CSCE 355, Spring 2024, Assignment 3
 Due February 12, 2024 at 11:30pm

1. For the ϵ-NFA of textbook Exercise 2.5.2,

	ϵ	a	b	c
$\rightarrow p$	$\{q, r\}$	\emptyset	$\{q\}$	$\{r\}$
q	\emptyset	$\{p\}$	$\{r\}$	$\{p, q\}$
$* r$	\emptyset	\emptyset	\emptyset	\emptyset

find an equivalent NFA (without ϵ-moves) using the method explained in class. This is also Method 2 described in the COURSE NOTES (link from the course homepage) in Section 10.4.
2. Do Exercise 2.5.3(a): Design an ϵ-NFA for the following language: the set of all strings consisting of zero or more a 's followed by zero or more b 's, followed by zero or more c 's. Try to use ϵ-transitions to simplify your design.
3. Do Problem 2.3 (pp. 81-82). This illustrates a proof by string induction.
4. (a) Show that every regular language is recognized by an ϵ-NFA where out of each state there is no more than one ϵ-transition and no more than one non- ϵ-transition (i.e., a transition on a symbol from the alphabet).
(b) Show that every regular language is recognized by an ϵ-NFA where out of each state there is exactly one ϵ-transition and exactly one non- ϵ-transition (i.e., a transition on a symbol from the alphabet). (A solution to this part is obviously also a solution to the previous part.)
5. Do Exercise 3.1.1(b,c): Write regexes for the following languages:
b) The set of strings of 0 's and 1's whose tenth symbol from the right end is 1 .
c) The set of strings of 0's and 1's with at most one pair of consecutive 1's.
6. (Optional) Do Exercises 3.1.2(b,c) and 3.1.3(a,b,c)
7. Write a regular expression for the language of strings over $\{a, b, c\}$ where no a appears after any b or c.
8. Do Exercise 3.2.3: Convert the following DFA to a regular expression, using the stateelimination technique of Section 3.2.2.

$$
\begin{array}{r||l|l}
& 0 & 1 \\
\hline \hline \rightarrow * p & s & p \\
q & p & s \\
r & r & q \\
s & q & r
\end{array}
$$

9. Do Exercise 3.2.4(c): Convert the following regex to an ϵ-NFA: $\mathbf{0 0}(\mathbf{0}+\mathbf{1})^{*}$.
10. Recall the DFA D we constructed that accepts a binary string iff it has an odd number of 1's:

$$
\begin{array}{r||l|l}
& 0 & 1 \\
\hline \hline \rightarrow A & A & B \\
* B & B & A
\end{array}
$$

(a) Convert D into an equivalent clean ϵ-NFA using the clean-up procedure in class (add a new start state, a new final state, and some ϵ-transitions).
(b) Use the state elimination method to convert D to a regular expression. Eliminate state A first, then B.
11. Same exercise as before, except make A the final state (so that D accepts a string iff it has an even number of 1's).
12. (Optional) Recall the product DFA P that counts an even number of zeros and an odd number of ones:

	0	1
$\rightarrow E E$	$O E$	$E O$
$O E$	$E E$	$O O$
$* E O$	$O O$	$E E$
$O O$	$E O$	$O E$

Use the state elimination method to convert P to a regular expression. (To control the complexity, you may wish to define names for intermediate regexes.)
13. Draw the transition diagram of an ϵ-NFA equivalent to the regex $(a+b c)^{*} a a$. You may (but are not required to) contract ϵ-transitions provided it is safe to do so.
14. Write a regular expression for the language of strings over $\{a, b, c\}$ where no a appears after any b or c.

