String himrontephismb,
Def: Let Σ and Γ be alphabets A (string) homomorphism from \sum to Γ is a map $\varphi_{i}: \Sigma^{*} \rightarrow 𠃌^{*}$ that preserves concatenation: That is, for any $x, y \in \sum^{*}$ If $\left\{\begin{array}{l}\varphi(x)=v \\ \varphi(\eta)=r r\end{array}\right\}$ then $\varphi(x n)=v w$
Basic fact: If φ is a homomarphison as cibive, then $\varphi(\varepsilon)=\varepsilon$.
Proof: $\underbrace{\varphi(\varepsilon)}_{\text {length } L}=\varphi(\varepsilon \varepsilon)=\frac{\varphi^{\prime}(\varepsilon) \varphi(\varepsilon)}{\text { length } 2 R}$
Thus $l=22, \therefore L=0$, thatis, $k(\varepsilon))=0$

$$
\therefore \varphi(\varepsilon)=\varepsilon \text {. "om }
$$

Basic fact: φ is completely determined by how it maps un: not η staring of length 1.
"Proof": $w \in \Sigma^{*}$ arbitraro . $w=w_{1} w_{2} \cdots m_{n} \quad(n=\mid w)$,

$$
\begin{aligned}
\varphi(w) & =\varphi\left(w_{1}, w_{2} \cdots m_{n}\right)=\varphi\left(w_{1}\right) \varphi\left(w_{2} \cdots w_{0}\right) \quad w_{2} \epsilon \\
& =\varphi\left(w_{1}\right) \varphi\left(r_{2}\right) \varphi\left(w_{3} \cdots w_{n}\right)=\cdots=\varphi\left(m_{1}\right) \cdots \varphi\left(w_{0}\right) .
\end{aligned}
$$

Converse: ans map from \sum to $\Gamma *$ is uniquely extendable to a hromom. $\Sigma^{*} \rightarrow \Gamma^{*}$.
Ex: $\sum=\{a, b, c\}, \Gamma=\{0,1\}$

$$
\begin{aligned}
& \varphi(a)=100 \\
& \varphi(b)=11 \\
& \varphi(a)=\varepsilon
\end{aligned}>\quad \varphi(a b a c b c a)
$$

4: $\Sigma^{*} \rightarrow \Gamma^{*}$ hombre. $L \subseteq \Sigma^{*}$
Define $\varphi(L):=\{\varphi(w): w \in L\} \subseteq \Gamma^{*}$
For ann $L^{\prime} \leqslant \Gamma^{*}$, define

$$
\varphi^{-1}\left(L^{\prime}\right):=\left\{w \in \mathcal{L}^{x}: \varphi(m) \in L^{\prime}\right\}
$$

in rose brow. imine of L'
The: Let $\varphi: \Sigma^{*} \rightarrow \Gamma^{*}$ be a broom. and let $L \leqslant \Sigma^{*}$. If L is regular, then $\varphi(L)$ is regular
Pf: By induction on regex syntax: Let r be any regex over \sum. We define r^{\prime} regex over Γ snit that $\varphi(L(r))=L\left(r^{\prime}\right)$ Since L is regular, there exists an r such that $L=L(r)$. Then $\varphi(L)=L\left(r^{\prime}\right)$ hence regnher.]

Tuble describing r^{\prime} for arry r :

[skipping prorf of correcitiess]

$$
\begin{array}{rlrl}
E x: & \varphi(a) & =100 & r=(a b+b c)^{*}(a+b) \\
\varphi(b) & =11 & r^{\prime}=(10011+11)^{*}(100+11) \\
\varphi(c) & =\varepsilon & r^{\prime}
\end{array}
$$

Thm: $\varphi: \Sigma^{*} \rightarrow \Gamma^{*}$ h.mom. $L \subseteq \Gamma^{*}$ arbitival.
If L is regnatar, then $\varphi^{-1}(L)$ is regular.
Proof idex: Consider a DFA D recognizing L. Build a DFA D^{\prime} recoanjzing $\varphi^{n}(L)$

$$
\begin{aligned}
& \varphi(a)=100 \\
& \varphi(b)=11 \\
& \varphi(c)=\varepsilon
\end{aligned}
$$

$r=a b c$ Reading w, gr to the same
$\varphi(v)=|t 01|$ state in D as if readiong $\varphi\left(v^{\prime}\right)$.

Formally: Let $D=\left\langle Q, \Gamma, \delta, q_{0}, F\right\rangle$.
Then $D^{\prime}:=\left\langle Q, \Sigma, \delta^{\prime}, q_{0}, F\right\rangle$
where, for any $q \in Q$ and $a \in \sum$,

$$
\delta^{\prime}(q, a):=\hat{\delta}(q, \varphi(a))
$$

$\frac{\text { Proof }}{\text { (skipped) }}$ string induration that $L\left(D^{\prime}\right)=\varphi^{-1}\left(\left(D D^{\prime}\right)=\varphi^{-1}(2)\right.$. (skipped)
Uses of regexes:-text search *. doc ex.
-token recognition in prog. Tangs
int constants
fp "
idmutiers

Shortharids: $\varepsilon:=\phi_{m \text { * }}^{*}$ (matlhes ε and nithiy eter)
R,S regexes

$$
\begin{aligned}
& R \mid S:=R+S \\
& R+:=R R^{*} \quad \text { (1 or more } R^{\prime} s \text {) } \\
& R ?:=R+\varepsilon
\end{aligned}
$$

$\left.R\right|^{\text {nn }}($ optiond R)
Charauter clazzes: o or a acurrentes of R

$$
\begin{aligned}
& {[a b c]:=(a+b+c)} \\
& {[a-z]:=(a+b+c+\cdots+z)}
\end{aligned}
$$

$\frac{\text { Intcunstants }}{(\text { unsigned })}:[0-9]+$

FP constants: 21 digits followed by ":" followed by $\geqslant 1$ digits followed by optional exponent (letter E frllemed bjppsismilild int cost)

$$
[0-9]+":[0-9]+([e E][+-] ?[0-9]+) ?
$$

Def: Let $L \subseteq \sum^{*}$ be language. Say that L is pumpable if

(Lemma (Pumping Lemmas): Every regular language is phmpible.

Ex:

let $p: A$ of statics of D

