Mergeable Heaps

November 9, 2022

Abstract

These notes describe the mergeable heap abstract data type and cover its implementation via binomial heaps.

1 Mergeable Heaps

A mergeable heap is an abstract datatype that is a collection of keys (together with optional satellite data) drawn from a linearly ordered universe. As with all heaps, there are two versions: min-heap and max-heap. The min-heap version, which we will discuss exclusively, supports these basic operations (in no particular order):
$\operatorname{Insert}(x, H)$ - insert x into heap H
DeleteMin (H) - delete the item with minimum key from heap H
$\operatorname{FindMin}(H)$ - return the item with minimum key in heap H (the heap is unchanged)
$\operatorname{Decrease\operatorname {Key}}(H, x, k)$ - decrease the key of node x in H to k (assumes $k \leq x$.key; the node x and any satellite data is accessed externally, i.e., not through H; x 's satellite data is unchanged)
$\operatorname{Merge}\left(H_{1}, H_{2}\right)$ - combine heaps H_{1} and H_{2} into a single heap H (H is returned; H_{1} and H_{2} are destroyed)

Delete (x, H) - remove item x from heap H (x is accessed externally)

2 Binomial Trees

A binomial tree is a rooted, ordered tree given by the following recursive definition:
Definition 1. Let $d \geq 0$ be any integer.

- A binomial tree of degree 0 consists of a single node (the root).
- A binomial tree of degree $d+1$ consists of two binomial trees T_{1} and T_{2} of degree d stuck together in such a way that the root of T_{1} is the leftmost child of the root of T_{2}.

Here are the first four binomial trees, of degrees $0,1,2$, and 3 ; the degree of each node is shown:

Basic facts about binomial trees:

1. The number of children of the root equals the degree.
2. Every node in a binomial tree is the root of a binomial (sub)tree.
3. A binomial tree of degree d has height exactly d and size exactly 2^{d}.
4. The degrees of the children of a degree- d node, from left to right, have degrees $d-1, d-2$, ..., 0 .
5. The number of nodes on level i of a degree- d tree (where $0 \leq i \leq d$) is the binomial coefficient $\binom{d}{i}=\frac{d!}{i!(d-i)!}$. This explains the name, "binomial tree."
All of these facts are easily shown by induction on d except the last one, which is shown by induction on i using the "Pascal's triangle" recurrence: $\binom{d}{i}=\binom{d-1}{i-1}+\binom{d-1}{i}$ for $0<i<d$ with boundary conditions $\binom{d}{0}=\binom{d}{d}=1$.

3 Binomial Heaps

A binomial heap is a sequence of binomial trees of strictly increasing degree. Data (including keys) are in the tree nodes, each tree being in min-heap order. A node can be implemented as a record (struct) with five fields:
data - This includes the key and a reference to any satellite information.
degree - The degree of the node.
parent - A pointer to the parent node (NuLL for the root).
leftmost_child - A pointer to the leftmost child of the node (Null for a leaf node).
right_sibling - A pointer to the sibling node immediately to the right (NuLL for the rightmost child of a parent).

A binomial heap H is a simple linked list of the roots of its trees, where the right_sibling pointer of each root points to the root of the next tree (the last tree having a Null pointer). The attribute H.trees points to the head (first root) of this list or is Null for an empty heap. H.min is an optional additional attribute that points to the node with minimum key in the heap (necessarily one of the roots, since each tree is in min-heap order). We will assume this attribute is included with H.

A binomial heap has a structure (i.e., arrangement of nodes without regard to the data they contain) uniquely determined by the number of items in the heap. Let's see why. Every natural number n is the unique sum of increasing powers of 2 : the exponents correspond to the positions of the 1 's in n 's binary representation. Since a binomial tree of degree d has exactly 2^{d} many nodes, a binomial heap of n items must be made up of trees whose degrees are these exponents. For example, a binomial heap with 13 items is made up of trees with degrees 0,2 , and 3 in that order ($13=2^{0}+2^{2}+2^{3}=1101$ in binary $)$.

It follows that a binomial heap with n items has $\leq 1+\lg n$ many trees, each of degree $\leq \lg n$.

3.1 Min-heap operations on binomial heaps

Here are all min-heap operations for a binomial heap except for Merge (some use Merge or DecreaseKey as a subroutine). Times given are worst-case times, assuming H has n items.

