
CSCE 355 Programming Assignment

May 30, 2025

For the programming portion of the course (15% of your total grade) you are to write programs
that do two things:

1. Take the description of an ε-NFA and output an equivalent NFA without ε-transitions, and

2. Take the description of an NFA N (with no ε-transitions) and a list of strings as input and
output the acceptance/rejection result of running N on each string in the list.

For (1), you should implement the method described in class or in the course notes starting on
page 29 (Method 2). For (2), you should implement the set-of-states approach described in class.

Details

The grading of your work will be automated via scripts running on Linux (These scripts are found
from the project homepage: https://cse.sc.edu/~fenner/csce355/prog-proj1/index.html).
Therefore we are requiring you to stick to a simple, uniform interface for your program: Your
program must be able to be run via a simple command-line invocation on one of the GNU/Linux
boxes in the department’s linux lab (e.g., l-1d43-12.cse.sc.edu), and all I/O will be ASCII text.
Input is read either from a text file (given as a command line argument) or standard input (or both),
and output is written to standard output. You may write your program in any programming
language you want, provided it is implemented on the Linux machines in the CSCE lab. We
recommend Java or C or C++ or Perl or Python or Ruby or ML or Haskell or Prolog or Scheme
or To repeat: your program (after compiling, if necessary) should be a stand-alone executable
that can be run directly from the Linux shell, requiring no special user interface to execute (e.g.,
Eclipse).1 More about this below.

This assignment is not meant to be overly taxing or time-consuming. Most of the time spent
will probably be to get the input parsed correctly.

Here are more specific details for each of the two items above:

Removing ε-moves. First read the description of an ε-NFA from a file named by the first com-
mand line argument (see below for information about the format of this description). Output
the equivalent NFA in the same format to standard output. You should not change state
labels (the output state set is the same as the input state set).

1It’s OK if we need to invoke the JVM by preceding your main class name with “java” on the command line.

1

https://cse.sc.edu/~fenner/csce355/prog-proj1/index.html

Simulating an NFA. First read the description of the NFA (same format as above, but with no
ε-transitions) from a file named by the command line argument. Next read a series of zero or
more strings from standard input. These are inputs to the NFA. Each string will take up an
entire line of text, ending with a newline character (which is not included in the string). For
each string, write to standard output either “accept” or “reject” according to the behavior of
the NFA on the string. End each output word with a newline.

In both cases, you may assume that the inputs adhere to their respective formats, i.e., you won’t
need to error-check the input. Note that all the input ε-NFAs are from text files given as command
line arguments, and input strings for the simulation are read from standard input. Your programs’
“official” output goes to standard output (not a text file), but you may also print anything you
want to standard error; the grading program will ignore anything sent to standard error.2

Your code should be economically written, well-structured, and well-commented, following the
common stylistic guidelines of the programming language you use. The code should also be rea-
sonably efficient, but this is a secondary requirement. If your code runs correctly and within the
alotted time (11 seconds), we won’t really look too closely at the source code. If it does not run
correctly or times out, however, the source code style might make some difference.

ε-NFA and NFA description format

We will use a common ASCII text format for describing automata. If you read an ε-NFA or NFA
description as input, you can expect it to be in this format, i.e., you don’t need to error-check the
description. If you write an NFA as output, you must use the same format. The same format will
be used for both ε-NFAs and NFAs without ε-transitions; the only difference is that for the latter,
the ε-transitions will all be the empty set. This allows the flexibility of using the output of one
program as the input to the other. The format is meant to be both simple to parse and easily
readable by humans.

Below is a sample description of an 8-state ε-NFA N that accepts a string over {a, b} iff it is
either ab repeated zero or more times or aba repeated zero or more times. (That is, it recognizes
the language L((ab)∗ + (aba)∗).) The tabular form is

ε a b

→ 0 {1, 4} ∅ ∅
∗1 ∅ {2} ∅
2 ∅ ∅ {3}
3 {1} ∅ ∅
∗4 ∅ {5} ∅
5 ∅ ∅ {6}
6 ∅ {7} ∅
7 {4} ∅ ∅

The corresponding ASCII file format looks like this:

2We call the three I/O streams open by default on GNU/Linux programs standard input (buffered keyboard input
by default), standard output (buffered screen output by default), and standard error (unbuffered output sent to the
screen by default, even if standard input and output are redirected by the system). Some programming environments
may use different names for these streams, e.g., C programs using stdio.h for high-level I/O call these stdin, stdout,
and stderr, respectively; C++ programs typically use cin, cout, and cerr for the same purpose.

