PP-lowness and a simple definition of AWPP

Stephen A. Fenner*
University of South Carolina

June 16, 2003

Abstract

We show that the counting classes AWPP and APP [FFKL93, Li93] are more ro-
bust than previously thought. Our results identify a sufficient condition for a language
to be low for PP, and we show that this condition is at least as weak as other previ-
ously studied criteria. Our results also imply that AWPP C APP, and thus APP
contains many other established subclasses of PP-low, thereby reducing several differ-
ent lowness results to membership in APP. We give a simplified proof of an earlier
result of Li, which extends a result of Kobler et al.: all sparse co-C_-P languages are in
APP, and are thus PP-low. We also show that AWPP and APP are %-definable
classes. Some of our results are reminiscent of amplifying certainty in probabilistic
computation.

Keywords: counting complexity, counting classes, PP, AWPP, PP-low

1 Introduction

A language L is low for a relativizable complexity class C (L is C-low) if C* = C. That is,
L provides no help as an oracle for a C-computation. Our interest here is in lowness for the
counting class PP [Gil77].

There are some important NP problems—Graph Isomorphism particularly—that are
known to be low for PP [KST92]. It is also known that all sparse NP problems are low
for PP [KSTT92], but it is unknown whether an NP-complete problem is PP-low. What
is it about a language that makes it PP-low? A good approach to showing PP-lowness of
a language L is to put L into a complexity class which is already known to contain only
PP-low sets. To make it easy to do this, we want the largest such class(es) that we can find.

BPP consists entirely of PP-low sets [KSTT92|, but so do various counting classes
like SPP, or better yet WPP [FFK94]. Kobler et al. showed the PP-lowness of Graph
Isomorphism by putting it into WPP [KST92].

*Partially supported by South Carolina CHE SCRIG Grant R-01-0256 and by ARO DAAD 190210048.
Computer Science and Engineering Department, Columbia, SC 29208 USA. Email: fenner@cse.sc.edu.

One of our main results closely relates PP-lowness with the behavior of functions in the
class GapP, a variant of #P [FFK94] (see Definition 2.1). We show

Theorem 1.1 A language L is low for PP if there are a polynomial p and a function
g € GapP such that

zrel = 2/3<g(x)/2? <1,
z¢ L = 0<g(z)/2?<1/3

for all z € ¥*, where p = p(|x|).

The %—% separation can be replaced with any constant positive separation, or even m.
Also, 2P can be replaced with any FP function, or even with any GapP function which
depends only on the length of . Previously, the least separation on g(x)/2? known to be
sufficient for PP-lowness was 27" to 1 — 27", where r is an arbitrary polynomial chosen
before g and p [Li93] (see Definition 1.2, below). To our knowledge, ours is the weakest
known sufficient criterion for PP-lowness involving constraints on a GapP function. Our
results build upon those of Li [Li93] and give simpler definitions of the counting classes
AWPP and APP [Li93, FFKL93| (see Definitions 1.2 and 1.3, below), whence we show
that AWPP C APP.

The class AWPRP is significant in relation to the quantum computing model. It holds the
distinction of being the smallest known “standard” (i.e., nonquantum) complexity class which
contains the class BQP of all decision problems efficiently solvable by quantum computers
with bounded error probability [BV97, FR99]. AWPP is an analogue of the class BPP
defined using GapP functions instead of acceptance probabilities. AWPP and the related
complexity class APP were originally defined by Li [FFKL93, Li93|, who was in search of
big classes of PP-low sets. Li showed that AWPP and APP are subclasses of PP-low (see
[Fen02a] for a published proof of the PP-lowness of AWPP) and also contain BPP and
other known subclasses of PP-low, including those mentioned earlier [Li93]. It was later
shown that there is an oracle G such that P¢ = AWPP® but the polynomial hierarchy
is infinite relative to G [FFKL93]. More recently, Fortnow and Rogers [FR99] showed the
containment BQP C AWPP mentioned above. This means that all efficiently quantum
computable languages are PP-low, and furthermore PG = BQPY for the oracle G just
described.

The analogies with BPP are evident from the following definitions of AWPP and APP:

Definition 1.2 (Li [FFKL93]) A language L is in AWPP if and only if, for every poly-
nomial r, there is a polynomial p and a GapP function g such that, for all x € ¥*,

re€Ll = 1-2"<g(x)/2" <1,
gL = 0<g(x)/2P <27,

where p = p(|z|) and r = r(|z|).

