
CSCE 355, Spring 2024, Assignment 4

Due March 13, 2024 at 11:30pm

Pumping Lemma Review

Here we review the Pumping Lemma for regular languages. This relates to Exercise 8, below.

Definition 1. We say that a language L is pumpable iff

there exists an integer p > 0 such that
for all strings w ∈ L with |w| ≥ p,

there exist strings x, y, z with xyz = w and |xy| ≤ p and |y| > 0 such that
for every integer i ≥ 0,

xyiz ∈ L.

We prove this in class:

Lemma 2 (Pumping Lemma for Regular Languages). For any language L, if L is regular, then L
is pumpable.

Here is the contrapositive, which is an equivalent statement:

Lemma 3 (Pumping Lemma (contrapositive form)). For any language L, if L is not pumpable,
then L is not regular.

We use the contrapositive form to prove that certain languages are not regular by showing that
they are not pumpable. By definition, a language L is not pumpable iff

for any integer p > 0,
there exists a string s ∈ L with |s| ≥ p such that

for all strings x, y, z with xyz = s and |xy| ≤ p and |y| > 0,
there exists an integer i ≥ 0 such that

xyiz /∈ L.

Here is a template for a proof that a language L is not pumpable (and hence not regular). Parts
in brackets are to be filled in with specifics for any given proof.

Given any p > 0,
let s := [describe some string in L with length ≥ p].
Now for any x, y, z with xyz = s and |xy| ≤ p and |y| > 0,
let i := [give some integer ≥ 0 which might depend on p, s, x, y, and z].
Then we have xyiz /∈ L because [give some reason/explanation].

1

Note:

• We cannot choose p. The value of p could be any positive integer, and we have to deal with
whatever value of p is given to us.

• We can and do choose the string s, which will differ depending on the given value of p (so
the description of s has to use p somehow). We must choose s to be in L and with length
≥ p, however.

• We cannot choose x, y, or z. These are given to us and could be any strings, except we know
that they must satisfy xyz = s, |xy| ≤ p, and |y| > 0.

• We get to choose i ≥ 0 based on all the previous values.

Example: Let
L = {w ∈ {0, 1}∗ | w has more 0’s than 1’s}.

We show that L is not pumpable using the template:

Given any p > 0,
let s := 0p1p−1. (Clearly, s ∈ L and |s| ≥ p.)
Now for any x, y, z with xyz = s and |xy| ≤ p and |y| > 0,
let i = 0.
Then we have xyiz = xy0z = xz /∈ L, which can be seen as follows: Since |xy| ≤ p it
must be that x and y consist entirely of 0’s, and so y = 0m for some m, and we further
have m ≥ 1 because |y| > 0. But then xz = 0p−m1p−1, and so because p−m ≤ p− 1,
the string xz does not have more 0’s than 1’s, and thus xz /∈ L.

Exercises

1. Consider the DFA N (below left) over the alphabet {0, 1}:

Astart

D

B C

E

0

1

0

1
0

1

0
1

0

1

D

B

C

D

E

A B C

(a) Fill in the distiguishability table to the right with X in each entry corresponding to a
pair of distinguishable states.

(b) Draw the minimal DFA equivalent to N .

2

2. Using the sets-of-states method described in class or in the book, convert the following NFA
N (no ϵ-moves) to an equivalent DFA D:

a b

→ 1 {1, 2} {1}
2 {2} {1, 3}

∗3 ∅ ∅

Only give states of D that are reachable from its start state, and label each state of D with
the states of N that it contains. Include all dead states (if there are any), and do not merge
indistinguishable states.

3. Consider the regex r := (a+ b)∗(b+ c)∗ over the alphabet Σ := {a, b, c}. Find a regex r′ such
that L(r′) = L(r), the complement of L(r) in Σ∗. Do this as follows:

(a) Convert r to an equivalent ϵ-NFA N . (You may contract ϵ-transitions provided it is
sound to do so.)

(b) Remove ϵ-transitions from N to get an equivalent NFA N ′ using the method described
in class and the course notes (Method 2).

(c) Using the sets-of-states construction described in class, convert N ′ into an equivalent
DFA D. (Only include states of D reachable from its start state.)

(d) (Optional) Minimize D by merging indistinguishable states, if any.

(e) Form the complementary DFA D′ := ¬D.

(f) Starting with a clean ϵ-NFA equivalent to D′, find the equivalent regex r′ by the state
elimination method described in class.