2

Number of states: 8

Alphabet size: 2

Accepting states: 1 4

{1,4} {} {}

{} {2} {}

{} {} {3}

{1} {} {}

{} {5} {}

{} {} {6}

{} {7} {}

{4} {} {}

Generally,

• The first line starts with “Number of states: ” followed by a single positive decimal integer
giving the number of states of the ε-NFA N . If N has n states, then we assume that the state
set is Q = {0, 1, 2, . . . , n − 1}, with 0 always being the start state. You may assume that N
will never have more than 64 states.

• The second line starts with “Alphabet size: ” followed by a single positive decimal integer
giving the size of N ’s alphabet. Assume that N ’s alphabet is an initial segment of the
lowercase letters a, b, c, . . . , z. So for example, if the alphabet size is 2, then N ’s alphabet is
{a, b}; if the size is 5, then the alphabet is {a, b, c, d, e}, etc. The alphabet size will always be
between 1 and 26, inclusive.

• The third line starts with “Accepting states: ” followed by a list of nonnegative integers
indicating the states that are accepting. Consecutive numbers are separated by whitespace
(i.e., a string of one or more spaces and/or tabs) and should appear in increasing order.

• The rest of the description consists of the guts of the transition table. The rows of the
table (each terminated with a newline character) correspond to the states of N in numerical
order. Each row consists of a sequence of sets of nonnegative integers, optionally separated
by whitespace. The first set gives the possible ε-transitions and the rest give the transitions
on each alphabet symbol in alphabetical order. Each set consists of a comma-separated list
of zero or more nonnegative integers in increasing order, surrounded by curly braces. No
whitespace is allowed anywhere between the braces. Whitespace is allowed (but not required)
between sets and at the beginning and/or end of the line.

You may assume that all input ε-NFAs adhere to these format rules, and your output automaton
must also adhere to these rules. Remember: the format for an NFA without ε-transitions is the
same as with ε-NFA; there will still be entries (the first entry of each row) corresponding to ε-
transitions, but all these entries will be the empty set. In the example above, here is the equivalent
NFA without ε-transitions, given in the proper format:

Number of states: 8

Alphabet size: 2

Accepting states: 0 1 3 4 7

{} {2,5} {}

3

{} {2} {}

{} {} {3}

{} {2} {}

{} {5} {}

{} {} {6}

{} {7} {}

{} {5} {}

To ensure a unique output to your ε-transition removal program, you are required to preserve the
order of states in the output, i.e., don’t permute states. You are not required to line up the sets
neatly in columns (as I did above), and there will be no penalty for ugly output, as long as the
formatting rules are observed. (The output will be checked automatically by a script that strips
all whitespace from each row of the transition table.) The format rules allow you the option of
indenting and lining up the columns for your own sake, however, and you must also allow these
options in the input files.

For your simulation program, you may assume that the first set in each row of the transition
table is the empty set {}.

Notes and Hints

You can always assume that the input ε-NFA will have 64 or fewer states. It is no coincidence
that 64 is the number of bits in a machine word on most modern computer architectures, including
Intel. (One completely optional way to take advantage of this is to represent a set of states as a
bit mask in your simulation program.) You cannot assume any a priori bound on the number or
lengths of strings on which you need to simulate the NFA, however. A string may be ε (indicated
by an empty line) or it may be millions of characters long.

One way to test your ε-transition removal program is to take its output as input to the same
program. In this case, the resulting output should be identical to the input.

Your programs perform some tasks that are common between them, like reading an automaton
from input. To economize code and simplify debugging, it is a good idea to share common code
rather than duplicating it between your programs.

Testing and Grading

As we mentioned, your project will be graded automatically. We will use the Perl script project-test.pl
and test files in a test suite directory to test and grade your project. All these files are available to
you from the project homepage, so that you can see how your code will be tested and even run the
test program yourself to see in advance how well you do. Just to be perfectly clear: we will grade
your project by running the script project-test.pl on it with owner privileges using one of the
Linux lab machines. We will not run your code personally. The comments produced by that script
will determine your grade. This means that you will not get credit for attempting to do something.
You will only get credit for what actually works, as determined by the project-test.pl script.