Definition 1.3 (Li [Li93]) A language L is in APP if and only if, for all polynomials r
there exist f, g € GapP such that, for all n and x with n > |z|, ¢g(1") > 0 and

rel = 1_2*T(H)SMS1,
g(1)
171
vgl = 0< @) o)
g(1)

Definitions 1.2 and 1.3 are awkward, and they are overly complex in a very precise
sense: both appear to require three alternating first-order quantifiers (Vrdp, gVz ... and
Vraf,g¥n,x ..., respectively) before an L-computable predicate. In the language of de-
scriptive set theory, we can then only say that AWPP and APP are “II3-definable.” All
the usual complexity classes are ¥.9-definable, that is, definable using only two alternating
first-order quantifiers (3V) in front of an L-computable predicate. Definitions 1.2 and 1.3
seemed necessary, however, to obtain PP-lowness for languages in these classes. (Li gave
other characterizations of AWPP, but they all involve a third (universal) quantification over
the “error” polynomial r.) One would prefer to replace 27" and 1—27" in Definition 1.2 with
constant fractions such as 3 and 2, giving a simpler X3 definition of AWPP more closely
analogous with BPP, but it was not known whether this could be done.

We show that one can indeed make such a replacement.

Theorem 1.4 A language L is in AWPP if and only if there exist a polynomial p, and
GapP function g such that, for all x € ¥*,

zel = 2/3<g(x)/2? <1,
s¢ L = 0<g(x)/2" <1/3,

where p = p(|z]).

Theorem 1.1 follows immediately from this and the PP-lowness results of Li [Li93]. We
prove similar simplifying results for APP, and as a corollary we get that AWPP C APP
(Corollary 3.6).

We will prove a stronger statement, Theorem 3.1, which immediately implies Theo-
rem 1.4. It was shown in [FFKL93, Li93] that Definition 1.2 does not change if we replace
2P in the denominator with any positive FP function of . We will show by a shorter proof
(Theorem 3.3) that the same replacement can be made in Theorem 1.4 as well.

Kobler et al. showed that all sparse NP sets are PP-low [KSTT92]. Li [Li93] showed that
all sparse co-C_P languages are in APP and hence PP-low. This strengthens [KSTT92];
it is well-known that NP C co-C_P (the latter is sometimes denoted C.P), but the two
classes are probably not equal. We use our results to provide a shorter and simpler proof
of Li’s result.! Thus APP contains all these other subclasses of PP-low: FewP C SPP C

!The journal version of this paper [Fen02b] was published before Li’s result was made known to the
author.

WPP C AWPP, BPP C AWPP, NP N SPARSE C co-C_P N SPARSE [FFK94,
FFKL93, KSTT92], where SPARSE is the class of all sparse languages (see below).

To show Theorem 1.4, we iterate the polynomial h(z) = 3z% — 223 to “squeeze” the GapP
function ¢ toward 0 and toward 27, thus increasing the separation between acceptance and
rejection. The polynomial A is perhaps the simplest example of an “amplifying polynomial.”
The technique of iterating polynomials such as h or a similar polynomial 4z + 3z? has
been used several times before to squeeze error in the context of modular arithmetic [Tod91,
Ya090, For97]. Polynomials similar to A have also been used in the nonmodular setting to
amplify probability. For example, they were used to show that small monotone circuits exist
for the majority function [Val84]. Here, we use h in the nonmodular setting to “amplify”
GapP functions rather than probabilities.

2 Preliminaries

We let ¥ = {0,1}, whence ¥* is the set of all binary strings. For z € ¥* we write |z| for
the length of z, and for integers n > 0 we let X" denote the set of all strings of length
n. We may identify ¥* with either N (the natural numbers, including zero) or with Z (the
integers) via standard binary encodings. We use standard complexity theoretic notation,
and we assume knowledge of standard complexity classes, especially counting classes such
as #P, PP [Gil77], and C_P [Wag86]. We will use the function class GapP, which is the
closure of #P under subtraction.

Definition 2.1 ([FFK94]) A function f:¥* — Z is in GapP if and only if there are
g,h € #P such that f(z) = g(z) — h(z) for all x € ¥*.

