable
ranging over the 2™ possible outcomes (classical bit strings of length m).

A function f on X* is a probabilistic function if, for all z € ¥*, f(z)
is a random variable ranging over £™ for some m depending on |z|. For
any set B C C, we let FQPg [2] denote the class of all probabilistic
functions computed by p-uniform quantum circuit families over B as
described above. If we drop the subscript on FQP, then we mean FQP 4,
where A is the field of algebraic numbers.

As we mentioned earlier, a partial trace gate acts on all the current
qubits at once but we only attach it to one wire. This means we have
more freedom to place the gate in a topological sort of all the gates of the
circuit. Our freedom does not lead to any ambiguity, though, because
the tr-gate commutes with other tr-gates and with unitary gates. For
example, both of the circuits

A—U_ A_U_
B —ir B — ¢

map an input operator A ® B to the output operator (trB)UAU'. Sim-
ilarly, ancilla gates commute with each other and with unitary gates.
These facts allow us to place all the ancilla gates to the left (first in
the topological sort) and all the tr-gates to the right (last), with all the
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intermediate gates being unitary. We will say that such a circuit is in
standard form with width equal to the number of qubits present at any
point between the ancillee and tr-gates.

Occasionally, when we “trace out” a qubit (that is, apply a tr-gate to
it) in a circuit C, we can guarantee that the state of the qubit is |0)(0].
If this is the case, we may label the tr-gate with a 0 instead of the usual
tr. If we embed C' into a larger circuit, asserting that a qubit is in the
zero-state allows it to be reused later as an ancilla, making the larger
circuit more efficient. Put another way,

—0 0 — can always be replaced with

Another good reason to reset ancilla qubits to 0 before tracing them out
is that this makes the input—output behavior of C' to be unitary. This
arises especially when we simulate a classical gate (see Section 1.2.3
below): if the ancilla is in an arbitrary “garbage” state (which may be
entangled with the other qubits) when we trace it out, then we will
in general get a mixed state result, even though the input was a pure
state. This happens when the input state is a nontrivial superposition of
basis states. Circuits that avoid this problem by resetting their ancillae
before tracing them out are called clean circuits. If a classical circuit is
not clean, there is a straightforward way to clean it up that essentially
doubles the number of gates. This is often not the most efficient way,
though.

1.2.2.6 The classes BPP and BQP

Decision problems with efficient probabilistic algorithms make up the
class BPP (Bounded-error Probabilistic Polynomial time). Decision
problems with efficient bounded error quantum algorithms make up the
class BQP [10]. AWPP is a counting class defined in [19]. After for-
mally defining these classes, we will give proofs that P C BPP C BQP C
AWPP C PP. The first inclusion is obvious and well known. The sec-
ond inclusion was proved by Bernstein and Vazirani [10], the third by
Fortnow and Rogers [22], and the last appeared in [19].

DEFINITION 1.1 A language L is in BPP if there is a P predicate
R and a polynomial p such that, for oll x € ¥* and for m = p(|z|),
zeL=[{yeX:|yl=mAR(y)}| > (2/3)2™,
z¢ L= |{yeX:|y=mAR(=y}l < (1/3)2™.
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Given xz and m as above, if y is chosen uniformly at random among
the strings of length m, then R(z,y) computes L(z) correctly with a
probability of at least 2/3. By repeating the computation R(z,y) sev-
eral times with independently chosen y’s and then taking the majority
answer, we can make the probability of error exponentially close to zero.

PROPOSITION 1.4
If L € BPP, then for every polynomial q there is a polynomial p and a P
predicate R such that, for allx € ¥* (settingr = q(|z|) and m = p(|z|)),

reL=|{yeX |yl =mAR(,y)}|>2m—2m",
¢ L=|{y €T : [y =mAR@y)}l <2m"

A well-known problem in BPP that is not known to be in P is the PRI-
MALITY problem: “Given a natural number z, is  prime?” Primality
testing is especially useful for public key cryptography.

The class BQP can be defined in terms of FQP. A binary probabilistic
function is a probabilistic function whose output random variables range
over the set {0,1}. A language L is in BQP if and only if there is a binary
probabilistic function f € FQP such that, for all z € ¥*,

xz € L= Prob[ f(x)=1] > 2/3,
z ¢ L= Prob[ f(z)=1]<1/3.

By combining several simultaneous computations of f, we can dimin-
ish the error probability as we did with BPP.

LEMMA 1.3
If L € BQP, then for every polynomial p there is a binary probabilistic
f € FQP such that, for all z € * (setting r = p(|z|)),

z€L=Prob[ f(z)=1]>1-27",
x¢L=Prob[ f(x)=1]<27".

The set of possible ezxact distributions output by FQP functions may
be quite sensitive to the choice of allowed gates or amplitudes in the
quantum circuit model, but the set of possible approrimable distri-
butions—and hence the class BQP—is not very sensitive at all. As
we mentioned before, Bernstein and Vazirani’s universal QTM uses only
classical transitions (i.e., those that preserve basis states) and the one-
qubit Hadamard transform. The corresponding circuit family thus only
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needs classical gates (see below) and the one-qubit Hadamard gate.
These gates have all amplitudes in Q—actually in the set {0,+3,1}.
We can therefore simulate any QTM d la [10] to good approximation
and thus get the same class BQP, even if we restrict our gates to using
these amplitudes. Actually there is a bit of a cheat here. Although the
Hadamard gate (the superoperator) uses rational matrix elements, its
underlying unitary operator has elements ﬂ:% ¢ Q. Adleman, DeMar-
rais and Huang [1] and independently Solovay and Yao [43] showed that
rational transition amplitudes in the set {0, £2,+%, +1} suffice even for
the underlying unitary operators for a universal QTM. All these results
show that BQP is a very robust class.

An interesting subclass of BQP is EQP (Exact Quantum Polynomial
time [1]), defined just as with BQP except no error is allowed—that
is, the allowed acceptance probabilities are 1 and 0. Strangely, EQP is
even less sensitive to the allowed amplitudes than BQP. Adleman et al.
showed that EQP remains the same even if arbitrary complex amplitudes
are allowed, and that this is not the case with BQP.

