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Abstract. In this paper we compare our selection based learning algo-
rithm with the reinforcement learning algorithm in Web crawlers. The
task of the crawlers is to find new information on the Web. We performed
simulations based on data collected from the Web. The collected portion
of the Web is typical and exhibits scale-free small world (SFSW) struc-
ture. We have found that on this SFSW, the weblog update algorithm
performs better than the reinforcement learning algorithm. It finds the
new information faster than the reinforcement learning algorithm and
has better new information/all submitted documents ratio.

1 Introduction

The largest source of information today is the World Wide Web. The ever-
increasing growth of the Web presents a considerable challenge in finding novel
information on the Web. In addition, properties of the Web, like scale-free small
world (SFSW) structure [1,2] may create additional challenges. For example the
direct consequence of the scale-free small world property is that there are numer-
ous URLs or sets of interlinked URLs, which have a large number of incoming
links. Intelligent web crawlers can be easily trapped at the neighborhood of such
junctions as it has been shown previously [3,4].

In this paper we present a selection based algorithm and compare it to the
well-known reinforcement learning algorithm in terms of their efficiency and be-
havior. The selection algorithm, called weblog update, modifies the starting URL
lists of our crawlers based on the found relevant documents. The reinforcement
learning algorithm modifies the URL orderings of the crawlers based on the re-
ceived reinforcements for submitted documents. We have found that the weblog
update selection algorithm performs better in this environment than the rein-
forcement learning algorithm, eventhough the reinforcement learning algorithm
has been shown to be efficient in finding relevant information [4,5].

The paper is organized as follows. We overview the forager architecture in
Section 2. After that in Section 3 we present our experiment on the Web and
the conducted simulations with the results. Section 4 concludes our paper.
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2 Forager Architecture

There are two different kinds of agents: the foragers and the reinforcing agent
(RA). The fleet of foragers crawl the web and send the URLs of the selected doc-
uments to the reinforcing agent. The RA determines which forager should work
for the RA and how long a forager should work. The RA sends reinforcements
to the foragers based on the received URLs.

Foragers may use two different kinds of algorithms to find relevant docu-
ments. The first algorithm, called weblog update algorithm selects the possibly
good starting URLs and restarts periodically the forager from one of the possibly
good starting URLs. The second algorithm is the reinforcement learning based
URL ordering algorithm which selects the next document to be visited by the
forager between two restarts. The documents found by a forager are represented
as a 50 dimensional state vector. This algorithm updates the 50 dimensional
weight vectors of the foragers in order to collect more rewards in the long run
for sending relevant documents to the RA. The document to be visited next by
the forager is the one with the highest value, where the value of a document is
the scalar product of its state vector and the forager’s weight vector. According
to the weblog update algorithm the starting URL value of an URL is the sum
of rewards collected during steps after visiting that URL and before the next
restart. URLs with low starting URL values fall out from the weblog, while URLs
of documents with high starting URL values go to the front of the weblog.

The algorithms and the architecture are detailed in [6].

3 Experiments

We conducted an 18 day long experiment on the Web to gather realistic data.
We used the gathered data in simulations to compare the weblog update and
reinforcement learning algorithms.

In the web experiment a fixed number of foragers were competing with each
other to collect news at the CNN web site. The foragers were running in equal
time intervals in a predefined order on one PC. We deployed 8 foragers using
the weblog update and the reinforcement learning based URL ordering update
algorithms. We also deployed 8 other foragers using the weblog update algorithm
but without reinforcement learning. We used this heterogenous fleet of foragers
to eliminate any biases on the gathered data. We investigated the link structure
of the gathered Web pages. We have found that the links have a power-law
distribution. That is the link structure has the scale-free property. We have also
found that the links of gathered pages form small world structure.

We conducted simulations with two different kinds of foragers. The first case
is when foragers used only the weblog update algorithm without URL ordering
update (WL foragers). The second case is when foragers used only the reinforce-
ment learning based URL ordering update algorithm without the weblog update
algorithm (RL foragers). The simulation for each type of foragers were repeated
3 times with different initial weight vectors for each forager.
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type RL std RL WL std WL
downloaded 540636 9840 669673 9580
sent 9747 98 6345 385
relevant 2419 45 3107 60
found URLs 31092 1050 33116 3370
download eff 0.0045 0.0001 0.0046 0.0001
sent eff 0.25 0.003 0.49 0.031
exploration 0.058 0.001 0.050 0.006
freshness 0.70 0.006 0.74 0.011
age (hours) 1.79 0.04 1.56 0.08
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Fig. 1. Simulation results and Efficiency. (a): 2nd (3rd) and 4th (5th) columns
show averages (standard deviations) of individual experiments. (b): Horizontal axis:
time in days. Vertical axis: download efficiency, that is the number of found relevant
documents divided by number of downloaded documents in 3 hour time intervals.
Upper subfigure shows RL foragers’ efficiencies, lower subfigure shows WL foragers’
efficiencies. For all of the 3 simulation experiments there is a separate line.

Table 1(a) in Fig. 1 shows the measured parameter values averaged over the
3 runs of each type of foragers. From Table 1(a) we can conclude the followings.
The efficiencies of RL and WL foragers from the point of view of the news
site are about the same (download efficiency). From the point of view of the
RA the efficiency of WL foragers is higher than RL foragers (sent efficiency).
This shows that WL foragers divide the search area better among each other
than RL foragers. Sent efficiency would be 1 if none of two foragers have sent
the same document to the RA. RL foragers explore more than WL foragers: RL
found more URLs per downloaded page than WL foragers did (exploration). WL
foragers find faster the new relevant documents in the already found clusters.
That is freshness is higher and age is lower than in the case of RL foragers.

Fig. 1(b) shows other aspects of the different behaviors of RL and WL for-
agers. Download efficiency of RL foragers has more, higher, and sharper peaks
than the download efficiency of WL foragers has. That is WL foragers are more
balanced in finding new relevant documents than RL foragers. The reason is
that while the WL foragers remain in the found good clusters, the RL foragers
continuously explore the new promising territories. The sharp peaks in the effi-
ciency show that RL foragers find and recognize new good territories and then
quickly collect the current relevant documents from there.

4 Conclusions

We presented and compared our selection algorithm to the well-known reinforce-
ment learning algorithm. Our comparison was based on finding new relevant
documents on the Web, that is in a dynamic scale-free small world environment.
We have found that the weblog update selection algorithm performs better in
this environment than the reinforcement learning algorithm, eventhough the re-
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inforcement learning algorithm has been shown to be efficient in finding relevant
information [4,5]. We explain our results based on the different behaviors of
the algorithms. That is the weblog update algorithm finds the good relevant
document sources and remains at these regions until better places are found
by chance. Individuals using this selection algorithm are able to quickly collect
the new relevant documents from the already known places because they mon-
itor these places continuously. The reinforcement learning algorithm explores
new territories for relevant documents and if it finds a good place then it col-
lects the existing relevant documents from there by quickly adapting to the new
neighborhood. Although RL is more flexible and has a fast tuning mechanims,
nevertheless RL finds new relevant documents slower on the average than the
more conservative weblog update algorithm. We conjecture that this conclusion
may be restricted to highly clustered worlds, e.g., to scale-free small worlds.
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