Equivalently, f is in GapP if there is a nondeterministic polynomial-time Turing machine
M such that, for all x € ¥*, f(z) is the number of accepting paths minus the number of
rejecting paths (i.e., the “gap”) of M on input x.

GapP is closed under negation, uniform exponential size sums, and uniform polynomial
sized products. See [FFK94| for more information about GapP, its precise closure properties,
and its relationship to the counting classes mentioned above. We let FP be the class of all
polynomial-time computable functions, and we fix a standard pairing function—a bijection
(-,-):X* x ¥* — ¥* that is polynomial time computable and polynomial time invertible—
which allows us to identify ¥* with ¥* x ¥*. We also fix some method of coding a finite
sequence of strings cy,...,c, € X* as a single string [¢1, ..., ¢,] € 3* so that |[c1,...,cn]| €
O (n (1 + max{|¢;|})). For any function f, define

f(”):fo---of,
N——

n

for any integer n > 0 (f(© is the identity function).

We let ||A|| denote the cardinality of a finite set A. A language L C X* is sparse if there
is a polynomial p such that ||[L N X"|| < p(n) for all n > 0. We let SPARSE denote the
class of all sparse languages.

All logarithms are to base 2. All polynomials that we mention are in Z[z].

2.1 The Polynomial 322 — 223

We briefly look at the properties of the polynomial h(z) = 3z* — 2z3. The function h
maps the interval [0,1] onto [0,1] in a monotone increasing way, and the graph of A on
[0,1] is an S-shaped curve that is rotationally symmetric about the point (3,1), that is,
h(1 — z) =1 — h(z). The derivative of h vanishes at 0 and at 1. For any 0 < € < 3, define
the error set E. = [0,e] U[1 — ¢,1]. Obviously, 0 < ¢; < e < % implies E,, C E,,. It is also
clear by symmetry that h(E.) = Ep() C E.. Let ¢ = h®(e) for i > 0. Since €41 < 3€Z, we

get by induction that 0 < ¢; < %(36)2i for all i > 0, and thus if € < g,

S
Ei < (36) < .
-3 — 3
If é <e€ < , then ek 1 for any integer k£ > —4 (+ log (— — e)) One way to see this is
as follows. Let a(y) =1 —y and let j(y) = (aohoal™!)() ——h(% —y). Fr0<y< 3

we have y < j(y) < 3, and if 0 <y < 3, we have](y) 28y > 3y. Thus for fixed 0 < y < 3

and k > 0, we have 1 — h(®) (3 —y) = B (y) > (%) y, provided j57!(y) < 3. It follows that

5 <JW(y) <3 it

log — logy
log 2 1

which is easily checked to be true for ¥ > —4(1 + logy).
We summarize these results in the following lemma:

k>

Y

Lemma 2.2 For any positive § < 1, any n € N, and any integer k > n + 4log %,

0 < h® (%) <2 2"

The coefficients of the polynomial A() are easy to compute in a way that we make precise
in Section 2.2. This will imply that A(®) can be applied to a suitably scaled GapP function
to yield another suitably scaled GapP function, where ¢ is chosen appropriately depending
on .

2.2 Closure of GapP Under Iterated Polynomial Composition

Definition 2.3 Let p be a polynomial. The representation rep(p) of p is a string in ¥*
defined as follows:
rep(p) = { 1 ip =0 -
[1d, Coy - - -, cd] if p(x) = Z?:o c;x? with ¢q # 0.

Note that |rep(p)| bounds the degree of p.
The next few lemmas are crucial for our results. They are stated in more generality than
we need here, as they may find use elsewhere.

Definition 2.4 Let py,p1,po, . .. be a sequence of polynomials. We say that {p;},.y is ptime
representable if there is an FP function r such that r(1%) = rep(p;) for all i € N.

Definition 2.5 Let po, p1,po, . .. be a sequence of polynomials. We say that {p;},.y is GapP
representable if there is a polynomial d and a GapP function ¢ such that, for all 7 € N,

d(i)
pi(z) = Zc(li, 19) 7.
=0

The following lemma is obvious.

Lemma 2.6 If py,py,... is ptime representable, then it is GapP representable (indeed, via
a function c € FP).

Lemma 2.7 If py, p1,po, ... is a GapP representable family of polynomials and f is a GapP
function, then the function

9(z) = pa(f(z))
is also in GapP.

