CSCE 551/MATH 562, Homework 5 due Monday 4/1/2024

For the following, you can assume that all devices use the binary alphabet $\Sigma:=\{0,1\}$ for input/output/printing. For these problems, you may assume that every string can be interpreted as the encoding of a Turing machine.

1. Let

$$
L:=\{\langle M\rangle \mid 00 \in L(M) \text { and } 11 \notin L(M)\}
$$

Show that $A_{\text {TM }} \leq_{m} L$ and that $\overline{A_{\text {TM }}} \leq_{m} L$. Describe the two mreductions directly, without appealing to Rice's theorem.
2. Let

$$
L:=\{\langle M\rangle \mid 00 \in L(M) \text { or } 11 \notin L(M)\} .
$$

Show that $A_{\text {TM }} \leq_{m} L$ and that $\overline{A_{\text {TM }}} \leq_{m} L$. Describe the two mreductions directly, without appealing to Rice's theorem.
3. Recall that a string w is a palindrome if $w=w^{\mathcal{R}}$. Let PALINDROMES $:=$ $\{w \mid w$ is a palindrome $\}$, and let

$$
L:=\{\langle M\rangle \mid L(M)=\text { PALINDROMES }\} .
$$

Show that $A_{\text {Tм }} \leq_{m} L$ and that $\overline{A_{\text {TM }}} \leq_{m} L$. Describe the two mreductions directly, without appealing to Rice's theorem.
4. Let

$$
L:=\left\{\langle M\rangle \mid M \text { is a DFA and } 0^{*} 1^{*} \subseteq L(M)\right\}
$$

Show that $L \in \mathbf{P}$ by giving a polynomial-time decision procedure for L. [Hint: DFA minimization, the product and complement constructions, and deciding whether two given DFAs are isomorphic (i.e., the same DFA up to state re-labeling) can all be done in polynomial time.]

