CSCE 355, Spring 2024, Assignment 5
 Due April 3, 2024 at 11:30pm

First we review the pumping lemma for context-free languages.
Definition 1. We say that a language L is CFL-pumpable iff
there exists an integer $p>0$ such that
for all strings $s \in L$ with $|s| \geq p$,
there exist strings u, v, w, x, y with $u v w x y=s,|v w x| \leq p$, and $|v x|>0$, such that for every integer $i \geq 0$, $u v^{i} w x^{i} y \in L$.

We will prove this in class:
Lemma 2 (Pumping Lemma for Context-Free Languages). For any language L, if L is context-free, then L is CFL-pumpable.

From now one in this homework handout, "pumpable" will always mean CFL-pumpable.
Here is the contrapositive of the lemma, which is an equivalent statement:
Lemma 3 (Pumping Lemma for CFLs (contrapositive form)). For any language L, if L is not pumpable, then L is not context-free.

We will use the contrapositive form to prove that certain languages are not CFLs by showing that they are not pumpable. By definition, a language L is not pumpable iff
for any integer $p>0$,
there exists a string $s \in L$ with $|s| \geq p$ such that
for all strings u, v, w, x, y with $u v w x y=s$ and $|v w x| \leq p$ and $|v x|>0$,
there exists an integer $i \geq 0$ such that $u v^{i} w x^{i} y \notin L$.

Here is a template for a proof that a language L is not pumpable (and hence not context-free). Parts in brackets are to be filled in with specifics for any given proof. This is very much analogous to using the pumping lemma for regular languages.

Given any $p>0$,
let $s:=[$ describe some string in L with length $\geq p]$.
Now for any u, v, w, x, y with $u v w x y=s$ and $|v w x| \leq p$ and $|v x|>0$,
let $i:=[$ give some integer ≥ 0 which might depend on p, s, u, v, w, x, and y].
Then we have $u v^{i} w x^{i} y \notin L$ because [give some reason/explanation].
Note:

- We cannot choose p. The value of p could be any positive integer, and we have to deal with whatever value of p is given to us.
- We can and do choose the string s, which will differ depending on the given value of p (so the description of s has to use p somehow). We must choose s to be in L and with length $\geq p$, however.
- We cannot choose u, v, w, x, or y. These are given to us and could be any strings satisfying $u v w x y=s,|v w x| \leq p$, and $|v x|>0$.
- We get to choose $i \geq 0$ based on all the previous values.

Example (given in class): Let $L:=\left\{a^{n} b^{n} c^{n} \mid n \geq 0\right\}$. We show that L is not pumpable using the template:

Given any $p>0$,
let $s:=a^{p} b^{p} c^{p}$. (Clearly, $s \in L$ and $|s| \geq p$.)
Now for any u, v, w, x, y with $u v w x y=s$ and $|v w x| \leq p$ and $|v x|>0$,
let $i=0$.
Then we have $u v^{i} w x^{i} y=u v^{0} w x^{0} y=u w y \notin L$, which can be seen as follows: Since $v w x$ and is a substring of s of length $\leq p$, it cannot contain both an a and a c. Then since $|v x|>0$, uwy has length strictly less than $|s|=3 p$ but still has p many occurrences of either a or c. Thus uwy cannot have equal numbers of a, b, and c, and so $u w y \notin L$. It follows that L is not pumpable (hence not a CFL).

Exercises

1. (Optional but worth the effort)

Textbook Exercise 5.1.1: Design context-free grammars for the following languages:
(c): The set of all strings of a 's and b 's that are not of the form $w w$, that is, not equal to any string repeated.
(d): The set of all strings with twice as many 0 's as 1 's.
2. We proved that the regular languages are closed under (string) homomorphic images (this is also in the textbook). Is the same true for the context-free languages? Explain.
3. Do textbook Exercise 6.1.1(b,c) on pages 233-234. (Part (a) has a solution on the book's website.)
4. Do textbook Exercise 6.2.1(b,c) on page 241. (Part (a) has a solution on the book's website.)
5. Do textbook Exercise 6.3.2 (Exercise 6.3.1 is similar and has a solution on the book's website):

Textbook Exercise 6.3.2: Convert the grammar

$$
\begin{aligned}
& S \rightarrow a A A \\
& A \rightarrow a S|b S| a
\end{aligned}
$$

to a PDA that accepts the same language by empty stack.
6. Consider the 1 -state restricted PDA $P=\left(\{q\},\{0,1\},\left\{X, Z_{0}\right\}, \delta, q, Z_{0}\right)$, where δ is given by

$$
\begin{array}{rlr}
\delta\left(q, 0, Z_{0}\right) & =\{(q, \text { push } X)\} & \\
\delta(q, q, 1, X)=\{(q, \text { pop })\} \\
\delta(q, 0, X) & =\{(q, \text { push } X)\} & \\
\delta\left(q, \epsilon, Z_{0}\right)=\{(q, \text { pop })\}
\end{array}
$$

(a) Using either the method of the book or the method I described in class, convert P to an equivalent context-free grammar.
(b) (Optional) Simplify your grammar of the last problem as much as possible.

This is similar to Exercise 6.3.3, which has a solution on the textbook's website.
7. Show that the language $L:=\left\{w w \mid w \in\{0,1\}^{*}\right\}$ is not pumpable (and hence not a CFL by the Pumping Lemma for CFLs).
8. Consider the standard, 1-tape Turing machine $M:=\left\langle Q, \Sigma, \Gamma, \delta, q_{0}, B, F\right\rangle$ with input alphabet $\Sigma:=\{0,1\}$ and tape alphabet $\{0,1, x, B\}$ (B is the blank symbol) given by the following transition diagram:

Give the complete computation path (sequence of IDs) of M on input "0101" (without the double quotes).

