
CSCE 317
Spring 2014

First Midterm Exam, Answer Key

1. (Probabilistic routing between servers; 15 points total) Consider the network below,
consisting of two servers:

r1

r2

p1,out

p12

p2,out

p21

µ1

µ2

Server 1

Server 2

Jobs leaving each server are routed at random according to the probabilities shown, where
p1,out = 0.6 and p2,out = 0.1. Incoming jobs from the outside are sent to the two servers at
average rates r1 and r2, respectively. Suppose that r2 = 5 (jobs/sec).

(a) (10 points) For i = 1, 2, find an exact, simplified expression (in terms of r1) for the
average rate λi of jobs entering Server i.

(b) (5 points) Suppose that µ1 = µ2 = 10. How big can r1 be before the system becomes
unstable? Which server causes the bottleneck?

Answer:

(a) We deduce that p12 = 1−p1,out = 0.4 and p21 = 1−p2,out = 0.9 to get the two equations

λ1 = r1 + p21λ2 = r1 + 0.9λ2 ,

λ2 = r2 + p12λ1 = 5 + 0.4λ1 .

Substituting, we get

λ1 = r1 + 0.9(5 + 0.4λ1) = r1 + 4.5 + 0.36λ1

0.64λ1 = r1 + 4.5

λ1 =
r1 + 4.5

0.64
=
r1 + 9/2

16/25
=

25

16
r1 +

225

32
= 1.5625r1 + 7.03125 ,

λ2 = 5 +
2

5

(
25

16
r1 +

225

32

)
=

5

8
r1 +

125

16
= 0.625r1 + 7.8125 .
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(b) Setting λ1 < 10 and solving for r1 gives r1 < 1.9. Setting λ2 < 10 and solving for r1
gives r1 < 3.5. Since both must be true, we have that r1 < 1.9, and Server 1 is the
bottleneck.

2. (Bernoulli trials; 10 points) At an arcade game, you get to toss a ball at a target six times.
To win the prize, you must hit the target at least twice out of the six tries. Your accuracy
is such that each toss has a 0.1 chance of hitting the target, independent of the other tosses.
What is the probability that you win the prize?

Answer: Let N be the number of times you hit the target. Then N ∼ Binomial(6, 0.1), and
so

Pr[N ≥ 2] = 1− Pr[N < 2] = 1− (Pr[N = 0] + Pr[N = 1])

= 1−
(

6

0

)
0.100.96 −

(
6

1

)
0.110.95 = 1− 0.96 − (6)(0.1)(0.95)

= 1− 0.95(0.9 + 0.6) = 1− (1.5)0.95 = 0.114265 .

Since I promised that a calculator would not be needed, I’ll accept any reasonably simple
expression short of the actual decimal value.

3. (Bayesian inference; 10 points) A test for a particular genetic marker is 90% accurate.
That is, 90% of those with the genetic marker test positive, and the rest (falsely) test negative.
Similarly, 90% of those without the genetic marker test negative, and the rest (falsely) test
positive. The genetic marker is known to exist in 5% of the population at large. A person
selected at random is given the test and tests positive. What is the probability that that
person has the genetic marker?

Answer: Let P be the event that the person tests positive, and let M be the event that the
person has the genetic marker. We want Pr[M | P ], and we know that Pr[P |M ] = 0.9, that
Pr[P |M ] = 0.1, and that Pr[M ] = 0.05. Thus

Pr[M | P ] =
Pr[P |M ] Pr[M ]

Pr[P |M ] Pr[M ] + Pr[P |M ] Pr[M ]
=

(0.9)(0.05)

(0.9)(0.05) + (0.1)(0.95)
=

9

28
≈ 0.321 .

4. (A continuous random variable; 5 points) Sarah’s new disk runs continuously, and the
time T until the next failure is exponentially distributed with mean 10 years. Starting exactly
one year from now, Sarah will be overseas in the Army for exactly two years. What is the
probability that her disk will fail for the first time while she is overseas?

Answer: Measuring time in years, we have T ∼ Exp(0.1), and we want to find Pr[1 ≤ T ≤ 3].
We have

Pr[1 ≤ T ≤ 2] = FT (3)−FT (1) = (1− e−0.3)− (1− e−0.1) = e−0.1− e−0.3 =
e0.2 − 1

e0.3
≈ 0.164 .

5. (Joint distributions; 10 points) Alice chooses a uniformly random real number A between
1 and 3, and Bob (independently) chooses a uniformly random real number B between 2 and
5. (That is, A ∼ Uniform(1, 3) and B ∼ Uniform(2, 5) and A ⊥ B.) What is the probability
that Alice’s number is greater than Bob’s? [You may use any method you like, but you must
show your work.]
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Answer: Pr[A > B] = 1/12 (one-twelfth). We can get this in two ways: following the book’s
method; or just applying symmetry, using the fact that the distributions are both uniform.

By the book, using the fact that A ⊥ B:

Pr[A > B] =

∫∫
x>y

fA,B(x, y) dx dy =

∫∫
x>y

fA(x)fB(y) dx dy ,

where fA(x) = 1/2 when 1 ≤ x ≤ 3 and is 0 otherwise, and fB(y) = 1/3 when 2 ≤ y ≤ 5 and
is 0 otherwise. We then have∫∫

x>y
fA(x)fB(y) dx dy =

1

3

∫ 5

y=2

∫ ∞
x=y

fA(x) dx dy

=
1

6

∫ 3

y=2

∫ 3

x=y
dx dy (because fA(x) = 0 when x > 3)

=
1

6

∫ 3

y=2
(3− y) dy =

1

12
.

Alternatively, we notice that the only way to have A > B is if A > 2 and B < 3. So

Pr[A > B] = Pr[A > B & A > 2 & B < 3]

= Pr[A > B | A > 2 & B < 3] Pr[A > 2 & B < 3]

= Pr[A > B | A > 2 & B < 3] Pr[A > 2] Pr[B < 3] (because A ⊥ B)

= Pr[A > B | A > 2 & B < 3] · 1

2
· 1

3

=
1

6
Pr[A > B | A > 2 & B < 3] .

Now, on the condition that A and B are both uniformly distributed between 2 and 3, by
symmetry, we must have Pr[A > B] = Pr[A < B], because there is no bias towards A or B
being greater. Since Pr[A > B] + Pr[A = B] + Pr[A < B] = 1 and Pr[A = B] = 0, we get
Pr[A > B] = 1/2. Putting the condition back explicitly, Pr[A > B | A > 2 & B < 3] = 1/2,
and so unconditionally,

Pr[A > B] =
1

6
· 1

2
=

1

12
.
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