Proof: This follows quickly from other known closure properties of GapP [FFK94|. Since
GapP is closed under uniform polynomial size products, the function e(z,1*) = H;_:B f(z) =
f(x)! is also in GapP [FFK94, Corollary 3.8].

Let polynomial d and GapP function ¢ be as in Definition 2.5. Fix x € ¥* of length n.
Then

d(n)
9(@) = pa(f(2) = Y c(1™, V)e(z, 1Y),
j=0
which is a uniform sum of products of GapP functions. Hence, g € GapP. O

Lemma 2.8 Let p be any polynomial and let s € FP be such that s(z) € O (log|z|). Then
the sequence of polynomials {p(s(ln))}neN is ptime representable.

Proof: Fix p(z) = Zj:o a;x! for constant d > 0 (the case for d = 0 is trivial) and a; € Z
with ag # 0 (the case for p = 0 is also trivial). Clearly, it is easy (polynomial time) to
compute a representation for the composition p o ¢ of p with another polynomial ¢, given
a representation for ¢. To compute a representation of p*™)) on input 17, we start with a
representation of the polynomial z, then repeatedly compose with p on the left s(1™) times.

This can be all be done in time polynomial in n provided the intermediate representations
do not get too large.

Suppose ¢ is a polynomial of degree m. The composition p o ¢ then has degree md, and
the largest absolute value of a coefficient in the composition can be seen to be bounded by
(d+1)a((m+1)b)¢, where a and b are the largest absolute values of the coefficients of p and of g
respectively. Recalling that d and a are constants, we get that (d+1)a((m+1)b)¢ € O (m?b?).
It now follows by induction on i > 0 that p® has degree d’, and all its coefficients have

absolute value in O (C’Qdi) for some constant C' depending only on p. This immediately

gives us an upper bound in O (i2d?) on the size of the representation of p{*). In the algorithm,
i < s(1") € O (logn), so each representation in the algorithm has size in O ((logn)2d*'s™)
for some constant k. This is clearly polynomial in n, and so the algorithm runs in polynomial
time. 0

We will not iterate h itself but instead a scaled version of &, whence we need the following
lemma:

Lemma 2.9 Let py,p1,p2,... be a GapP representable family of polynomials with degrees
bounded by a polynomial d. Suppose s is a GapP function outputting positive values. Then
the family of polynomials qq, q1, o, - - . is GapP representable, where

¢(2) = s{'pi(e/s:),
for all i € N, where s; = s(1*) and d; = d(3).
Proof: Let ¢ € GapP such that p;(z) = Z < ,c(1",19) 5. Then

dt
Z (11 1]) dz J J

J=0

gi(z)

Setting ¢/(17,19) = ¢(1%,19)s% 77 it is clear by the closure properties of GapP that ¢ € GapP
and ¢’ and d witness that the family of ¢; is GapP representable. Il

3 Main Results
3.1 AWPP

Theorem 1.4 immediately follows from the next theorem.

Theorem 3.1 Let L be a language. L € AWPP if and only if there are polynomial ¢, u > 0
and a GapP function f such that, for all x € ¥* with n = |z|,

1+6, _ f(x)
flz) 1-=146,

7

where 6, = 1/u(n).

To prove Theorem 3.1, we simply apply the polynomial function h(y) = 3y? — 2y log-
f(x)
2a(n)

I0n 180n) 50 that it covers all but an exponentially small

arithmically many times to the value above. The amplifying properties of h serve to
broaden the avoided interval (

amount of the interval [0, 1].

Proof: We prove the “if” part; the “only if” part is trivial. Let L, ¢, u, and f be as in
Theorem 3.1. We show that L satisfies Definition 1.2 for any polynomial ». We may assume
that 7(n) > 0 for all n € N. Let b be a polynomial such that b(n) is an upper bound on
r(n)/6% for all n € N with 6, = 1/u(n). For n € N, define

1
kn, = [logb(n)| > logr(n) + 4log 5= log(r(n)u(n)*).
The family Atko) pk1) pk2) s ptime representable by Lemma 2.8, and hence GapP rep-
resentable by Lemma 2.6.
Set €, = (1 — 6,)/2. By Lemma 2.2 we have ht)(e,) < 277,
Noting that h(#») has degree 3% < 3b(n)?, we let z, be the polynomials

— 934(n)b(n)? ucn)(y)
zn(y) = 2 h 0)

By Lemma 2.9, 2y, 21, 29, ... is GapP representable.
Now for all n € N and x € X* of length n, we define

p(n) = 3q(n)b(n)*,
9(@) = z(f(2)).
It follows from Lemma 2.7 that ¢ € GapP. Finally,

¢ L = 0< f(2)/21™ <e,
= 0< h(kn)(f(x)/gq(n)) <27
= 0< g(x)/?p(") < 977

and similarly, z € L = 1 — 277 < g(x)/2P() < 1. Therefore L € AWPP. O

Corollary 3.2 AWPP is a Y.9-definable class.