4

Submission

Submission will be via Blackboard. Upload a single file, either a .zip file or a .tar.gz file, containing

1. all your source code files, which should all be in the same directory, i.e., no subdirectories
(and no automatically generated files, please),

2. an optional file readme.txt with anything you want to tell us (we will read this with our own
eyes), and

3. for each of your two programs, a “build-run” text file giving Linux (bash) shell commands
to compile and/or run the program performing each task. The two build-run files should be
named e-remove.txt and simulate.txt, respectively, for the ε-transition removal program
and the simulation program. See below for the contents of these files.

IMPORTANT NOTE: You must use either the ZIP format (file extension .zip) or the GZIPPED
TAR format (file extension .tar.gz) for your submission file. Your file will be de-archived either
with unzip or with gunzip; tar -xf, depending on your file name’s extension. Do not use any
other archive format, particularly the RAR format, which is proprietary to Windows (I personally
do not have Windows on any machine I use). If you deviate from the allowed formats, you risk
getting zero credit for the entire assignment. Keep in mind that Linux file names are case-sensitive.

Examples of build-run files

Suppose you implement the ε-transition removal program in Java, and your main class is called
MyEpsilonRemover. Then your e-remove.txt file would look like this:

Lines like these are comments and will be ignored

Build:

javac MyEpsilonRemover.java

Run:

java MyEpsilonRemover

Don’t include command line arguments to the run command!

The indenting is optional.

For another example, suppose you implement the NFA simulation program in C as a single compi-
lation unit called my simulator.c. Then your simulate.txt file would look something like this:

Build:

gcc my_simulator.c

mv a.out my_simulator

Run:

./my_simulator

Again, no command line arguments, please. They will be supplied automatically.

Note that you can have any number of build commands, and they will be executed in order (in the
directory containing your source files) before the run command. Always give the Build commands
first before the Run command.

5

Suppose instead that you have several compilation units for your programs, including shared
code, and a complicated build procedure, but you have a single Makefile controlling it all, capable
of producing an executable called my simulator and maybe my e remover as well. Then the
simulate.txt file can just look something like this:

Build:

make -B my_simulator

Run:

./my_simulator

and the e-remove.txt file would look similar. (Use the -B option or --always-make option with
make; it will build your entire program from source regardless of any intermediate files.)

As a final example, suppose you implement the simulator in Python, which is a scripting lan-
guage that can be run directly without a compilation step. Then your simulate.txt file might
look like this:

Build:

Run:

python my_simulator.py

You still need to say "Build:" even though there are no build commands.

Finally, be sure your CSE Dropbox account exists and is accessible. Do this early on to avoid
last-minute glitches.

A Windows vs. Linux pitfall

Windows-based text files end each line with the two-character sequence \r\n (carriage return,
newline), and GNU/linux/Mac OSX and similar systems expect only an \n ending each line. We
strongly recommend against doing your development on a Windows box, but if you absolutely
must, be aware that the files e-remove.txt and simulate.txt may not work properly with the
test script if they are copied over without newline conversion. (This is the cause of many mysterious
failures when running the test script.) Our Linux boxes support the scc command. Running

scc my_text_file.txt

converts all \r\n sequences to \n in my text file.txt. (Note that this command alters the
contents of the file and does not produce a backup copy.)

Do Your Own Work

The code you write and submit must be yours alone. You may discuss the homework with others
at the conceptual level (see the next paragraph), but you may not copy code directly from any
other source, even if you modify it afterwards. Likewise, you must take all reasonable precautions
not to let your code be copied by anyone else, either in this class or in future classes. This includes
uploading or developing your code on a web platform—such as SourceForge or GitHub—in a way
that can be seen by others. Violating this policy constitutes a violation of the Carolina Honor
Code, and will have serious consequences, including, but not limited to, failure of the course.

6

Discussing the project with others in the class is allowed (even encouraged), but you must
include in your readme.txt file the names of those with whom you discussed the project.

If you have any questions about what this policy means, please review the relevant section of
the course syllabus or ask me.

7