1.2.3 Classical computations on a quantum circuit

A unitary gate is classical if its matrix elements are in the set {0, 1}.
Classical gates map basis states onto basis states and so do not introduce
quantum superpositions. If a circuit’s intermediate gates are all classical,
then a classical input (basis state) yields a classical output (basis state).
An important result in quantum computation is that any Boolean circuit
(and hence any classical computation) can be simulated efficiently by a
quantum circuit made up of classical gates. The difficulty is that classical
gates in a quantum circuit must obey restrictions that Boolean gates in
a classical circuit need not. Boolean gates may be irreversible, losing
information from input to output, whereas classical gates in a quantum
circuit must be reversible since they correspond to unitary operations.
In addition, the output of a Boolean gate may be freely duplicated on
several output wires, but this is not possible with a classical gate in a
quantum circuit.

Both of these difficulties can be overcome by allowing more ancilla
qubits for the simulating quantum circuit. Two types of classical gates—
the Toffoli gate and the NOT gate—
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a

b_— ¢ b a —PH— a
c —P——cd(and)

suffice to build circuits simulating any classical Boolean circuit when
provided with a small number of extra ancillze. The Boolean AND and
COPY gates are simulated as follows:

a tr a a
b tr 1 1
0 —& anb 0 b a
where
1= = |0 +H—&— and —1| = —&—0

We will allow classical gates in quantum circuits that encapsulate arbi-
trary efficient classical algorithms, as is justified by the previous consid-
erations. More precisely, for any polynomial-time computable function
f:¥* = ¥* whose output length depends only on the input length, and
for any n € N, we have the (n + m)-qubit gate Uy, which we depict as

Z1 Z1

T, Tn

1 1 Dy
T'm Tm D Ym

where f(z1---2p) = y1---ym. We call such a gate an f-gate. Our
decidedly nonstandard depiction of this gate is meant to distinguish the
output wires (bottom) from the input wires (top) by connecting the
inputs via the little boxes. One can view this gate as shorthand for a
quantum subcircuit computing f on strings of length n. Note that f
must be computed by a clean circuit to guarantee that Uy is a unitary
gate.
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If A is an n-ary Boolean function outputting a single bit, then we
will call the A-inversion gate the unitary gate whose underlying unitary
operator 1,4 is defined by

Lje) = (=1)"®)|z)

for all 2 € X™. Inversion gates are used quite often in quantum algorith-
mics. The I4 gate is easy to implement with a single A-gate:

e H ]

1HHHA—HA1

1.2.4 Relativizing quantum computation

To prove oracle results relating to quantum computation, we need to
define exactly what it means for a quantum circuit to have access to an
oracle. Let f : ¥* — X* be any function (not necessarily computable)
whose output length depends only on the input length. There is an f-
gate for every n € N. Note that f-gates cannot be viewed as shorthand
for subcircuits, for f may not be computable by any circuit at all. A
quantum circuit gains access to f as an oracle by using f-gates. This
is completely analogous to the standard way of relativizing Boolean cir-
cuits. The relativized class FQP? can now be defined just as with FQP,
except now we allow the quantum circuits to have f-gates and we also
allow the polynomial-time circuit-fabrication algorithm access to f as
an oracle (the latter allowance is actually unnecessary). A language A
can be accessed by a quantum circuit as an oracle since it corresponds
to a function with output length 1. In this case, we refer to the oracle
gates as A-gates.

An oracle in a quantum algorithm is often referred to as a “black
box,” and the algorithm is a “black-box algorithm.” One can think
of a black-box algorithm as computing with some unknown classical
gate behind an abstraction barrier. We regard the classical gate—the
black box—as another kind of input to the algorithm, and the algorithm
extracts information about the black box. Many interesting quantum
algorithms are black-box algorithms. We will mention two early black-
box algorithms, a variant of one due to Deutsch and Josza [17] and the
other due to Simon [40] in Section 1.4.1 below.



1.3. EQUIVALENCE OF FQP AND GAPP 27

1.3 Equivalence of FQP and GapP

In this section we relate FQP closely to GapP. In doing so, we get a
deep connection between the complexity of quantum computation and
classical counting complexity. The following theorem shows that GapP is
at least as powerful a class as FQP. It is adapted from [20], which itself
is a straightforward generalization of a result by Fortnow and Rogers
[22], which in turn improves an earlier result announced by Valiant (see
[10]) essentially showing that BQP C P¢aPP,

If we consider some field extension K of QQ with finite basis aq, .. ., a,
over Q, then a quantum circuit over K can be finitely described by
representing its matrix elements as vectors of rational coefficients of the
(78

THEOREM 1.1

Fix o field K C C with finite dimension over Q, and fix a basis
ai,...,a for K over Q such that oa,...,aq (for some d < e) span
KNR (as a vector space over Q). There are GapP functions hy, ..., hq
that behave as follows: let C be any quantum circuit over K with set of
matriz coefficients B C K, and suppose C' has n inputs and m outputs.
Then there is an integer Dg > 0 such that for all z € X7,

d
Prob[ C outputs y on input x | = D5" Z hi(C,z,y)a;,

=1

where r is the number of unitary gates in C. Moreover, Dp depends
only on B and is polynomial-time computable from B (or from C).

In the special case where K = Q and ay = 1, there is a GapP function
h such that

Prob[ C outputs y on input x| = D5"h(C, z,y).

COROLLARY 1.1

[[20, 22]] Suppose f € FQP is computed by a p-uniform quantum circuit
family over a finite set B of algebraic numbers. Let K be the field exten-
sion of Q generated by B, and let oy, ...,aq € R span KNR. Then there
ezist an integer D > 0, an integer-coefficient polynomial p, and GapP
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functions g1, ...,94 such that, for all z,y € X* (setting r = p(|z])),

d
Prob[ f(2) =y] =D ") gile)as.