We can strengthen Theorem 3.1 by allowing any FP function of z in the denominator,
analogous with results in [FFKL93, Li93]. Theorem 3.3 provides the weakest sufficient
condition (to our knowledge) for membership in AWPP. The proof is made easier by
Theorem 3.1 itself.

Theorem 3.3 Let L be a language. L € AWPP if and only if there is a polynomial u > 0,
a GapP function f, and a d € FP such that, for allm € N and x € X", d(x) > 0 and

where 6, = 1/u(n).

Proof: The “only if” part follows immediately from Theorem 3.1. Conversely, suppose u, f,
and d satisfy the conclusion. Let ¢ be a polynomial such that d(z) < 20(I2D)=1 for all z € £*.
For all z € ¥* with n = |z|, define

) =204 | 2 | 21 (0) — dlo)),

Then f’ € GapP, and

(1)

9¢m) — 5 1 Sam) 1

f@) 1, d) Pw—l J (f(rr) 1>.

d(z) | \d(z) 2

Using (1) and the fact that 3 < W‘f,ﬁ% Vq;(nx))flJ < 1, a routine calculation shows that the

conclusion of Theorem 3.1 is satisfied by ¢, f', and §,, = Qu%n). Therefore, L ¢ AWPP. [

3.2 APP

Li showed that all APP languages are PP-low [Li93]. APP is similar to AWPP but handles
the error threshold with an extra parameter. We show that both the polynomial » and this
extra parameter can be dispensed with. As a corollary, we get that AWPP C APP.

Theorem 3.4 Let L be a language. The following are equivalent:
1. L € APP.

2. There exist f,g € GapP and a polynomial u > 0 such that for all x € ¥* and n € N
with n > |z|, ¢(1") > 0 and

1+6, < f(z,1™) |
2~ g(im) ~

f(z,1™) < 1-96,
g(17) — 27

rel =

r¢L = 0<

where 6, = 1/u(n).

3. There exist f,g € GapP and a polynomial u > 0 such that for all z € ¥*, g(11*) >0

and
1+ 6|:v| f(x)
< <
f(z) _ 1= 0p
< <

where 0y = 1/u(|z]).

Proof: (2) = (1): Let f,g € GapP and u be as in (2). Let » > 0 be a fixed polynomial.
Define b and kg, k1, ko, . . . as in the proof of Theorem 3.1. Let zg, 21, 29, . . . be the family of
polynomials

Zn(y) = g(1m) >) <ﬁ) :

which is GapP representable by Lemma 2.9 as before. Now for x € ¥* and n € N with
n > |z| let

gam) = g(m*
F@1) = z(f(e1).

Both ¢’ and f’ are in GapP, the latter inclusion following from Lemma 2.7. Then we have,
as in the proof of Theorem 3.1,

¢ L = 0< f(z,1")/9(1") < (1—6,)/2
= 0<AE)(f(z,17)/g(1m) <2770
= 0< fi(z,17)/g'(1") <277,
and similarly, z € L = 1 — 27" < f/(2,1")/¢'(1") < 1. Thus L € APP witnessed by f’

and ¢'.
(3) = (2): Let f,g € GapP and u be as in (3). For x € ¥* and n > |z| define

g = JJe01",

Faam) = fa)g(1m)/g().

