CSCE 551/MATH 562, Homework 4 due Monday 3/18/2024

For the following, you can assume that all devices use the binary alphabet $\Sigma := \{0, 1\}$ for input or printing and that all strings and languages are over $\{0, 1\}$.

- 1. Show that every enumerable language is enumerated by an enumerator that never prints the same string twice.
- 2. Show that every enumerable language L is enumerated by an enumerator that prints each string in L infinitely many times.
- 3. Let E be an enumerator such that
 - L(E) is infinite, and
 - E prints strings in length-monotone order (that is, for any strings w and x, if E prints w then later prints x, then it must be that $|w| \leq |x|$).

Show that L(E) is decidable by giving a decision procedure for L(E) (high-level description only). [Note that there are only finitely many strings of any given length.]

- 4. Suppose L is a Turing-recognizable language that contains exactly one string of every length. Show that L is decidable.
- 5. Let $L := \{\langle M \rangle : M \text{ is a TM and } |L(M)| \ge 17\}.$
 - (a) Show that L is Turing-recognizable.
 - (b) Show that L is undecidable.
 - (c) Given (a) and (b), what can you conclude about \overline{L} ?
- 6. Define the language

$$R_{\mathsf{TM}} := \{ \langle M, w \rangle : M \text{ is a TM}, w \text{ a string, and } M \text{ rejects } w \}$$
.

Show that R_{TM} is Turing-recognizable and undecidable.

7. Let $f: \Sigma^* \to \Sigma^*$ be a function such that, for every TM M and string w, $f(\langle M, w \rangle) = \langle t \rangle$ where t is a natural number such that, if M accepts w, it does so in $\leq t$ steps. (We make no assertions about t if M does not accept w.) Show that f is not computable.