In particular, if B C Q, we have Prob[ f(z) =y] = D "g(z,y) for
some GapP function g.

PROOF Extend aq,...,a4 to a basis ai,...,a, of K. Apply
Theorem 1.1 to get hy,...,hqg and Dp. Set D = Dpg. Let Cy,Cy,C,, ...
be a p-uniform quantum circuit family computing f, where C, has n
inputs. Let p(n) be a polynomial upper bound on the number r,, of
unitary gates in C,,. Then for all z € ¥* of length n we have

d
Prob[ f(z) = y] = D" )" gi(x,y)a,

i=1

where g;(z,y) = DPW =" h(Cp, z,y) is clearly a GapP function. |

PROOF of Theorem 1.1  We prove the special case where K = Q,
and sketch the proof of the general case. A more detailed proof of the
general case can be found in [20].

We are given a quantum circuit C with n inputs, m outputs, and set

n Ns

of matrix elements B = {d_i’ ceey d_s} for integers n; and d;. Set Dp =

lem(dy, .. .,ds). By rearranging gates if necessary, we can assume that C
is in standard form with width ¢ and (unitary) gates gy, -- ., g, in some
topological order. Each gate gy corresponds to a quantum operation Gy
mapping £(H) to L(H) for some fixed g-qubit (2?-dimensional) Hilbert
space ‘H. Thus each Gy is represented by a @ X @) matrix with entries
in B, where Q = 22¢. By our choice of Dp, each DGy is an integer
matrix. It is clear that there is a polynomial-time computable function
(and hence a GapP function) a(C,¥¢;i,j) which computes the (i, j)th
entry of DgGy. By Lemma 1.2, the composition of all the Gy, and
thus the computation of the entire circuit, is computed by a function
Dg"b(C54,j), where b € GapP because

[6(C)19%9 = [a(C,r) ]?7? - [a(C,1) ]°7C.

(Note that we do not need to supply r as an input to b, because it can
be computed from C.)
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Let Mc = Dg"[ b(C) 19%9. An input string z € £ is fed to C via the
input state po = |z){x| ® |07~™)(09~"| which includes the ancilla qubits.
If we write pg as a column vector V' of length @, then the final state of
the circuit (just before the tr-gates are applied and the output qubits are
measured) is p = MV (in column vector form). Using Lemma, 1.2 again
and reshaping the column vector as a matrix, we get a GapP function
¢(C, z;1,j) such that p is represented by the matrix D5"[ ¢(C, z) ]quzq.

We can write p as the sum

p= Z |y1><y2| ®Ayly25

Y1,y2€EX™

where the |y1)(y»| correspond to the m output qubits and the A,,,, are
operators on the space of the remaining ¢ — m qubits. For any y € ¥™,
the probability of y being the value of the final output measurement is

tr(Pyp) = trdy, = Dg" Z c(C,z; 2, 2).

z:|z| = ¢ and z has prefix y

The sum on the right-hand side is clearly a GapP function of C, z, and
y by Proposition 1.1. Letting h(C,z,y) be this sum proves the special
case of the theorem.

We now sketch the proof of the general case. Let K, d, and oy ..., .
be given as in the theorem. Forall1 <14,j,k < e, let c;'-k € Q be such that
ajog =Y i, cj- Q- By rescaling the o if necessary, we can assume that
all the c;'-k are integers. Now the idea is that we can represent scalars
in K such as individual matrix entries uniquely as vectors over QQ of
length e. Addition of scalars corresponds to vector addition, and scalar
multiplication is computed using the cj.k. GapP is closed under all of
these operations, and so we can generalize Lemma 1.2 to the case where
matrix entries are elements of K. We then apply the generalized lemma
much as before. Given circuit C' with set B = {b1,...,bs} of matrix
elements, we must choose Dp so that we always compute with integer
entries in the scalar representations: Let n;;,d;; € Z be such that each
bi = 325 gioaj- We can let Dp be the least common multiple of all
the d’]

Analoguous with the previous argument, we now get GapP functions
c1(Cyx;1,7),...,¢.(C,x;1,j) such that the final state

p=Dg5" > au ct(C,3) P
=1
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And for y € ¥™ we get
Prob[ f(z) =y ] = > Pz,

z:|z| = ¢q and z has prefix y
where p,. = D5" 7, auce(C, ; 2, z), the (z, z)th entry of the matrix p.
Since p is Hermitian, each p,, is real, and so by the linear independence
of the a; we must have ¢,(C,z;z,2) = 0 for d < £ < e. Therefore,
setting

hl(C,.’L’,y) = Z Cg(c,l’;Z,Z),

z:|z| = ¢ and z has prefix y
for 1 < /¢ < d, it is clear that each hy, € GapP, and the equality
d

Prob[ f(z) =y]=Dz" Y he(C,z,y)oy

=1

holds as desired. |

COROLLARY 1.2

If f € FQPg where B = {O,j:%, %,il} as in the case for the uni-

versal set of gates described in Section 1.2.2.5 above, then there are
h1, hy € GapP such that

Prob[ f(z) =y] =2 (hi(2,y) + V2ha(,1))

where r is a polynomial in |x|.

There is a partial converse to Corollary 1.1. The following theorem
was shown in [20].

THEOREM 1.2
Let B = {0,£%,1}. For any h € GapP there is an f € FQPg and an
integer-coefficient polynomial p such that for all x € ¥*,

Prob[ f(z) = 0" ] = 2720+ (n(z))?,

where r = p(|z]).

