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Abstract

In this paper we present query filtering techniques based on bottom-
up tree automata for XML access control. In our authorization model
(RXACL), RDF statements are used to represent security objects and to
express the security policy. We present the concepts of a simple security
object and an association security object. Our model allows us to ex-
press and enforce access control on XML trees and their associations. We
propose a query-filtering technique that evaluates XML queries to detect
disclosure of association-level security objects. We use tree automata to
model-security objects. Intuitively a query Q discloses a security object
o if and only if the (tree) automata corresponding to o accepts Q. We
show that our schema-level method detects all possible disclosures, i.e., it
is complete.

Keywords: Access control, association object, flexible security granu-
larity, XML security, tree automata.
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1 Introduction

Several XML access control models have been developed recently (Bertino et al.,
2001, 1999, 2000; Damiani et al., 2000; Dridi and Neumann, 1998; Gabillon and
Bruno, 2002; Kudo and Hada, 2000; Murata et al., 2003; Luo et al., 2004).
They are based on traditional access control lists and provide extensions to
XML syntax. Existing models allow node-level security granularity by assigning
access restrictions to the nodes and links of XML documents. However, none
of these models provide access control for data associations. Intuitively, an
association security object is an XML subtree that is not allowed to be accessed
by a user, while all of its proper subtrees are permitted separately. Incorporating
association in an access control model increases data availability while preserving
confidentiality.

To illustrate the need of access control for data associations, we present an
example in the medical domain. Assume that XML format is used for storing
patient records. The DTD for patients’ health records is shown in Fig. 1. Alice,
who is an intern at the hospital, needs limited access to the database. Her du-
ties involve two main tasks: 1) Alice contacts patients to collect feedback about
their treatments; thus, Alice is allowed to read <name> and <PhoneNumber>
elements, 2) Alice prepares statistical reports based on Age, Race and Diagnosis
of the patients. These tasks require that Alice is allowed to access both contact
and diagnosis information for all patients. However, Alice is not authorized to
access data about the name and diagnosis of the patients. Both, the functional-
ity requirements of Alice’s work and the security restrictions cannot be satisfied
using traditional access control list based methods.

<!DOCTYPE patientrecords[
  <!ELEMENT patientrecords(patient*)>
  <!ELEMENT patient(ssn,name,phone,age,race,diagnosis*)>
  <!ELEMENT ssn(#PCDATA)>
  <!ELEMENT name(#PCDATA)>
  <!ELEMENT phone(#PCDATA)>
  <!ELEMENT birthdate(#PCDATA)>
  <!ELEMENT race(#PCDATA)>
  <!ELEMENT diagnosis(date,physician,comment*,presecription*)>
  <!ELEMENT date(#PCDATA)>
  <!ELEMENT physician(#PCDATA)>
  <!ELEMENT comment(#PCDATA)>
  <!ELEMENT prescription(#PCDATA)>
  <!ELEMENT allergies(allergen*)>
  <!ELEMENT allergen(#PCDATA)>
]>
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Figure 1: (a) An example of a DTD (b) Tree representation of DTD

The RXACL architecture, introduced in Gowadia and Farkas (2003), pro-
vides flexible access control granularity by allowing security classification of
XML nodes and subtrees (simple security objects), and associations among
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nodes (association security objects). In Gowadia and Farkas (2003) we proposed
a technique to enforce association-based access control at data-level (i.e., check
for security violation after query processing) and it is outside the scope of this
paper. In this paper we extend RXACL architecture by presenting techniques
for performing a security check before the query is processed. Our work is sim-
ilar to those proposed by Murata et al. (2003) and Luo et al. (2004). However,
their methods support node-level security objects only. The automata model,
used by them, is not sufficient to model association-level security objects. In
this paper, we use bottom-up tree automata to represent security objects.

