CSCE 551/MATH 562, Homework 4 due Monday 3/18/2024

For the following, you can assume that all devices use the binary alphabet $\Sigma:=\{0,1\}$ for input or printing and that all strings and languages are over $\{0,1\}$.

1. Show that every enumerable language is enumerated by an enumerator that never prints the same string twice.
2. Show that every enumerable language L is enumerated by an enumerator that prints each string in L infinitely many times.
3. Let E be an enumerator such that

- $L(E)$ is infinite, and
- E prints strings in length-monotone order (that is, for any strings w and x, if E prints w then later prints x, then it must be that $|w| \leq|x|)$.

Show that $L(E)$ is decidable by giving a decision procedure for $L(E)$ (high-level description only). [Note that there are only finitely many strings of any given length.]
4. Suppose L is a Turing-recognizable language that contains exactly one string of every length. Show that L is decidable.
5. Let $L:=\{\langle M\rangle: M$ is a TM and $|L(M)| \geq 17\}$.
(a) Show that L is Turing-recognizable.
(b) Show that L is undecidable.
(c) Given (a) and (b), what can you conclude about \bar{L} ?
6. Define the language

$$
R_{\mathrm{TM}}:=\{\langle M, w\rangle: M \text { is a TM, } w \text { a string, and } M \text { rejects } w\} .
$$

Show that R_{TM} is Turing-recognizable and undecidable.
7. Let $f: \Sigma^{*} \rightarrow \Sigma^{*}$ be a function such that, for every TM M and string $w, f(\langle M, w\rangle)=$ $\langle t\rangle$ where t is a natural number such that, if M accepts w, it does so in $\leq t$ steps. (We make no assertions about t if M does not accept w.) Show that f is not computable.