PROOF By Lemma 1.1 there is a predicate R € P and polynomial
p such that for any x € ¥*,

h(z) = %(Il{y €X": R(z,y)}l - [{y € £" : ~R(z,y)}]) ,
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where 7 = p(|z|). For n € N, let C,, be the quantum circuit with n
inputs and r ancillee, where r = p(n), depicted below.

tr

tr

oHeEH HeF—

On input |z){z| where |z| = n, the circuit C), transforms the quantum
state as follows:

|z) (x| > |z,07)(z, 0"
H _
5277 Y oy,
Y,y €XT
B 2mr 3 (<R R g )|

Yy’

B 27 N () REVHRE ) g ) g |
Y,9,2,2

8272 N7 (—)REn e e )
Y,9’,2,2"

The probability that f(z) equals 0" is given by the coefficient of |07)(0"|
in the final state, which is

2727' Z(_l)R(z,y)+R(z,y')

1

—9-2r (Z(_l)R(w,y))

= 227 (—2h(x))?
— 2—2(r+1) (h(l’))2
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An easy application of Corollary 1.1 and Theorem 1.2 is a charac-
terization of the class NQP, a quantum analogue of NP, defined by
Adleman, DeMarrais, and Huang [1].

DEFINITION 1.2 [[1]] Let B C C. A language L is in the class
NQPg if there is an f € FQPg such that for all z € ¥*,

z €L <= Prob[ f(z)=0]>0.

THEOREM 1.3 [20]

For any finite set B of algebraic numbers containing {0, :l:%, 1}, we have
NQPg = coC_P.

PROOF Let K C C be the field generated by B and let ay,...,aq
be a basis of K NR over Q. Suppose L € NQPg via some f € FQPg,
and let D > 0 and g¢1,...,94 € GapP be as in Corollary 1.1. Fix
an input z. Since the «; are linearly independent over Q; we have
Prob[ f(z) = 0] = 0 just in the case that g1(z,0) = --- = gq(z,0) = 0.
It follows that L € coC_P via the GapP function

d

h(z) =Y (9i(x,0))%,
i=1
that is, z € L <= h(z) # 0.
Conversely, suppose L € coC=P via some h € GapP. Let f € FQPg
be given by Theorem 1.2. Clearly, L € NQP 5 witnessed by f. |

1.4 Strengths of the quantum model

In this section we give results that show that the class BQP is large.
That is, we place lower bounds on the size of BQP. We first show that
BPP C BQP. This is an old and relatively easy result, first proved by
Bernstein and Vazirani [10], but it remains the strongest result of its
kind—showing that a previously studied complexity class is contained
in BQP.
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THEOREM 1.4 [10]
BPP C BQP,.

PROOF Let L be in BPP with corresponding polynomial p and
predicate R € P. For each n € N and r = p(n), consider the circuit with
n inputs, 7 + 1 ancillee, and one output, depicted below.

—{ tr
tr
0 —H tr

0 —H—[']—tr
0

R

On input |z)(z| where z € ¥*, the state after the R-gate is
277 )" |z,y, R(z,y))x,y', Rz, y).

Y,y EXT

After the tr-gates are applied, the final state is

277 ) |R(z,))(R(z,y)].

The probability that the output qubit has value 1 is the coefficient of
[1}(1] in the final state. This probability is 27"||{y € " : R(z,y)},
which is equal to the probability of R(x,y) being true for random y.
Thus the above family of circuits computes L as a BQP language. |

The other known positive results about BQP show that specific prob-
lems are in BQP. These problems come in two types: (1) black-box
problems and (2) non-black-box problems (concrete problems) that are
not known to be in BPP. Primary examples of such concrete problems
are INTEGER FACTORIZATION and the DISCRETE LOGARITHM
problem [39]. These two problems are easily computable relative to some
NP oracle, but have no known efficient randomized solutions.

We will concentrate on black-box problems. These will give us or-
acle results of the form BQPA ¢ C4 for some oracle A, where C is a
complexity class. We will also obtain oracles for EQP as well.
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1.4.1 Oracle results

A natural question to ask is: does NP contain BQP, or even EQP?
Equivalently, does every problem decidable by an efficient quantum al-
gorithm (with or without error allowed) have easily verifiable solutions?
Another natural question is: does BPP = BQP? In other words, can
quantum algorithms (with bounded error) be efficiently simulated by
classical probabilistic algorithms (with bounded error)? If so, then quan-
tum computation would be a lot less interesting.

We will address the second question first. INTEGER FACTORIZA-
TION is in BQP and it is not known to be in BPP, so this gives cred-
ibility to the conjecture that BPP # BQP, although it is no proof.
Credibility of a different sort comes by way of an oracle B such that
BPPZ + BQP?Z, in fact, EQP? ¢ BPPZ. This oracle can be con-
structed as an instance of Simon’s black-box problem [40], which we
now describe. Suppose we are given a black-box function f : X" — X™
with n < m, and there is an s € X" such that, for all distinct z,y € X",

fx)=fly) <= zdy=s.

Simon showed that deciding if s = 0 is a BQP problem relative to f.
Moreover, the BQPY algorithm can be used as a subroutine to find s
with high probability. Later, Brassard and Hgyer [13] showed how to
find s with zero error probability, yielding an EQP/ algorithm. The set
oracle B just codes the output bits of f. Existence of B signifies that
proving BPP = BQP or even EQP C BPP will at least be very difficult.

We now address the first question. It is clear that if L € BQP, then
3¥* — L € BQP also. Therefore if BQP C NP, then BQP C NP N coNP.
The same goes for EQP replacing BQP. All concrete problems currently
known to be in BQP are also in NP N coNP.

Such a containment would be quite difficult to prove, however. There
is an oracle A such that EQP? ¢ NP, so any proof that EQP C NP
would need nonrelativizable techniques. A can be obtained via the black-
box Balance problem of Deutsch and Jozsa [17]. We will present a
stronger oracle result here due to Green and Pruim [26] based on ideas
of Boyer, Brassard, Hgyer, and Tapp [11]: there is an oracle A such
that EQPA ¢ (PNP)A. This result, as do most oracle results, comes
in two pieces: first we describe a particular problem computed by an
algorithm (here a quantum algorithm) that uses a single type of black-
box gate. Then we concoct a particular black box that plugs into the
quantum algorithm so that (1) the quantum algorithm computes the
problem with zero probability of error and (2) the problem cannot be
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solved by any PNP algorithm, even one with access to the same black
box as an oracle.