We propose query pre-processing techniques to recognize disclosure of associ-
ation level security objects by XML queries. This analysis is data-independent.
Results of query pre-processing can be (1) association objects are disclosed,
(2) association objects are not disclosed, or (3) association objects may be dis-
closed. Options 1 and 2 indicate that the query should be rejected or accepted,
respectively. For option 3, data-level analysis is required to evaluate whether a
security violation occurs or not.

We present a two-layered association filtering method. First we detect dis-
closure of association in a given query-pattern, i.e., in information encoded in
the XML query itself. Second, we extend query-pattern with document schema
to represent all schema information that the query answer would reveal to a
user. XML query-patterns are labeled-trees where node labels may be vari-
ables, constants, or the special symbol ’//’(self-or-descendant axis (Clark and
DeRose, 1999)). We model association security objects with pattern automata

(Definition 3.8). A pattern automata takes (extended) query-patterns as input
and accepts them if and only if the input discloses the security object repre-
sented by the pattern automata. The main technical contributions of this paper
are the development of pattern automata for security objects and the notion
of extended query-pattern. We present algorithms to construct query-pattern,
pattern automata, and to detect disclosure of security objects.

The organization of the paper is as follows: next section presents an overview
of RXACL architecture and query filtering mechanism. Section 3 introduces
formal definitions of basic constructions used in this paper. Section 4 presents
algorithms for constructing query-patterns, association pattern automata and
to detect association disclosures. Section 5 introduces the notion of extended
query-pattern and presents a schema-level security analysis of query. Our con-
clusions are presented in section 6 along with recommendations for future work.

2 RDF-based XML Access Control Architecture

Figure 2 shows the RXACL architecture. The architecture contains four main
components: 1. Query filter 2. Query engine, 3. Data level access control, and
4. User history. The query filtering component performs schema-level analysis
to determine whether an answer to the input query : (1) violates access control
policy (violating), (2) does not violate the access control policy (safe), or (3)
requires a data-level security check to detect possible violations (unsafe). The
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Figure 2: RXACL architecture for enforcing XML access control

XML query engine is responsible for generating responses to user’s requests.
RXACL uses an existing XML query engine, the development of such an engine
is outside the scope of this paper. The data-level access control component
analyzes the query-answer based on the security policy and data previously
released to the user (Gowadia and Farkas, 2003). The history component keeps
track of answered query-patterns and data released to each user.

When a data request is submitted to a RXACL system, query filtering com-
ponent first checks for disclosure of disallowed association-level security objects
in the query (without utilizing the XML schema information). If a disallowed
association-level security object is disclosed, the query is immediately rejected.
Otherwise, the query-pattern is extended with schema information and query-
patterns of previously answered queries to the user. Extended query-patterns
are now checked for disallowed objects. If no disallowed association-level secu-
rity object is disclosed in extended query-patterns the query answer is labeled
safe. Otherwise, it is labeled unsafe. The query is submitted to XML query
engine for further processing. The result of unsafe query’s evaluation are fur-
ther evaluated for possible data-level violations as described in Gowadia and
Farkas (2003). Answer to safe queries is returned to user without further se-
curity analysis. For all queries that are answered, user history is updated with
query-pattern and released data. The assurance of our query level filtering is
based on the completeness property of the filtering.

3 Definitions

This section describes definitions necessary to model XML queries , association
objects, and XML schema.

Definition 3.1 (Labeled-tree)
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A labeled-tree, or a tree, is defined recursively as follows:

1. The empty set {} is a tree, called the empty tree.

2. A single node {n } is a tree.

3. If t1, t2, . . . , tk are trees, then {n → {t1, t2, . . . , tk}} is a tree. In this case
we say that {n → {t1, t2, . . . , tk}} represents the tree whose root n has
outgoing edges to subtrees t1, t2, . . . , tk.