FindMin (H) - Return H.min. This takes $\Theta(1)$ time.
$\operatorname{Insert}(x, H)$ - Create a new heap H^{\prime} with x as its sole element (a single tree of degree 0). Then set $H:=\operatorname{Merge}\left(H, H^{\prime}\right)$. This takes $\Theta(\lg n)$ time.

DecreaseKey (H, x, k) - Change x 's key to k, then "bubble up": While $k<x$.parent.key, swap x with its parent (just the data, not the degrees or the pointers, so the structure of the tree does not change). If $k<H . \min$, then set H.min $:=x$ (which must be a root by this point). This takes $\Theta(\lg n)$ time.

Delete (x, H) - Call DecreaseKey $(H, x,-\infty)$ then Deletemin (H). This takes $\Theta(\lg n)$ time.
DeleteMin (H) - Unlink the tree root r pointed to by H.min from the list of tree roots (which requires finding the predecessor root, if any); reverse the list of r 's children so that the degrees are increasing, giving it the structure of a binomial heap H^{\prime}; set $H:=\operatorname{Merge}\left(H, H^{\prime}\right)$ and update $H . \min$ if necessary. This takes $\Theta(\lg n)$ time.

The Merge operation uses the subroutine MergeTree for combining two binomial trees of the same degree. MergeTree takes $\Theta(1)$ time.
$\operatorname{MergeTree}\left(T_{1}, T_{2}\right) / /$ Precondition: T_{1} and T_{2} are binomial trees of the same degree d.
if T_{1}. key $<T_{2}$.key:
$\operatorname{Swap}\left(T_{1}, T_{2}\right) / /$ Pointer swap; now $T_{1} . k e y \leq T_{2}$.key.
Prepend root of T_{2} onto the front of the list of T_{1} 's children // I had this backward in lecture. Increment T_{1}.degree
Return $T_{1} / / T_{1}$ is a "carry tree" of degree $d+1$.
The $\operatorname{Merge}\left(H_{1}, H_{2}\right)$ operation on heaps H_{1} and H_{2} takes time $\Theta(\lg n)$, where n is the total number of items in H_{1} and H_{2} combined. It produces a heap H in three steps:

1. Merge the two linked lists H_{1}.trees and H_{2}.trees into a single linked list L in ascending order by degree. This step is just like the recombination phase of MergeSort. If there are ties, add the tree from H_{1} to L first then H_{2}, so that the tree from H_{1} appears in L before the tree from H_{2}. (This is an arbitrary convention and does not affect run time or correctness.) L may contain duplicate degrees, and if so, they always appear consecutively.
2. In a loop, traverse L from front to rear by advancing a list pointer p, merging trees of equal degree and placing the results back into L as you go. This is accomplished as follows: Initially, p points to the first tree in L and advances through L until it becomes NulL. At any time, let T_{1} be the tree that p currently points to, T_{2} the tree immediately after T_{1} on L (if it exists), and T_{3} the tree immediately after T_{2} on L (if it exists). Each iteration of the loop applies one of three cases:

Case 1: If T_{2} does not exist or if T_{1}. degree $<T_{2}$. degree, then there is nothing to combine; advance p.
Case 2: If T_{1}. degree $=T_{2}$. degree $==T_{3}$. degree, then there is nothing to combine. Advance p as in Case 1. (T_{1} must have been a "carry tree" resulting from a previous MergeTree operation; this is the only way to have three trees of equal degree on L.)
Case 3: If T_{1}.degree $==T_{2}$.degree and T_{3} either does not exist or T_{3}.degree $>T_{2}$.degree, then replace T_{1} and T_{2} on L with $\operatorname{MergeTree}\left(T_{1}, T_{2}\right)$ and leave p pointing to the combined tree (i.e., don't advance p before the next iteration of the loop).
3. Set H.trees $:=L$, and set H.min to either $H_{1} \cdot \min$ or H_{2}. min , whichever has the smaller key value. Return H.

Three things to note: (1) the list L stays in ascending order by degree throughout the loop, and when the loop finishes, L consists of trees of strictly increasing degree; (2) at any time, there are at most three trees in L of the same degree; (3) no actual data is moved during the entire Merge operation as only pointers change.

Example

Here is a sample Merge operation. Let H_{1} and H_{2} be as below (.min pointers are omitted, as are non-root key values, which are of no consequence):

After Step 1 we have

The loop in Step 2 iterates as follows:

Case 3:

Case 2:

Case 3:

Step 3 sets H.trees $:=L$. This is the combined heap.

