CSCE 355, Spring 2024, Assignment 2 Due January 24, 2024 at 11:30pm

NOTE the following definitions:

- The binary alphabet is the set $\{0,1\}$.
- A binary string is any string over the binary alphabet.
- If w is any string, then w^{R} (the reversal of w) is w written backwards, that is, comprising the symbols of w in reverse order.
- A string x is a prefix of a string y iff there exists a string z such that $y=x z$.
- A string x is a suffix of a string y iff there exists a string z such that $y=z x$.
- A string x is a substring of a string y if there exist strings w, z such that $y=w x z$.

1. Consider the following DFA:

(a) For each of the strings below, say which state the DFA is in after reading the string, and say whether or not the DFA accepts the string.
$a a a \quad b b \quad b b b \quad a b a b \quad b b b b b b b b b b b b b b b a a a \quad \varepsilon \quad a a b b b b a b a b b a a a b b a a b b a b a b b b b$
(b) Give two different strings of length 4 that each make the DFA go from state 0 to state 1.
2. Draw a DFA with alphabet $\{0,1\}$ that accepts a binary string x iff x has odd length, i.e., iff $|x|$ is odd.
3. Let A be the DFA given by the following tabular form:

	0	1
$\rightarrow * q_{0}$	q_{0}	q_{1}
q_{1}	q_{2}	q_{0}
q_{2}	q_{1}	q_{2}

(A accepts a binary string iff it represents a multiple of 3.) Recall the DFA described in class (here we'll call it B) that accepts a binary string iff the string ends with 1 :

Recall the product construction from class. Draw the diagram for the product of A and B so the resulting DFA recognizes the language $L(A) \cap L(B)$.
4. Describe a DFA B that accepts a string over the alphabet $\{a, b, c\}$ iff its first and last symbols are different.
5. Consider the following two languages over the alphabet $\{a, b\}$:

$$
\begin{aligned}
& L_{1}=\{w \mid w \text { is either the empty string or ends with } b\}, \\
& L_{2}=\{w \mid \text { there is a } b \text { followed by an } a \text { somewhere in } w\} .
\end{aligned}
$$

(a) Draw a 2 -state DFA recognizing L_{1} and a 3 -state DFA recognizing L_{2}.
(b) Using your answer and the product construction, draw a DFA recognizing $L_{1} \cap L_{2}$. Do not perform any optimizations (e.g., removing unreachable states or transitions, or merging indistinguishable states).
6. Give the transition diagram for a DFA over the alphabet $\Sigma=\{a, b, c\}$ that accepts a string w iff w contains $a b$ as a substring but does not contain $a b b$ as a substring. What is the least number of states you need?
7. (Optional) This exercise is adapted from Exercise 2.2 .1 on pages 52-53, which is formulated somewhat vaguely. Consider the marble-rolling toy (redrawn from Figure 2.8):

A marble is dropped at A or B. Levers x_{1}, x_{2}, and x_{3} cause the marble to fall either to the left or to the right. whenever a marble encounters a lever, it causes the lever to reverse after the marble passes, so the next marble will take the opposite branch.
Model this toy as a finite automaton. An input to the atomaton is a string over the alphabet $\{A, B\}$, which represents a sequence of marbles being dropped into the toy. The toy is initially in the configuration above before any marbles are dropped (so that the first ball will exit at C regardless of where it is dropped). Say that a sequence of marble drops is accepted exactly in the case that if one additional marble were to be dropped in, it would go out through D regardless of where it was dropped.