The nodes of the trees are labeled. Labels may be constants, node variables (cor-
responding to any node value), or path variables (corresponding to any path).
Constants correspond to element, attribute and text values. Nodes labeled with
text-values are called text nodes and are always leaf nodes. Attribute nodes can
have only one child node, a text node. Also, any two attribute nodes of a given
element cannot have same label. Element nodes can have zero or more child
nodes that can be elements, attributes, or text nodes. We denote element nodes
with ni, attribute nodes with ai, and text nodes with pcdata. A labeled tree is
called a ground tree if all of its nodes are labeled with constants.

Definition 3.2 (Path-expression)
Let p = {n, {a1, . . . , aj}} represent a single node n and its child nodes corre-

sponding to attributes a1, . . . , aj , where n is either a constant, or a variable. A
path-expression is defined as: 1. p is a path expression, 2. {p1 → p2 → . . . → pk}
is a path-expression where pi(i = 1, . . . , k) are path-expressions, 3. Let // de-
note an arbitrary path-expression. Then the following are also path-expressions:
{// → p1 → . . . → pm}, {p1 → // → pm}.

DTD (Bray et al., 2000) and W3C XML Schema (Thompson et al., 2001)
satisfy a constraint that all child nodes of any given node must have unique
names. Trees satisfying this constraint are called single-type trees (See Murata
et al. (2005) for discussion on single-type tree grammars).
We consider XQuery syntax (Fernández et al., 2003) of the following form:

Definition 3.3 (XML Query)
An XML query Q is of the following form:
FOR v0 in P0

LET v1 := P1, . . . , vl := Pl

RETURN {n → {vk, . . . , vj}}
WHERE (vi == vj and . . . and vl == vm)
where, vi (i = 0, . . . , l) are variables of query (we refer to them as query-variables

in rest of this paper), vi (i = 0, . . . , m) represent a path-expression {vi → p′}
(i = 1, . . . , l) and p′ is a path-expression that does not contain any query-
variables, Pi (i = 0, . . . , l) are path-expressions, and n is a constant.

Given a XML query Q, the first step in query filtering architecture is to
build query-pattern of Q. Let V = {v1, v2, . . . , vl} be the set of query-variables
defined in Q, and V = {v1, v2, . . . , vm} be the path-expressions in the RETURN
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or WHERE clause of the query. Intuitively, the query-pattern is constructed by
uniting the path-expressions in V . Since path-expressions may contain query-
variables. We need a method to eliminate query variables. A formal definition
of variable-substitution follows.

Definition 3.4 (Variable-Substitution)
Let $vi = {p1 → . . . → pl}, and $vj = {$vi → p′1 → . . . p′m} be two assignments
in the FOR or LET clause of the XML query. A variable substitution replaces
$vi in the second assignment with {p1 → . . . → pl}.

Example 3.1 Consider the single-type tree T = {$x → {a, d}}, where $x =
{// → {r}} is a query-variable. Substituting $x, we get T = {// → {r →
{a, d}}}. 2

Definition 3.5 (Single-type Tree-Merge)
Let P1 = {n1

1 → n1
2 → . . . n1

k → n1
k+1 → . . . n1

l } and P2 = {n2
1 → n2

2 →
. . . n2

k → n2
k+1

→ . . . n2
m} be two ground path-expressions over the same schema.

We define merge of path expressions as follows:
if n1

1 = n2
1, n

1
2 = n2

2, . . . , n
1
k = n2

k, and n1
k+1

6= n2
k+1

, then
P1 ∪S P2 = {n1

1 → n1
2 . . . n1

k → {{n1
k+1

→ . . . → n1
l }, {n

2
k+1

→ . . . → n2
m}}.

We extend the notion of merging paths to merging single-type trees. Let
T1 = {n → {t1, t2, . . . , tk}} and T2 = {n′ → {t′1, t

′

2, . . . , t
′

l}} be two trees, then
their merger T1 ∪S T2 is defined as follows:

1. T ∪S {}
def
= {} ∪S T

def
= T

2. if n 6= n′, T1 ∪S T2 = {T1, T2},(trees cannot be merged).

