# CSCE 355, Spring 2024, Assignment 4 <br> Due March 13, 2024 at 11:30pm 

## Pumping Lemma Review

Here we review the Pumping Lemma for regular languages. This relates to Exercise 8, below.
Definition 1. We say that a language $L$ is pumpable iff
there exists an integer $p>0$ such that
for all strings $w \in L$ with $|w| \geq p$,
there exist strings $x, y, z$ with $x y z=w$ and $|x y| \leq p$ and $|y|>0$ such that for every integer $i \geq 0$,

$$
x y^{i} z \in L
$$

We prove this in class:
Lemma 2 (Pumping Lemma for Regular Languages). For any language $L$, if $L$ is regular, then $L$ is pumpable.

Here is the contrapositive, which is an equivalent statement:
Lemma 3 (Pumping Lemma (contrapositive form)). For any language L, if $L$ is not pumpable, then $L$ is not regular.

We use the contrapositive form to prove that certain languages are not regular by showing that they are not pumpable. By definition, a language $L$ is not pumpable iff
for any integer $p>0$,
there exists a string $s \in L$ with $|s| \geq p$ such that
for all strings $x, y, z$ with $x y z=s$ and $|x y| \leq p$ and $|y|>0$,
there exists an integer $i \geq 0$ such that

$$
x y^{i} z \notin L .
$$

Here is a template for a proof that a language $L$ is not pumpable (and hence not regular). Parts in brackets are to be filled in with specifics for any given proof.

Given any $p>0$,
let $s:=[$ describe some string in $L$ with length $\geq p]$.
Now for any $x, y, z$ with $x y z=s$ and $|x y| \leq p$ and $|y|>0$,
let $i:=[$ give some integer $\geq 0$ which might depend on $p, s, x, y$, and $z]$.
Then we have $x y^{i} z \notin L$ because [give some reason/explanation].

Note:

- We cannot choose $p$. The value of $p$ could be any positive integer, and we have to deal with whatever value of $p$ is given to us.
- We can and do choose the string $s$, which will differ depending on the given value of $p$ (so the description of $s$ has to use $p$ somehow). We must choose $s$ to be in $L$ and with length $\geq p$, however.
- We cannot choose $x, y$, or $z$. These are given to us and could be any strings, except we know that they must satisfy $x y z=s,|x y| \leq p$, and $|y|>0$.
- We get to choose $i \geq 0$ based on all the previous values.

Example: Let

$$
L=\left\{w \in\{0,1\}^{*} \mid w \text { has more 0's than } 1 \text { 's }\right\} .
$$

We show that $L$ is not pumpable using the template:
Given any $p>0$,
let $s:=0^{p} 1^{p-1}$. (Clearly, $s \in L$ and $|s| \geq p$.)
Now for any $x, y, z$ with $x y z=s$ and $|x y| \leq p$ and $|y|>0$,
let $i=0$.
Then we have $x y^{i} z=x y^{0} z=x z \notin L$, which can be seen as follows: Since $|x y| \leq p$ it must be that $x$ and $y$ consist entirely of 0 's, and so $y=0^{m}$ for some $m$, and we further have $m \geq 1$ because $|y|>0$. But then $x z=0^{p-m} 1^{p-1}$, and so because $p-m \leq p-1$, the string $x z$ does not have more 0's than 1's, and thus $x z \notin L$.

## Exercises

1. Consider the DFA $N$ (below left) over the alphabet $\{0,1\}$ :

(a) Fill in the distiguishability table to the right with X in each entry corresponding to a pair of distinguishable states.
(b) Draw the minimal DFA equivalent to $N$.
2. Using the sets-of-states method described in class or in the book, convert the following NFA $N$ (no $\epsilon$-moves) to an equivalent DFA $D$ :

|  | $a$ | $b$ |
| ---: | :---: | :---: |
| $\rightarrow 1$ | $\{1,2\}$ | $\{1\}$ |
| 2 | $\{2\}$ | $\{1,3\}$ |
| $* 3$ | $\emptyset$ | $\emptyset$ |

Only give states of $D$ that are reachable from its start state, and label each state of $D$ with the states of $N$ that it contains. Include all dead states (if there are any), and do not merge indistinguishable states.
3. Consider the regex $r:=(a+b)^{*}(b+c)^{*}$ over the alphabet $\Sigma:=\{a, b, c\}$. Find a regex $r^{\prime}$ such that $L\left(r^{\prime}\right)=\overline{L(r)}$, the complement of $L(r)$ in $\Sigma^{*}$. Do this as follows:
(a) Convert $r$ to an equivalent $\epsilon$-NFA $N$. (You may contract $\epsilon$-transitions provided it is sound to do so.)
(b) Remove $\epsilon$-transitions from $N$ to get an equivalent NFA $N^{\prime}$ using the method described in class and the course notes (Method 2).
(c) Using the sets-of-states construction described in class, convert $N^{\prime}$ into an equivalent DFA $D$. (Only include states of $D$ reachable from its start state.)
(d) (Optional) Minimize $D$ by merging indistinguishable states, if any.
(e) Form the complementary DFA $D^{\prime}:=\neg D$.
(f) Starting with a clean $\epsilon$-NFA equivalent to $D^{\prime}$, find the equivalent regex $r^{\prime}$ by the state elimination method described in class.