As far as anyone knows, there is no general procedure for negating a regex that is signifi-
cantly faster than going through the steps above. The same holds for finding a regex for the
intersection of two languages given by regexes, which would involve the product construction
on two DFAs.

4. For any string w ̸= ϵ, the principal suffix of w is the string resulting by removing the first
symbol from w. We will denote this string by ps(w). For any language L, define ps(L) :=
{ps(w) : w ∈ L ∧ w ̸= ϵ}. Show that if L is regular, then ps(L) is regular. (The underlying
alphabet is arbitrary.)

5. (not in the textbook; optional) A string x is a subsequence of a string y (written x ⪯ y) if
the symbols of x appear in y in order (although not necessarily contiguously). For language
L ⊆ Σ∗, define

SUBSEQ(L) := {x ∈ Σ∗ : (∃y ∈ L)[x ⪯ y]} ,

that is, SUBSEQ(L) is the set of all subsequences of strings in L. For example, if L =
{aabc, cab}, then

SUBSEQ(L) = {ϵ, a, b, c, aa, ab, ac, bc, aab, aac, abc, aabc, ca, cb, cab}.

Show that if L is regular, then SUBSEQ(L) is regular. [Hint: Two methods will work here:
(1) transforming a regular expression for L into a regular expression for SUBSEQ(L); (2)

3

transforming an ϵ-NFA for L into an ϵ-NFA for SUBSEQ(L). By the way, it is known that if
L is any language whatsoever, then SUBSEQ(L) is regular, but the proof of this fact is not
constructive.]

6. (! (not in the textbook; optional)) Fix a finite alphabet Σ. Given string w ∈ Σ∗, a cyclic
shift of w is any string of the form yx where x, y ∈ Σ∗ are such that w = xy. Given language
L ⊆ Σ∗, define

cyclicShift(L) := {yx | x, y ∈ Σ∗ ∧ xy ∈ L} ,

the language of all cyclic shifts of strings in L. Show that if L is regular, then cyclicShift(L) is
regular. [Hint: Using an n-state ϵ-NFA recognizing L, you can construct an ϵ-NFA recognizing
cyclicShift(L) with about 2n2 many states.]

7. (! (not in the textbook; optional)) Let x and y be any two strings over an alphabet Σ. A
merge of x and y is any string over Σ obtained by merging the symbols of x with those of y
in some arbitrary way, maintaining the order of the symbols from each string. More exactly,
a string z ∈ Σ∗ is a merge of x and y iff there exist strings x1, . . . , xk and y1, . . . , yk in Σ∗ (for
some k ≥ 0) such that

• x = x1x2 · · ·xk,
• y = y1y2 · · · yk, and
• z = x1y1x2y2 · · ·xkyk.

For example, there are five different merges of the strings ab and bc:

abbc abcb babc bacb bcab

Let A and B be any languages over Σ. Define

AmergeB := {z ∈ Σ∗ | z is a merge of some x ∈ A and some y ∈ B}.

Show that if A and B are both regular, then AmergeB is regular. Hint : Given a DFA for
A with r many states and an DFA for B with s many states, you can construct an NFA for
AmergeB with rs many states.

8. (Exercise 4.1.1 (selected items)): Prove that the following are not regular languages. For each,
show that the given language is not pumpable. [You may use the template given above.]

(a) The set of strings of balanced parentheses. These are the strings of characters “(” and
“)” that can appear in a well-formed arithmetic expression.

(b) {0n10n | n ≥ 1}.
(c) {0n1m2n | n and m are arbitrary integers}.
(d) {0n12n | n ≥ 1}.

9. Consider the following grammar generating the language of strings of well-balanced paren-
theses:

S → (S)S | ϵ
Give a leftmost derivation of the string (()) and a rightmost derivation of the string ()(()()).
Also give a parse tree yielding each string (two parse trees in all).

4

10. Describe briefly in words the language L(G), where G = ({A,B}, {a, b, c}, A, P) is a context-
free grammar and the productions in P are

A → aAc | B
B → ϵ | Bc

11. Give a context-free grammar for the language {aℓbmcn | ℓ ≤ m or m ≤ n}. (Note that the
connective is “or,” not “and.”)

12. Consider the grammar of Exercise 5.1.8. Show that abba is generated by the grammar but
aba is not generated by the grammar. (This is a special case of the full exercise.)

5