3. if n = n′, then let T = {}. For all paths p originating from the root in T1

and T2, do T = T ∪S p. T1 ∪S T2 = T .

The query-pattern of an XML query Q is a labeled-tree representing all data
disclosed by Q. That is, all data returned to the user or accessed to evaluate
the query.

Definition 3.6 (Query-Pattern)
Let Q be the given XML query and P1, . . . , Pn are path-expressions that occur
in the RETURN or the WHERE clause of Q. If Pi == Pj is a condition in
the WHERE clause, we add a new leaf node labeled with a data-variable v to
Pi and Pj . Substitute all query-variables in P1, . . . , Pn. Query pattern P is
the labeled-tree produced by merging paths P1, . . . , Pn. Algorithm 1 shows the
construction of the query-pattern.

Example 3.2 Consider the following XML query Q3.2: FOR $x in //r LET
$y := $x/d, $z := $x/a RETURN <answer> {$z/c} </answer> WHERE {

$z/b == $y }. Let Tr be the tree in the return statement of Query Q3.2. Tr

specifies structure of query answer being returned to the user. To evaluate the
query-answer $z/b and $y must be accessed. Query-pattern constructed from
query Q3.2 is shown in Fig. 3(c). 2
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Algorithm 1: Algorithm to construct query-pattern
input : Query Q

output: Query-Pattern Tree T

Let V = {v1, . . . , vk} be the set of variables defined in Q.
Let P = {p1, . . . , pm} be the set of path-expressions in RETURN or WHERE clause of
Q.
i← 1
list← {} /* List of sets, where each set contains path-expressions in WHERE clause
of Q, such that their values are transitively equal*/
/* Extend the path-expressions with a data-variable, such that path-expressions
equated in WHERE clause have same data-variable.*/
foreach expression (pl == pn) in WHERE clause of Q do

if pl ∈ S and S is a set in list then
Append leaf node of pl to pn

Add pn to S

else if pn ∈ S and S is a set in list then
Append leaf node of pn to pl

Add pl to S

else
Create a new data-variable vi

Append vi to pl and pn

Create a set S = {pl, pn}
Add S to list

i← i + 1

/* Removing query-variables from path-expressions*/
for i := 1 to m do

Let Ti ← pi, where pi ∈ P

Let r← root node of Ti

repeat
Substitute r in Ti, with its assigned value (by := or in operator ) in Q

r← root node of Ti
until r is a constant or ’//’

/* Uniting path-expressions to obtain query-pattern */
Initialize T ← {}
for i := 1 to m do

T ← T ∪S Ti

return T

Definition 3.7 (Protection Object)
A simple security object o is a node-labeled tree, where all distinct subtrees
t1, t2, . . . , tk of o have the same access permission as o. That is, for every
proper subtree ti ∈ o, λ(o) = λ(ti), where λ(o) and λ(ti) denote the security
classification of o and ti respectively. Simple security objects are equivalent to
node-level security classification. An association security object o is a node-
labeled tree where every proper subtree ti ∈ o, λ(o) > λ(ti) (i = 1, . . . , n).

We construct Pattern Automata (PA) to represent security objects. Due
to the page limitation, we only show the representation of association security
objects, that is more difficult than the representation of the simple security
object.
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Definition 3.8 (Pattern Automata)
Let E be a set of node-labels for elements, A be a set of node-labels for at-

tributes, and let the label pcdata represent all text nodes. A Pattern Automata
is defined as X = {Σ, Q, q0, Qf , δ}, where Q = {q0, . . . , qn} is a finite set of
automaton states, Σ = E ∪ A ∪ {pcdata, //} is automata alphabet, ’//’ is a
symbol for self-or-descendant axis, q0 is start state, Qf ⊂ Q, (q0 6∈ Qf ) is set of
accepting final states, and δ is set of state transition rules.