Clearly, f', ¢' € GapP, and together with u witness that L satisfies (2).
(1) = (3): Let f and g be as in (1) when r(n) is the constant 2. Define

u = 2,
fl(x) = f(xalm)'
Then f', g, and u witness that L satisfies (3). O

10

Corollary 3.5 APP is a X-definable class.
Corollary 3.6 AWPP C APP.
Proof: Compare Theorem 3.1 with item (3) in Theorem 3.4, setting g(1") = 29, a

For both classes AWPP and APP, there is no reason why the gap in the allowed values
of f(z)/g(1®) need be centered at 1/2. For example, we have the following corollary to
Theorem 3.4:

Corollary 3.7 A language L is in APP if and only if there exist f, g € GapP and constants
0 < A< w <1 such that for all z € ¥*, ¢(11*Y > 0 and

rel = v<

Proof: If L € APP, then by letting r(n) = 2 in Definition 1.3, we get f', g € GapP such
that for all x € ¥*,

(. 12l
rel = 3 < fz,17) 1,
47 (1)
(e, 17y 1
L = 0< < -,
i g(1#) — 4

Setting f(z) = f'(z, 1), A =1, and v =2 yields the conclusion of the corollary.

Conversely, suppose the conclusion of the corollary is satisfied for some f’,¢',\,v. We
“linearly adjust” the quantity f'(z)/g¢’(1/*l). Without loss of generality, we may assume that
A =a27¢ and v = b27° for some integers a, b, e with 0 < a < b < 2°. If we set

fl@) = 227" (@) + (2 —a - b)g'(z),
g(z) = 2°"%¢'(a),

then a straightforward calculation shows that Part (3) of Theorem 3.4 is satisfied with f, g,
and any constant 6 = 4, < (b—a)27¢'. Thus L € APP. O

We conclude this section by using our results to give a shorter proof of the result by
Li [Li93] that every sparse co-C_P language is in APP, and hence is PP-low. We note
here that Ogiwara [Ogi92] attempted to prove lowness of sparse sets in counting complexity
classes including co-C_P, but made little progress toward the question.

Theorem 3.8 (Li) co-C_P NSPARSE C APP.

11

Proof: We adapt the basic technique in [KSTT92] (our proof was found independently of
Li’s proof). Let L be a sparse co-C_P language. It is known that there is an h € GapP
such that, for all z € ¥*, = € L iff h(z) # 0 [FFK94]. By squaring h, we may assume that
h(z) > 0 for all z. Let p be a polynomial such that ||L N X"|| < p(n) for all n > 0. For all
n > 0 and all z of length n, let

go)= S [[nw. (2)

SCsn & ||S||<p(n) yES

flz) = >y [T (3)

SCE & ||S]|<p(n) & z¢S y€eS

and let

Since GapP is closed under uniform exponential size sums and polynomial size products
[FFK94|, it is evident that f,¢g € GapP. Indeed, we could describe f and g equivalently in
terms of machines. To compute g, for example, the machine first guesses a subset S C X",
then generates a gap of [[g h(y) by simulating the machine for h sequentially for each
element of S as input.

Note that (i) the only nonzero terms appearing on the right-hand sides of (2) or (3) are
for S C L, (ii) g(x) > 0 since for S = () the empty product contributes 1 to the sum, and
(iii) g(x) depends only on the length of x.

If x ¢ L, then h(z) = 0, and so any term on the right-hand side of (2) where z € S is
zero. Thus in this case it is clear that f(z) = g(z). If x € L, then clearly

g(z) = f(z)+ > [rw) (4)

SCE™ & ||S]|<p(n) & z€S y€S

= f(x) + h(z) > [I1) (5)

SCE"™ & ||S||<p(n)-1 & z¢S yeS

f(z) + h(z) > 17w (6)

SCE™ & ||S||<p(n) & z¢S yES
f(@) + h(z)f(x) (7)
2f(x). (8)
The transition from (5) to (6) holds because there are at most p(n) — 1 strings in L of length

n besides x, and so the terms appearing in (6) for ||S|| = p(n) are all zero.
Putting the two cases together, we have, for all z € X*,

flz)
g(1lel) = .

AV

r¢L =

because g(z) = ¢(1*). Thus L € APP by Corollary 3.7. APP is clearly closed under
complements, so L € APP. O

Corollary 3.9 (Li) All sparse languages in co-C_P are low for PP.

4 Conclusions and Open Questions

We have seen that both classes AWPP and APP can be defined much more simply and
naturally than they were originally. This added robustness in the definitions makes both
classes much more interesting. Li showed that the denominator 29(#)) in the definition of
AWPP can be replaced with an arbitrary positive FP function of z [Li93]. Combining with
the current results, we see that the only difference between AWPP and APP is that in the
latter, the denominator can be any GapP function of 1. (Li also showed that if we allow
the denominator to be any GapP function of z, then we get the class PP [Li93].)

