CSCE 551/MATH 562, Homework 2 due Monday 2/12/2024

Exercise 1.19: Use the procedure described in Lemma 1.55 to convert the following regular expressions to nondeterministic finite automata.
b. $\left(\left((00)^{*}(11)\right) \cup 01\right)^{*}$

Exercise 1.21: Use the procedure described in Lemma 1.60 to convert the following finite automata to regular expressions.
b. [Given in tabular form (this is a DFA):]

$$
\begin{array}{r|cc}
& \mathrm{a} & \mathrm{~b} \\
\hline \rightarrow * 1 & 2 & 2 \\
2 & 2 & 3 \\
* 3 & 1 & 2
\end{array}
$$

Exercise 1.29: Use the pumping lemma to show that the following languages are not regular.
b. $A_{2}=\left\{w w w \mid w \in\{\mathrm{a}, \mathrm{b}\}^{*}\right\}$
c. $A_{3}=\left\{\mathrm{a}^{2^{n}} \mid n \geq 0\right\}$ (Here, $\mathrm{a}^{2^{n}}$ means a string of $2^{n} \mathrm{a}$'s.)

Problem 1.40: Recall that a string x is a prefix of string y if a string z exists where $x z=y$, and that x is a proper prefix of y if in addition $x \neq y$. In each of the following parts, we define an operation on a language A. Show that the class of regular languages is closed under that operation.
b. $\operatorname{NOEXTEND}(A)=\{w \in A \mid w$ is not a proper prefix of any string in $A\}$. [Note: I have corrected the textbook's wording, changing "the" to "a" because a string can have many proper prefixes.]

Problem 1.43: Let A be any language. Define $\operatorname{DROP-OUT}(A)$ to be the language containing all strings that can be obtained by removing one symbol from a string in A. Thus,

$$
\operatorname{DROP-OUT}(A)=\left\{x z \mid x y z \in A \text { where } x, z \in \Sigma^{*}, y \in \Sigma\right\}
$$

Show that the class of regular languages is closed under the $D R O P-O U T$ operation. Give both a proof by picture and a more formal proof by construction as in Theorem 1.47.

Non-Textbook Exercise 1: Let $\Sigma:=\{\mathrm{a}, \mathrm{b}\}$, and let L be the language of all strings $w \in \Sigma^{*}$ such that a b occurs somewhere in the second half of w, that is,

$$
L:=\left\{w \in \Sigma^{*}:\left(\exists t, u \in \Sigma^{*}\right)[w=t \mathbf{b} u \&|t|>|u|]\right\}
$$

Show that L is not pumpable (hence not regular by the Pumping Lemma).
Non-Textbook Exercise 2: Let $\Sigma:=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$. For any $w \in \Sigma^{*}$, let $\operatorname{More} A(w)$ be the set of all possible strings obtained from w by replacing each occurrence of a in w with a string of one or more a's (not necessarily the same number for each occurrence). So for example,

$$
\begin{aligned}
\operatorname{More} A(\mathrm{bc}) & =\{\mathrm{bc}\} \\
\operatorname{More} A(\mathrm{bac}) & =\{\mathrm{bac}, \text { baac, baaac, } \ldots\} \\
\operatorname{More} A(\mathrm{baca}) & =\{\text { baca, baaca, bacaa, baacaa, } \ldots\}
\end{aligned}
$$

For any language $L \subseteq \Sigma^{*}$, define

$$
\operatorname{More} A(L):=\bigcup_{w \in L} \operatorname{More} A(w)
$$

that is, the result of applying $\operatorname{More} A()$ to every string in L and collecting the resulting strings into a language.

Show that if L is regular, then $\operatorname{More} A(L)$ is regular.