Let σ ∈ Σ be the label of a scanned node N in the given query pattern
and therefore the next input symbol for the automata, and Qc ⊆ Q is set
of states associated with child nodes of N . A valid transition is of the form,
σ(qi, . . . , qj) → qk, where {qi, . . . , qj} ⊆ Qc, and qk is state associated with N
after scanning. For simplicity, we will often write transition rule in the form
σ(Qt) → qk, where Qt = {qi, . . . , qj} is set of states required for transition. To
distinguish data values from labels of elements and attributes, we write data
values inside [ ]. If δ does not contain a valid transition rule, by default the
state associated with the scanned node is q0.

4 Security Analysis of Query Pattern

RXACL performs security analysis by evaluating query-pattern with the pattern
automata corresponding to protection objects. An accepting state is reached if
the protection object is disclosed by the input pattern. These automata can also
be used for recognizing possible disclosure of security objects by query-patterns
extended with document schema as discussed later in section 5.

A pattern automaton X accepts a query-pattern P iff there is at least one
accepting path of transitions that reads complete P . For clarity, in this paper
we allow use of wildcard symbol (∗) to represent any alphabet symbol. Let us
now consider an example.

Example 4.1 The following automaton X4.1 = {Σ, Q, q0, Qf , δ} is a XML
Pattern Automata that accepts query patterns disclosing association A3 (see
Fig. 3(b)). An accepting run of this automaton on query Q3.2 is shown in
Fig. 3(d). It means that answers of Q3.2 disclose A3. 2

We now present Algorithm 2 and Procedure AddRules to generate pattern
automata for associations. Given a query-pattern P a pattern automaton X is
generated, such that on input P ′, X accepts iff P is contained in P ′. Algorithm 2
performs a bottom up traversal of the association security object (a labeled-
tree). At each step of traversal the label of current node is read. If the label
is read for first time, it is added to pattern automaton’s alphabet and a new
state is also created. If the label denotes a self-or-descendant edge in the query-
pattern then a transition rule with a wildcard (*) for read symbol is added to the
pattern automata. Otherwise transition rule with symbol read at the current
node is added.

Next we present Algorithm 4 and Procedure EvaluateQueryPattern) that
runs a given pattern automata on a given query-pattern. The query pattern
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Q = {q0, qa, qb, qc},
Σ = {a, b, c, //},
q0 = q0,
Qf = {qa},
δ = { b() → qb,

c() → qc,
a(qb, qc) → qa,
∗(qa) → qa}

a

c

//

b

b c

ad

r

//

1v

1v c

ad

b

r

//
a

q 0

q 0

q a

q a

q 0

q b
q c

q 0

q

(a) (b) (c) (d)

Figure 3: (a) Pattern automata example X4.1 (b) Example association A3 (c)
Query-pattern of Q3.2 (d) States of X4.1 (qi) on query-pattern of Q3.2 as input.

Algorithm 2: Algorithm to generate pattern automata
input : Association pattern P

output: Pattern Automata X = {Σ, Q, q0,Qf , δ}

Q← {q0}
Σ← {//, pcdata}
Qf ← {}
δ ← {}
X ← {Σ, Q, q0,Qf , δ} Let S be a global stack
S ← ∅ /* S is a global stack used to remember states of child nodes during bottom-up
traversal of P */
X ← AddRules (P, X)
Qf ← pop(S)

return X

is accepted if the association object represented by the pattern automata is
disclosed by the query pattern. A query-pattern may contain variables (called
data-variables) at the leaves, due to the equalities in the WHERE clause. Data-
variables of a query may correspond to pcdata constants of a pattern automata,
thus indicating potential disclosure. The procedure EvaluateQueryPattern is
data independent. Algorithm 4 analyzes the input query pattern by analyzing
all possible transitions of the pattern automata in parallel. If there is at least
one accepting run of the automata then the algorithm returns true, otherwise
false.