How do you relativize a class like PNP to an oracle A, a class that is al-
ready defined in terms of oracles? You should at least let the polynomial
time TM access an oracle L € NP4 (instead of just NP). The “stan-
dard” heuristic for relativizing any class is to allow all computations free
access to the oracle. In keeping with this, you should also allow the TM
direct access to A itself, on a separate oracle tape, say. It turns out
that this latter requirement is unnecessary, because information about
A can be encoded directly into an appropriately chosen NP oracle L,
so that the TM can access A indirectly through L. The preceding trick
is expressed symbolically by the equation (PNP)4 = P(NPY)  with the
right-hand side usually being written as just PNP* | This is the standard
definition of PNP relativized to A.

THEOREM 1.5 [26]

There is an oracle A such that EQP ¢ PNP*,

PROOF Green and Pruim use a quantum circuit C, implicitly
described by Boyer et al. [11] to solve a variant of the Deutsch—-Josza
Balance problem [17] with zero error. Fix a language A C ¥* as a black
box with the promise that, for any length n, A either contains exactly one
quarter or exactly three quarters of the strings of length n. The Modified
Balance Problem relative to A (MBP#) is the problem of determining
which is the case for each length n, given input 0™: accepting for one
quarter, rejecting for three quarters. The circuit C, that solves MBP
has n inputs and employs two inversion gates Iy and I4, where for any
xexn,

[ —lz)yifz =0,
IO'”“")_{\x) if 2 # 0,

That is, Ip is the NOR-inversion gate. Note that Iy has underlying
unitary operator I — 2|0™)(0"|, where I is the identity operator on n
qubits. The ciruit C), is
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—JvH HeH Hu fr
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0 HAl—

The unitary operator underlying most of C,, is H®" I H®" I 4, H®™, where
H®™ is simultaneous application of H on n qubits. (The operator
H®" [, H®"], is used in quantum search algorithms to find an element
of A and is sometimes referred to as the Grover iterate [27, 28, 29].)

On input |0™)(0"|, we compute the state |1)){¢)| of C), just before the
last A-gate. For any X C X" let [X) = > _y |z) (unnormalized). For
two such sets X and Y, note that (X|Y) = || X NY|. Let 4, = ANX"
with cardinality s. We have H®"|0") = 2-%/2|%") and so up to a
harmless global phase factor,

) = H®"I,H®" 1, H®"|0™)
= 27 HEN (T - 2J0")(0" ) HO" 14]")
=272 L)
27721 = 21 ST (S7) (| 4n) — [S” = An)
= 27 (| A) — [ — Ap) — 2177 (25 — 27)[57)
= 272 (3] Ay) + [S — Ap) — 27"s|S).

If s = 127 then [¢) = 2'7"/2|A,); and if s = 327, then |¢)) =
—2t-n/2|5m — A, If we observed the value of the first n qubits at
this point, then we are guaranteed to see an element of A,, in the former
case and X" — A, in the latter. The last A-gate distinguishes between
these two cases with certainty. This completes the description of C,: if
A satisfies the promise on every length, then MBP4 € EQP“ via the
family of circuits C,.

Our remaining job is to construct a particular A satisfying the promise
such that MBP* ¢ pNP? (i.e., MBP is not “NP“-easy”). To do this,
we use a time-honored technique from logic and computer science known
as diagonalization. A PNP* “machine” involves a P4 predicate R(z,y)
and polynomial p, together with a polynomial time oracle TM M com-
puting with oracle L#, where L# is the NP4 language determined by
R and p. Each such machine has a finite description (R,p, M), so we
can enumerate these machines as Ny, Na,... in some way. If MBP4 is
NPA—easy, then there is some ¢ such that IN; correctly computes MBP#
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on each input 0". Equivalently, MBP4 is not NP-easy if for each i there
is a length m; such that N; computes the wrong value for MBP# on
input 0™. We define A in stages 1,2,.... At stage ¢ we “diagonalize
against N;” by explicitly choosing a length n; and specifying the set
A, = AN XY™ g0 as to force N; to give the wrong answer on input
0™i. All the while, we must ensure that A satisfies the promise at each
length; this keeps MBP# a member of EQP4.

How do we fool machine NN; on input 0™? First we commit just enough
of the oracle A to force N; to give some answer. This does not require
us to commit too many strings. Then we add just enough additional
strings of length n; to A to satisfy the promise in the sense opposite to
N;’s answer. For lengths n other than the n;, we satisfy the promise
trivially by setting A, to be the lexicographically least 2"~2 strings of
length n—that is, all strings starting with 00.

For each i > 1 we let N; correspond to R;,p;, M; as described above,
we let g;(n) be a strictly monotone polynomial bounding the running
time of M; on all inputs of length < n, and we let r;(n) > 0 be a strictly
monotone polynomial bounding the running time of R; on all inputs
(z,y) where |z| < g(n) and |y| = p(|z|). Also as described above, for
any oracle X let L be the Np¥ language corresponding to p; and R;
relative to X. We let ng = 0, and for ¢ > 1 we let n; € N be least
such that 12" > ¢;(n;)r;(n;) and n; > rj(n;_q) for all j < i. Given
the way we defined the r;, we have n; > n;_; and all queries to our
oracle made on behalf of IV; on input 0™ for j < ¢ have length < n;.
(This means that we can freely put strings of length n; into or out of
the oracle without disturbing any of the computations we have already
forced.) We set T' = {ng,n1,na,...}.

At each stage of the construction, we will commit strings to be either
in or out of the oracle we are building: for i € N we define two sets
Ai ng (_:E* such that AO (_:Al gAg g and B() :_)Bl :_)32 :_)
A; is the set of strings we have committed to be in the oracle by the end
of Stage ¢, and B; is the set of strings we have not committed to be out of
the oracle by the end of Stage ¢ (thus the A; sets get bigger as 7 increases,
and the B; sets get smaller). Strings in B; — A; are uncommitted. All
strings of length n; are committed by the end of Stage i, and all strings
with lengths not in T" are committed at the beginning of the construction.
The final oracle will be A = |J, 4; =, B:.