Since they solve the issue of error amplification in general, our results make it technically
much easier to prove membership in AWPP or APP, and hence lowness for PP. For
example, the proof that BQP C AWPP of Fortnow and Rogers [FR99] can be simplified
by ignoring the error amplification properties of BQP. For another example, the proof of
Theorem 3.8 above would be more complicated had we just used the original definition of
APP. We are not, however, aware of any interesting concrete problem that is now known
to be low for PP as a direct consequence of our results, and we would be very interested in
finding such a problem.

Are AWPP and APP equal? Our results boil this question down to the following: “Can
a GapP function that only depends on |z| be replaced by an FP function in the denominator
in item (3) of Theorem 3.47”. Such a result would certainly add to the robustness of AWPP.

Finally, we know of no concrete problem in AWPP or in APP that is not also known
to be in a previously studied subclass. Discovering such a problem would increase the
importance of these classes significantly.

Acknowledgments

I would like to thank Frederic Green, Steven Homer, and Lance Fortnow for helpful and
interesting discussions of this and related topics. Thanks also to Michael Saks and Leslie
Valiant for bringing the techniques in [Val84] to my attention, and to an anonymous referee
for posing the question of whether all sparse NP sets are in APP.

References

[BVI7] E. Bernstein and U. Vazirani. Quantum complexity theory. SIAM Journal on
Computing, 26(5):1411-1473, 1997.

13

[Fen02a]

[Fen02b]

[FFK94]

[FFKL93]

[For97]

[FROY]

[Gil77]

[KST92]

[KSTT92]

[Li93]

[0gi92]

[Tod91]

[Val84]

[Wag86]

S. A. Fenner. Counting complexity and quantum computation. In R. K. Brylinski
and G. Chen, editors, Mathematics of Quantum Computation, chapter 8, pages
171-219. CRC Press, 2002.

S. A. Fenner. PP-lowness and a simple definition of AWPP. Theory of Computing
Systems, 2002. To appear. Also available as ECCC Report TR02-036.

S. Fenner, L. Fortnow, and S. Kurtz. Gap-definable counting classes. Journal of
Computer and System Sciences, 48(1):116-148, 1994.

S. Fenner, L. Fortnow, S. Kurtz, and L. Li. An oracle builder’s toolkit. In
Proceedings of the 8th IEEE Structure in Complexity Theory Conference, pages
120-131, 1993. Accepted to Information and Computation. Draft available at
http://www.cse.sc.edu/~ fenner/papers/toolkit.ps.

L. Fortnow. Counting complexity. In L. A. Hemaspaandra and A. L. Selman,
editors, Complexity Theory Retrospective II, pages 81-107. Springer-Verlag, 1997.

L. Fortnow and J. Rogers. Complexity limitations on quantum computation.
Journal of Computer and System Sciences, 59(2):240-252, 1999, ¢s.CC/9811023.

J. Gill. Computational complexity of probabilistic complexity classes. SIAM
Journal on Computing, 6:675-695, 1977.

J. Kobler, U. Schoning, and J. Toran. Graph Isomorphism is low for PP. Com-
putational Complezity, 2(4):301-330, 1992.

J. Kobler, U. Schoning, S. Toda, and J. Toran. Turing machines with few accept-
ing computations and low sets for PP. Journal of Computer and System Sciences,
44(2):272-286, 1992.

L. Li. On the counting functions. Technical Report TR-93-
12, The University of Chicago, 1993. PhD thesis, available at
http://www.cs.uchicago.edu/research/publications/techreports/TR-93-12.

Mitsunori Ogiwara. Studies of Counting Complexity Classes via Sets with Small
Density. PhD thesis, Tokyo Institute of Technology, 1992.

S. Toda. PP is as hard as the polynomial-time hierarchy. SIAM Journal on
Computing, 20(5):865-877, 1991.

L. G. Valiant. Short monotone formulae for the majority function. Journal of
Algorithms, 5:363-366, 1984.

K. Wagner. The complexity of combinatorial problems with succinct input rep-
resentation. Acta Informatica, 23:325-356, 1986.

14

[Yao90] A. Yao. On ACC and threshold circuits. In Proceedings of the 31st IEEE Sym-
posium on Foundations of Computer Science, pages 619-631, New York, 1990.
IEEE.

15