Theorem 4.1 Let Q be an XML query, P the query-pattern generated from
Q (Def. 3.6), O an association object and AO the association-automata repre-
senting O. The association-automata AO accepts a input query-pattern P iff
there exists an XML instance I such that the answer to Q over I discloses O.

Proof Sketch: (⇒) The pattern-automata performs bottom-up traversal of P ,
i.e., states of child nodes are evaluated before evaluating state for root node.
Let n be a node in P scanned to detect disclosure of O. If n is a leaf node in
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Procedure AddRules(Root, Pattern Automata)

input : Pattern tree P, Pattern Automata X = {Σ,Q, q0, Qf , δ}
output: Modified Pattern Automata X

root ← root node of P

Qc ← {}
list ← child nodes of root

foreach node in list do
X ← AddRules( node, X) /* Perform bottom-up tree traversal */

if list 6= ∅ then
n← Length of list

while n > 0 do
Qc ← Qc∪ pop(S) /*Retrieve automata states after scanning child nodes */
n← n− 1

label ← LabelOf(root)

if label = ’//’ then

foreach state q ∈ Qc do
δ ← δ ∪ {∗(q)→ q}}

else
Find set of transition rules R, of the form {label (Q′) → q} in δ
if R is empty then

Create a new state qnew /* label(Q′) is read for the first time*/
Q← Q ∪ {qnew}
δ ← δ ∪ {label(Qc)→ qnew}
push(S,{qnew})

else if Qc 6= Q′ for all rules in R then

Create a new state qnew /* Transitions exist for labelQ′ but are not
applicable*/
Q← Q ∪ {qnew}
δ ← δ ∪ {label(Qc)→ qnew}
push(S,{qnew})

else
push(S,{q}) /* An existing transition leading to state q is applicable*/

return X

Algorithm 4: Algorithm to decide whether a pattern-automata accepts
input query-pattern

input : Pattern Automata X = {Σ, Q, q0,Qf , δ}, Query-pattern tree T

output: True if X accepts T, otherwise false

Let S be a global stack
/* S is used to remember states of child nodes */
Let root be the root node of T

returnvalue ← EvaluateQueryPattern(root,X) /* Store reachable states on S */
list ← pop(S)

foreach set in list do

if (set ∩Qf ) 6= {} then
/* Final state after reading T can be an accepting state */
return true

/* Final state after reading T cannot be an accepting state */
return false
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Procedure EvaluateQueryPattern(Node, X)

input : Node node, Pattern Automata X

output: Compute set of reachable states, when X reads the input tree rooted at node.
The result is stored on global stack S.

/* Evaluate mapping with a bottom-up traversal of T */
ListOfStateSets ← () /* List of state sets that X may enter in upon processing node */
if node is a leaf then

if LabelOf(node) is a data-variable in T then
Add {q0} to ListOfStateSets /* data variables can always have safe mappings
*/

else if rule {LabelOf( node)()→ q} ∈ δ then
Add {q} to ListOfStateSets /*Constants are mapped to the same constant*/

else
Add {q0} to ListOfStateSets /*Default transition on no mapping*/

push(S, ListOfStateSets)

return

list ← child nodes of node

ListOfChildStateSets ← () /* List of sets, where each set Qc contains possible states for
child nodes
foreach childnode in list do

EvaluateQueryPattern(childnode,X)

ListOfChildStateSets ← ListOfChildStateSets × pop(S)

σ ← LabelOf(node)

Compute R, a set of valid transitions (Def. 3.8) on σ and Qc, where Qc ∈
ListOfChildStateSets

if R is empty then
/* Default transition on no mapping */
ListOfStateSets ← ({q0})

else
/* Follow all possible transitions */
ListOfStateSets ← ({q1}, . . . , {qk}), where (σ(Qi)→ qi) ∈ R (i = 1, . . . , k)

push(S,ListOfStateSets)

return

O, there must exist a valid transition of form {n() → q} ∈ δ, where δ is the
transition function of pattern-automata AO created by Algorithm 2. If n is an
internal node with child nodes {n1, . . . , nk}, Algorithm 2 generates a transition
rule of the form {n(q1, . . . , qk) → q}, where q1, . . . , qk are states associated
with n1, . . . , nk respectively. Clearly there exists an accepting path of automata
evaluation if the association pattern is traversed. Thus, pattern-automata finds
the accepting path if it exists.

