# CSCE 551/MATH 562, Homework 1 due Monday $1 / 29 / 2024$ 

The numbered exercises are from the textbook, written out for the purpose of comparing your book version's exercises with mine. (Note: "state diagram" is the same as "transition diagram.") You must do the exercises as worded below.

Exercise 1.4: Each of the following languages is the intersection of two simpler languages. In each part, construct DFAs for the simpler languages, then combine them using the construction discussed in footnote 3 (page 46) to give the state diagram of a DFA for the language given. In all parts, $\Sigma=\{\mathrm{a}, \mathrm{b}\}$.
c. $\{w \mid w$ has an even number of a's and one or two b's $\}$
e. $\{w \mid w$ starts with an a and has at most one b $\}$

Exercise 1.5: Each of the following languages is the complement of a simpler language. In each part, construct a DFA for the simpler language, then use it to give the state diagram of a DFA for the language given. In all parts, $\Sigma=\{\mathrm{a}, \mathrm{b}\}$.
d. $\left\{w \mid w\right.$ is any string not in $\left.\mathbf{a}^{*} \mathbf{b}^{*}\right\}$
f. $\left\{w \mid w\right.$ is any string not in $\left.\mathrm{a}^{*} \cup \mathrm{~b}^{*}\right\}$

Exercise 1.6: Give state diagrams of DFAs recognizing the following languages. In all parts, the alphabet is $\{0,1\}$.
c. $\{w \mid w$ contains the substring 0101 (i.e., $w=x 0101 y$ for some $x$ and $y$ ) $\}$
l. $\{w \mid w$ contains an even number of 0's or contains exactly two 1's $\}$

Exercise 1.7: Give state diagrams of NFAs with the specified number of states recognizing each of the following languages. In all parts, the alphabet is $\{0,1\}$.
b. The language of Exercise 1.6 c with five states
c. The language of Exercise 1.61 with six states

Exercise 1.16: Use the construction given in Theorem 1.39 to convert the following two nondeterministic finite automata to equivalent deterministic finite automata.
b. [Given in tabular form:]

|  | a | b | $\varepsilon$ |
| ---: | :---: | :---: | :---: |
| $\rightarrow 1$ | $\{3\}$ | $\emptyset$ | $\{2\}$ |
| $* 2$ | $\{1\}$ | $\emptyset$ | $\emptyset$ |
| 3 | $\{2\}$ | $\{2,3\}$ | $\emptyset$ |

Not in Textbook 1: Consider the DFA $A$ (below left) over the alphabet $\{0,1\}$ :


1. Fill in the distiguishability table to the right with X in each entry corresponding to a pair of distinguishable states.
2. Draw (as a transition diagram) the minimal DFA equivalent to $A$.

Not in Textbook 2: Consider the following DFA $A$ (given in tabular form):

$$
\begin{array}{r|cc} 
& 0 & 1 \\
\hline \rightarrow * q_{0} & q_{0} & q_{1} \\
q_{1} & q_{2} & q_{0} \\
q_{2} & q_{1} & q_{2}
\end{array}
$$

Show that $L(A)$ is the language of all binary representations of natural numbers that are multiples of 3 . (Here we assume $\varepsilon$ represents the number zero, which is a multiple of 3.) Hint: Prove the stronger statement that, for $k \in\{0,1,2\}$, the computation of $A$ on input string $w$ ends in state $q_{k}$ iff $w$ represents a number whose remainder is $k$ when divided by 3 . Make this argument by induction on $|w|$.