Before Stage 1 we let

Ag={00y:y € Z*A[00y| €T} and By =AU [J ="
neT
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Construction of A
Stage ¢ > 1:
Set A; = A;_1 and B; = B;_1.
Simulate M; on input 0™:
Whenever M; makes a query z, do:
If z € LY for some C with 4; C C C B;, then
Let y € £P:{2]) be least such that RY (z,y).
Let Q be the set of queries made while computing R (z,y).
/* Commit the queries in Q: */
SetAz-:A,-U(QﬂC) ande’:Bz’—(Q—C).
Answer “yes” to M;’s query.
Else,
Answer “no” to M;’s query.
Let m = ||E™ N 4;]|.
If M; accepts in our simulation, then:
Add to A; the first 22" — m uncommitted strings in ™, and
remove the rest of the length n; uncommitted strings from B;.
Else,
Add to A; the first 2™ — m uncommitted strings in £, and
remove the rest of the length n; uncommitted strings from B;.
End of Stage <.

End of Construction

We complete the proof by making three observations. First, there are
always enough uncommitted strings to add to A; at the end of Stage .
All strings of length n; are uncommitted at the start of Stage i because
n; is too big for any of these strings to be committed at earlier stages.
Each query set @ in the simulation has cardinality at most r;(n;) due
to the running time of R;. M; can make at most g;(n;) queries; so
the total number of strings we commit during the simulation is at most
gi(ni)ri(n;) < 12", by the choice of n;.

Second, N; cannot “change its mind” about 0™ after the simulation
is finished in Stage ¢, no matter how we commit strings afterwards. If
one of M;’s queries z is in L{ for some C such that 4; C C C B;,
then we commit the queries made by R{ as it accepts some appropriate
(z,y), so R;’s behavior on (z,y) cannot change, and z will also be in
LA, Otherwise, if there is no such C, then z ¢ L# since 4; C A C B;.
Thus we always answer M;’s query according to L, which makes M;’s

2
accept /reject behavior in the simulation the same as it is relative to A.
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Third and finally, A satisfies the promise at all lengths, and M; (and
thus N;) with oracle A computes MBP4 incorrectly at length n;. These
facts follow from the definitions of Ay and By and from the number of
strings we put into A at the end of Stage i.

1.5 Limitations of the quantum model

Bernstein and Vazirani showed that BQP C PFP (= P#P = pGapP)
establishing the first connection between quantum complexity and count-
ing complexity. Fortnow and Rogers [22] tightened this connection by
showing that BQP C AWPP, a counting class we will define shortly.
Their results, together with previous results about AWPP [19], give the
strongest evidence yet that NP € BQP, and thus NP-complete problems
cannot be decided efficiently with quantum circuits. In particular, there
is an oracle G such that P¢ = BQP® # NPY. This complements an
earlier result of Bennett, Bernstein, Brassard, and Vazirani [9], which
states that NPE ¢ BQP® with probability 1, where the oracle R is
chosen at random. (They also show that NP N coNPF ¢ BQP with
probability 1, where R’ is a permutation oracle chosen at random.)

The class AWPP is somewhat analogous to BPP.

DEFINITION 1.3 [[19, 31]] A language L is in AWPP if and only if,
for every polynomial q, there is a polynomial-time computable function
p > 0 and a GapP function f such that

ze€Ll=(1-2"")m< f(z) <m,
¢ L=0<f(z) <27™m

for all z € X%, where r = q(|z|) and m = p(1'*)).
It is easy to see that AWPP C PP: for L € AWPP, setting q(|z|) =2

gives an f and p > 0 as in the definition, whence the GapP function
g(z) = f(z) — |p(11#') /2| witnesses that L € PP.

THEOREM 1.6 [22]
BQP C AWPP.
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PROOF Let L be a language in BQP, and let ¢ be any polynomial.
We will find a polynomial-time computable function p > 0 and GapP
function f that satisfy Definition 1.3 for L. By Lemma 1.3 there is a
binary g € FQP such that

x€L=Prob[g(z)=1]>1-27",
z ¢ L= Prob[g(z)=1]<27T,

for any x € ¥* with » = ¢(|z|). By Theorem 1.1, there is an integer
D > 0, polynomial s and GapP function f such that Prob[g(z) =1]=
D42 f(z) for all z € £*, and so

r€L=1-2""<D°f(z) <1,
2L =0<Df() <2,

where s = s(|z|). The theorem follows immediately by letting p(1™) =
D™ for all n € N.

COROLLARY 1.3
[[1]] BQP C PP.

There is a stronger limitation on AWPP: languages in AWPP are low
for PP—that is, if A € AWPP, then PP4 = PP. If some PP-complete
language is low for PP, then PPYY = PP, which is considered highly
unlikely.

PROPOSITION 1.5
[[31]] If A € AWPP, then PP = PP.

PROOF Let L be any language in PP* via some function in GapPA,
which itself corresponds by Lemma 1.1 to a polynomial ¢ and P4 pred-
icate R. That is,

zel H{y e nadlah . R(m,y)}“ - H{y e xa(l=h . ﬁR(x,y)}H > 0.

We may assume that R(z,y) depends on (i.e., its computation makes
queries to) A only on strings of length s(|z|), where s > 0 is some
polynomial, and makes exactly s(|z|) such queries. (If this is not the
case, then we can replace A with a “padded” version of A:

A'={y10":y € AAn e N}.
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It is obvious that A’ € AWPP <= A € AWPP and that PP4 = PP’
Moreover, there is a pA’ computation of R that satisfies our assumption
above.)

The algorithmic nature of R can be decomposed into two pieces—
a polynomial-time computable function a(z,y,b,i) and a P predicate
Q(z,y,b). Here, b = by --- by, is a string of bits representing guesses
of the answers to R’s queries. Given z,y, b, we simulate the computation
of R(z,y). When the computation makes its ith query to the oracle, we
answer with b;. In this simulation it is easy to compute what the ith
query will be, and we let a(z,y, b, i) be this query. When the simulation
ends, we let Q(z,y,b) be the result. Now if b corresponds to all correct
query answers (all according to A), then Q(z,y, b) is the same as R(z, y).
In other words,

Q(x,y,biba - - - by(2))) = R(z,y)

whenever each bit b; = A(a(z,y,b,7)). Clearly, a is computable in poly-
nomial time and |a(z,y, b,7)| = s(|z]|).