(⇐) For this, we show how to construct instance I such that the answer
to Q over I must contain O. Let ζ be a mapping from P to O with following
properties: ζ maps (1) a constant to the same constant, (2) variable to pcdata
, and (3) a arbitrary path p to //.

If there exists a ζ such that the pattern P ′ created from P by replacing all
variables of P with ζ(v) and p with //, and O is a subtree of P ′ then we generate
I as follows: (1) replace all mapped variables v ∈ P with ζ(v), (2) replace all
non-mapped variables in P with pcdata c, and (3) replace // with the empty
path, i.e., remove //. 2
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5 Security Analysis of Extended Query-Pattern

In addition to the structural information contained in the RETURN and the
WHERE clauses of the query, a query answer also contains subtrees of the
original XML document, where each returned subtree originates from one of
the path-expressions in the RETURN clause. To incorporate this knowledge in
our model, we define the notion of extended query-pattern.

Definition 5.1 (Extended Query-Pattern)
Let P denote a query-pattern and S the schema (ground-tree) of the XML
document that Q is posed on. The extended-query-pattern (EQP) is defined as
a set of trees {T1, . . . , Tm}, where Ti(i = 1, . . . , m) are constructed as follows:
Let ν denote a symbol mapping from the symbols of P to the symbols of S such
that:

• for constants ν is an identity mapping.

• ν maps the data-variables to the empty node ∅.

• ν maps ’//’ to any ground path in S.

We extend ν to map paths of P , such that given a path p = {n1 → n2 → . . . →
nl}, its mapping ν(p) = {ν(n1) → ν(n2) → . . . → ν(nl−1) → tl}, where tl is a
tree rooted at ν(nl) such that ν(p) ∈ S. Finally, given paths p1, . . . , pk of all
leaf nodes in P we construct Ti ∈ EQP as Ti = ν(p1)∪S ν(p2)∪S . . .∪S ν(pk)∪S

p1 ∪S . . . ∪S pk and Ti ∈ S for all possible symbol mapping ν.

Algorithm 6 and Procedure EvaluateExtendedQueryPattern decide whether
a pattern automata accepts the extended query pattern. Unlike Procedure
EvaluateQueryPattern, Procedure EvaluateExtendedQueryPattern evaluates data
variables too. We now extend our formalism to be able to evaluate data variables
in the query pattern.

Definition 5.2 (Self-or-ancestor state set)
Let X = {Σ, Q, q0, Qf , δ} a XML Pattern Automata, and T be an arbitrary
XML pattern given as input. We say that self-or-ancestor state set QaN =
{q1, q2, . . . , qk} is a set of states, such that QaN ⊆ Q, and X may enter a state
qi by scanning a node labeled N in T or any ancestor node of N , iff qi ∈ QaN .

Definition 5.3 (Data-characteristic state set)
Let X = {Σ, Q, q0, Qf , δ} a XML Pattern Automata, and T be an arbitrary
XML pattern given as input. Data-characteristic state set Qd = {q1, q2, . . . , qk}
is a set of states, such that Qd ⊆ Q and X can enter a state qi ∈ Qd after
scanning a node N in T , iff exactly one pcdata constant occurs in subtree under
node N .