As far as anyone knows, there is no general procedure for negating a regex that is significantly faster than going through the steps above. The same holds for finding a regex for the intersection of two languages given by regexes, which would involve the product construction on two DFAs.
4. For any string $w \neq \epsilon$, the principal suffix of $w$ is the string resulting by removing the first symbol from $w$. We will denote this string by $p s(w)$. For any language $L$, define $p s(L):=$ $\{p s(w): w \in L \wedge w \neq \epsilon\}$. Show that if $L$ is regular, then $p s(L)$ is regular. (The underlying alphabet is arbitrary.)
5. (not in the textbook; optional) A string $x$ is a subsequence of a string $y$ (written $x \preceq y$ ) if the symbols of $x$ appear in $y$ in order (although not necessarily contiguously). For language $L \subseteq \Sigma^{*}$, define

$$
\operatorname{SUBSEQ}(L):=\left\{x \in \Sigma^{*}:(\exists y \in L)[x \preceq y]\right\},
$$

that is, $\operatorname{SUBSEQ}(L)$ is the set of all subsequences of strings in $L$. For example, if $L=$ $\{a a b c, c a b\}$, then

$$
\operatorname{SUBSEQ}(L)=\{\epsilon, a, b, c, a a, a b, a c, b c, a a b, a a c, a b c, a a b c, c a, c b, c a b\} .
$$

Show that if $L$ is regular, then $\operatorname{SUBSEQ}(L)$ is regular. [Hint: Two methods will work here: (1) transforming a regular expression for $L$ into a regular expression for $\operatorname{SUBSEQ}(L)$; (2)
transforming an $\epsilon$-NFA for $L$ into an $\epsilon$-NFA for $\operatorname{SUBSEQ}(L)$. By the way, it is known that if $L$ is any language whatsoever, then $\operatorname{SUBSEQ}(L)$ is regular, but the proof of this fact is not constructive.]
6. (! (not in the textbook; optional)) Fix a finite alphabet $\Sigma$. Given string $w \in \Sigma^{*}$, a cyclic shift of $w$ is any string of the form $y x$ where $x, y \in \Sigma^{*}$ are such that $w=x y$. Given language $L \subseteq \Sigma^{*}$, define

$$
\operatorname{cyclicShift}(L):=\left\{y x \mid x, y \in \Sigma^{*} \wedge x y \in L\right\},
$$

the language of all cyclic shifts of strings in $L$. Show that if $L$ is regular, then cyclicShift $(L)$ is regular. [Hint: Using an $n$-state $\epsilon$-NFA recognizing $L$, you can construct an $\epsilon$-NFA recognizing cyclicShift( $L$ ) with about $2 n^{2}$ many states.]
7. (! (not in the textbook; optional)) Let $x$ and $y$ be any two strings over an alphabet $\Sigma$. A merge of $x$ and $y$ is any string over $\Sigma$ obtained by merging the symbols of $x$ with those of $y$ in some arbitrary way, maintaining the order of the symbols from each string. More exactly, a string $z \in \Sigma^{*}$ is a merge of $x$ and $y$ iff there exist strings $x_{1}, \ldots, x_{k}$ and $y_{1}, \ldots, y_{k}$ in $\Sigma^{*}$ (for some $k \geq 0$ ) such that

- $x=x_{1} x_{2} \cdots x_{k}$,
- $y=y_{1} y_{2} \cdots y_{k}$, and
- $z=x_{1} y_{1} x_{2} y_{2} \cdots x_{k} y_{k}$.

For example, there are five different merges of the strings $a b$ and $b c$ :
abbc abcb babc bacb bcab
Let $A$ and $B$ be any languages over $\Sigma$. Define

$$
\text { A merge } B:=\left\{z \in \Sigma^{*} \mid z \text { is a merge of some } x \in A \text { and some } y \in B\right\} \text {. }
$$

Show that if $A$ and $B$ are both regular, then $A$ merge $B$ is regular. Hint: Given a DFA for $A$ with $r$ many states and an DFA for $B$ with $s$ many states, you can construct an NFA for $A$ merge $B$ with $r s$ many states.
8. (Exercise 4.1.1 (selected items)): Prove that the following are not regular languages. For each, show that the given language is not pumpable. [You may use the template given above.]
(a) The set of strings of balanced parentheses. These are the strings of characters "(" and ")" that can appear in a well-formed arithmetic expression.
(b) $\left\{0^{n} 10^{n} \mid n \geq 1\right\}$.
(c) $\left\{0^{n} 1^{m} 2^{n} \mid n\right.$ and $m$ are arbitrary integers $\}$.
(d) $\left\{0^{n} 1^{2 n} \mid n \geq 1\right\}$.
9. Consider the following grammar generating the language of strings of well-balanced parentheses:

$$
S \rightarrow(S) S \mid \epsilon
$$

Give a leftmost derivation of the string $(())$ and a rightmost derivation of the string ()$(()())$. Also give a parse tree yielding each string (two parse trees in all).
10. Describe briefly in words the language $L(G)$, where $G=(\{A, B\},\{a, b, c\}, A, P)$ is a contextfree grammar and the productions in $P$ are

$$
\begin{aligned}
& A \rightarrow a A c \mid B \\
& B \rightarrow \epsilon \mid B c
\end{aligned}
$$

11. Give a context-free grammar for the language $\left\{a^{\ell} b^{m} c^{n} \mid \ell \leq m\right.$ or $\left.m \leq n\right\}$. (Note that the connective is "or," not "and.")
12. Consider the grammar of Exercise 5.1.8. Show that $a b b a$ is generated by the grammar but $a b a$ is not generated by the grammar. (This is a special case of the full exercise.)