Let r be a large enough polynomial that we will choose later. The
membership of A in AWPP gives us, by Definition 1.3, a polynomial-
time computable p > 0 and f € GapP such that

2€A=>(1-2""m < f(z) <m, (1.1)
g A=>0< f(2) <27™m (1.2)

for all z € £*, where r = r(|z|) and m = p(1*l) > 0. By doubling both
p and f, we can assume that m is always even.

Fix an arbitary z € ¥* and let n = |z|, ¢ = ¢(n), s = s(n), r =
r(s) = r(s(n)), and m = p(1°) = p(1*™) > 0 and even. Let in, =
|[{y € £?: R(z,y)}|| and let out, = ||{y € £9: -R(z,y)}|].- We want
to define an h € GapP (with no oracle) such that h(z) > 0 <=
ing —out, >0 (<= z € L). Define

g(x, Y, b) = H [bif(a(waya b,’L)) + (1 - bl)(m - f(a(;v,y, b72)))]

=1

forall b =b;---b; € ¥° and y € X9. It is evident by Proposition 1.1
that g € GapP. For all 1 <4 < s we have, by (1.1) and (1.2) above,

bi = A(a(w,y, bal)) = (1 - Q_T)m < /\z <m,
bi # Aa(z,y,b,7)) = 0 <X <27"'m,
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where \; = b;f(a(z,y,b,i)) + (1 — b;)(m — f(a(z,y,b,i))). This means
that
(Vi) [ b = Ala(z,y,9) | = (1 -27")"m” < g(2,y,b) <m®, (1.3)
(30) [ b; # Ala(z,y,1)) | = 0 < g(z,y,b) <27"m”. (1.4)
The point here is that if all the guesses b; to query answers are correct,

then g(x,y,b) is large (close to m?®), and if not, then g(z,y, b) is close to
zero. Now if we define

ms
ZZ Ili'y, 2Q$ya) 1)_77
yEXI hbeXs

then h € GapP, which is clear by Proposition 1.1. Roughly speaking,
each term in the sum contributes to h(z) a negligible amount if some of
the guesses in b are incorrect. If the guesses in b are all correct, then the
term contributes approximately m?, if Q(x,y,b), or approximately —m?,
if =Q(z,y,b). But if all the guesses in b are correct, then Q(z,y,b) =
R(z,y), and so this makes h(z) close enough to m®(in, — out,) that it
witnesses that L € PP. The m?®/2 correction is to ensure that h(z) <0
when z & L.

More precisely, for every z,y let b;, € X° be the unique string of
correct oracle answers during the computation of R(z,y). We have

hz) + o = 5 0011080.) (2Q00:3:b2) =
+Z > g(w,y,0)(2Q(x,y,b) — 1)
Y betba,
= Zg 2,9, be,y) 2R(z,y) — 1)
+Z > 9w, y,0)(2Q(x,y,b) — 1).
Yy b?ébmy

We can bound the second sum on the right-hand side using (1.4) above:

z Z (2,9,0)(2Q(z,y,b) — 1)| < 295" "m?, (1.5)

Y bFbay
The first sum splits into two:

S = Z g(mayabZ,y) - Z g(xayabx,y)'
y:—R(z,y

y:R(z,y) z,y)



1.5. LIMITATIONS OF THE QUANTUM MODEL 43

Using (1.3) above, we get
(1=27"")%in, —out, < S/m® <ing — (1 —27")%out,. (1.6)
Combining (1.5) and (1.6) gives us

(1 —27")%in, — out, — 277577 < h(x)/m® +1/2
<ing — (1=2"")%out, + 295",

If x € L, then out, +1 < 297! < in, — 1, so
h(z)/m® > (1 —277)%(2971 4 1) — 2971 4 1/2 — 20F5—7, (1.7)
If x € L, then in, < 2971 < out,, so
h(z)/m® <2971 (1= (1 =27")%) + 207" —1/2. (1.8)

Now if we choose the polynomial r to be at least ¢ + s + 2, then much
tedious calculation reveals that the right-hand side of (1.7) is positive
and the right-hand side of (1.8) is negative. Thus h(z) is as desired.

COROLLARY 1.4
All BQP languages are low for PP.

The counting hierarchy is the chain of classes
PP C PPPP Cc PPPP7 C.....
It is widely believed that this hierarchy does not collapse, i.e., all classes

in the chain are distinct.

COROLLARY 1.5
IfBQP = PP, then PPFY = PP and so the counting hierarchy collapses
to PP.

1.5.1 Black-box problems

As we mentioned earlier, a significant and growing number of quantum
algorithms solve black-box problems. It would be useful for us to under-
stand the inherent limitations of these algorithms. We have some strong,
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unconditional results that reveal sharp restrictions on the use of quan-
tum circuits to solve black-box problems, unlike the case with concrete
problems. Using certain properties of low-degree multivariate polynomi-
als, Beals, Buhrman, Cleve, Mosca, and de Wolf [7] have proven lower
bounds on the depths of quantum circuits that decide various important
properties of black-box functions.

The key to the results in [7] lies in making two observations: (1) The-
orem 1.1 and Lemma 1.1 both relativize uniformly to any oracle, as
do most results in complexity theory (see Lemma 1.4 below), and (2)
a relativized GapP function varies with the oracle in a simple way, ac-
cording to a low-degree multivariate polynomial. Oracles and black-box
problems are conceptually the same, and understanding the implications
of these observations will give us a key result in [7] that ties quantum
circuits to multivariate polynomials.

Theorem 1.1 and Lemma 1.1 relativize to give us the following lemma,
which is the first observation above, and which is implicit in [19]. For
simplicity, we will restrict our attention to quantum circuits with rational
matrix entries.