Definition 5.4 (Variable-characteristic state set)
Let X = {Σ, Q, q0, Qf , δ} a XML Pattern Automata, and T be an arbitrary

12



XML pattern with data-variables V = {v1, v2, . . . , vk}. For any variable vi ∈ V ,
its variable-characteristic state set Qvi

= {q1, . . . , qk} is a set of states, such
that Qvi

⊆ Q, and X may enter qi on scanning node (in T ) labeled vi or on
scanning an ancestor node of such node.

Algorithm 6: Algorithm to decide whether a pattern-automata accepts
an extended query-pattern

input : Pattern Automata X = {Σ, Q, q0,Qf , δ}, Extended query-pattern tree T

output: True if X accepts T, otherwise false

if Σ contains pcdata values then
Construct QaN for each pcdata value in Σ (see Def. 5.2)
Construct Qd (see Def. 5.3)
Construct Qvi

(see Def. 5.4) for each data variable vi in T

Let S be a global stack
/* S is used to remember states of child nodes */
Let root be the root node of T

EvaluateExtendedQueryPattern(root,X)

.

..

Procedure EvaluateExtendedQueryPattern(Node, X)

input : Node node, Pattern Automata X

output: Compute set of reachable states, when X reads the input tree rooted at node.
The result is stored on global stack S.

/* Evaluate mapping with a bottom-up traversal of T */
Let ListOfStateSets be the list of state sets that X may enter in upon processing node

if node is a leaf then

if LabelOf(node) is a data-variable in T then

foreach rule of form {pcdata() → q} ∈ δ do
Add {q} to ListOfStateSets /* Map data variable to all pcdata values*/

...
return

...
/* Validate matching of data-variables*/
Compute Qrequired ← Q1 ∩Q2 . . . ∩Qk, where (σ(Qi)→ qi) ∈ R (i = 1, . . . , k)
Compute V , set of data-variables in subtree of childnode

if V is not empty then

foreach q ∈ Qrequired do

foreach QaN constructed for Σ do

if q ∈ QaN and q ∈ Qvi
and q ∈ Qd then

if vi is not assigned any value then
vi ← N

else if N 6= value previously assigned to vi then
Remove nodes labeled vi in T and restart Algorithm 6

push(S,ListOfStateSets)

return
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Theorem 5.1 Let Q be an XML query, S be the schema of XML document,
EQP be the query-pattern extended with S, O an association object, and AO be
the association-automaton representing O. If AO does not accept the extended
query-pattern EQP , then the query is safe to answer for any XML document
that satisfies S. That is for all XML instances over S the query Q will not
disclose O.

Proof Sketch: Lets assume by contradiction that the query Q discloses an
association object AO and the pattern-automata generated from AO does not
accept the extended query-pattern. But then, either the specifying query itself
discloses O, i.e., the union of the paths p1, . . . , pk in the FOR, LET, RETURN,
and WHERE clause of Q disclose O, or the answer generated from any XML
instance conforming to S together with p1 ∪S p2 ∪S . . . ∪S pk disclose O. But
this is exactly the information used to generate the extended query-pattern.
Using Theorem 1 this implies that the tree-automata must accept the extended
query-pattern, which is a contradiction. 2

6 Conclusions

In this paper we present a bottom-up tree automata (pattern-automata) based
technique for filtering XML association before query evaluation. We give algo-
rithms for constructing query-pattern, pattern automata, and the detection of
disclosure of an association security object in a query-pattern itself. In addition
we extend the query-pattern with schema information to evaluate all data that
the query answer may reveal to the user. We also show that our security-analysis
is complete, i.e., our method detects all possible disclosures.

We have considered only simple XQueries in this work. In our future work,
we hope to extend our analysis to incorporate nested queries. At present our
schema-level analysis requires the schema to be a single-type tree language
(DTD or W3C XML schema). In future work we hope to extend our schema-
level security analysis to incorporate regular tree languages, such as RELAX
NG. Finally, we plan to integrate query-optimization with security analysis.
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