LEMMA 1.4
For every oracle X, there is a function hX € GapP* that behaves as
follows: let C be any quantum circuit over Q with X-gates and set of

matriz coefficients B C Q, and suppose C' has n inputs and m outputs.
Then for all z € ¥™ and w € ¥™,

Prob[ C outputs w given input z | = D~"h*(C, z,w),

where r is the number of unitary gates in C, and D is the least positive
integer such that DB C Z.

Moreover, hX is computed uniformly relative to X, i.e., there is a
single polynomial p and single polynomial-time oracle TM M that

1. makes at most 2r oracle queries along any path, and

2. relative to any oracle X, computes a predicate RX € PX such that
x 1 (lz]) A pX (lzl) _ pX
W@ = (|0 n ¥ @) - [0 - R @),

for all x € *, where R* (z) = {y : RX(z,y)}.

(Here we interpret x as encoding the triple (C, z,w).)
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PROOF SKETCH  The proof is just as with that of Theorem 1.1.
The only added feature of C' is that it can use X-gates. Each matrix
element of an X-gate is either 0 or 1 and is easily computed with two
queries to X (recall that X is a superoperator which needs to act on
basis vectors of the form |w){w'|). It remains to see that, along any
single path, M only needs to compute one matrix entry of each X-gate.
This follows from a straightforward analysis of how the matrix product
is computed in the proof of Theorem 1.1 relativized to X, and we will
not go into further detail here.

Given M and p computing h¥X as in Lemma 1.4, how does hX vary
with X7 To address this question, we associate a real-valued variable
v, for every z € ¥*. We then let any oracle X correspond to a unique
setting of each v, to either 1 (if z € X) or 0 (if z ¢ X). Now fix an
input (z,y) and let the v, vary over {0,1}. The machine M makes oracle
queries as it runs on input (z,y), so M’s output is some function of all
the v, such that M can possibly query z on input (z,y). This function
can be expressed as a multivariate polynomial g, ) of low degree over
the v,.

PROPOSITION 1.6

Let M and p compute the function hX as in Lemma 1.4 above, fiz
an (z,y) with ly| = p(|z|), and let r be the mazimum number of ora-
cle queries made by M on input (x,y) along any computation path. The
function q(, ) described above is a multivariate polynomial over the vari-
ables v, of degree at most r with rational coefficients; hence, the value of
hX(x) is described by a multivariate polynomial s, over the v, of degree
at most r.

PROOF We use some ideas from the proof of Proposition 1.5.
We can assume that M makes exactly r queries on any computation
path on input (z,y). Let RX and hX be as in Lemma 1.4. Fix some
b="by---b, € £". We simulate M on input (z,y); when M makes its
ith query 23 ; to the oracle, we answer according to b;. We say that M
accepts on b if M accepts in this simulation. Now define the degree r
polynomial my = [[;_; u;, where

L ’Uzb’i. if bz = ].,
vi= {1—1;2,,,1. if b; = 0.
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Let X be any oracle and let the variables v, be set according to X.
If X (2p,;) = b; for each 4, then M takes the same path and makes the
same queries relative to oracle X as it did in our simulation above, and
my = 1; otherwise, one of M’s queries 2p; is not answered according to
X in the simulation, so my = 0. If we now set

d(z,y) = Z Mpap,
bexr

(where a5 = 1 if M accepts on b, and a; = 0 otherwise), then g(, ,)
is a degree r multivariate polynomial over the v, that takes the value
RX(z,y) when its variables are set according to X. Thus the multi-
variate polynomial

1
se=5 ), (e —1)

yezp(lwl)

has degree r and takes the value h*X (z) when its variables are set ac-
cording to X. |

As our final result, we see that Lemma 1.4 and Proposition 1.6 im-
mediately combine to give us a uniform version of the central lemma, in
Beals et al. [7]. It shows how the behavior of a quantum circuit C with
X-gates varies as the oracle X varies.

PROPOSITION 1.7

Let C be a quantum circuit with n inputs, m outputs, and r many X -
gates. For any input z € X", and output w € ™, there is a degree 2r

multivariate polynomial s over the variables v, such that, for all oracles
X

2

Prob[ C outputs w given input z ] = s,

where sX is the value of s when the variables v, are set according to

X. Moreover, s is the multivariate polynomial s, defined in the proof of
Proposition 1.6 where z = (C, z,w).
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1.6 Conclusions

Given the close connection we have seen between quantum complexity
and counting complexity, we should continue to expect results in one area
to apply to the other, especially the latter to the former, since counting
complexity is an older subject. This has clearly been the case so far. For
example, the oracle G such that P¢ = BQP® # NP¢ was discovered in
the context of the counting class AWPP in [19] before any of the authors
knew about BQP (it was shown there that P¢ = AWPPY # NPY). It
was only later, when Fortnow and Rogers showed that BQP C AWPP
[22], that the significance of the oracle G to quantum complexity was
recognized.

Another example regards the class NQP (Definition 1.2). Showing
that NQP = coC_P [20] immediately imported a wealth of knowledge
about C_P into the quantum realm. For instance, coC—-P contains
problems that are at least as hard as any in the polynomial hierarchy:
NP C NPNP ¢ NPNP™ ¢ ... [44, 45], so the same is true of NQP.

Finally, the connection between black-box quantum circuits and low-
degree multivariate polynomials [7] allows important results about the
decision tree complexity of Boolean functions [34] (already applied to
counting classes in [19]) to be applied directly to quantum complexity.

There are many interesting open questions and potentially fruitful
lines of further research connecting quantum computation with com-
plexity theory. Can we put BQP inside a class smaller than AWPP—
perhaps a counting class? On the other hand, can we put BQP out of a
class bigger than PNP with respect to some oracle? How about showing
that BQPA ¢ NPNP* for some oracle A? What are the analogous rela-
tionships between EQP and other complexity classes? Answers to any
of these questions will push the field forward considerably.
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