
UMLpac: An Approach for Integrating Security into UML Class Design

 Matthew J. Peterson John B. Bowles Caroline M. Eastman
 Virginia Polytechnic Institute University of South Carolina University of South Carolina
 and State University Columbia, SC 29208 Columbia, SC 29208
 Blacksburg, Virginia 24060 bowles@engr.sc.edu eastman@engr.sc.edu
 mjpeters@vt.edu

Abstract
One of the biggest goals in software engineering is to
create secure software. This process must begin in the
design phase of the software development life cycle. While
the Unified Modeling Language (UML) exists to aid
engineers in designing software systems, it lacks features to
integrate security aspects into that design. This paper
presents an extension of UML, UMLpac, which bridges the
gap between software class design and the security
techniques required for that design. Security packages
accomplish this goal by keeping a level of abstraction
between the system class diagram and its security features.
This design technique preserves the original system
diagram, while maintaining in depth security features for
all aspects of the system.

1. Introduction

Software security is like a picket fence; it is only as good
as its weakest post. With advances in network and physical
access security, software has become the weakest post. A
major reason for this is a lack of consideration for
designing secure software systems from a developer’s
perspective. In the past software security was added only
after the system was complete. Security vulnerabilities
were discovered (normally by an attacker) and were then
patched by system developers. This mindset, known as the
penetrate-and-patch approach, was ineffective as evidenced
by numerous security failures in industry.

The solution to ensure secure software is to include
security in every aspect of the software development life
cycle, most importantly, in the design phase. Many
companies, such as Microsoft, use security teams that work
with developers and managers in the design of systems to
help improve software security [10]. This has created an
entirely new set of problems with how software design
should be represented. Consider the analogy of a software
system to a building design. In the past, software was a
simple room layout created by developers to meet basic
functional needs. With the addition of security
requirements, that room layout has turned into a complete
building blue print, equipped with electricity, water, and air
conditioning. This increase in complexity causes a major
loss of coherence of the system design. The focus of this

paper is to demonstrate how security decisions can be
represented in the design phase of the software
development life cycle thereby simplifying the entire
project design for developers, managers, and security
analysts.

Presently, the Unified Modeling Language (UML) is the
industry standard for designing software systems but it
contains minimal capabilities for representing the security
aspects of a system. This paper presents an extension of
UML, UMLpac, which enables security features to be
easily integrated into UML class diagrams. This extension
makes it possible for security teams to layout security
features directly onto the UML class diagram of a system
while keeping a level of abstraction between the two. This
approach offers many advantages, a few of which are
summarized below:
1. Separation between the system class diagram and the system

security features through use of security packages creates a
level of abstraction between the class diagram and the
security features making it easier to focus on just the class
diagram, just the security features, or the entire system
(both).

2. Security threats are defined through catalog entries and the
corresponding prevention techniques are laid out in the
design. This helps improve clarity and avoids overlooking
possible threats.

3. Inclusion of a risk factor on security packages makes it
possible to see a basic overview of system threat areas when
looking at the class diagram.

4. Providing features for showing coding rules in UML design
gives security specialists the ability to place secure coding
practice reminders in a design for developers. (This is done
through the use of rule security descriptors.)

5. Compartmentalization of security features in system design is
improved by breaking down the security requirements into a
collection of categories.

1.1. Related Work

We are not, at present, aware of any other ways of
integrating of security requirements into UML system class
diagrams that keep a level of abstraction between the class
diagram and the security requirements. However, several
other techniques for incorporating security requirements

into UML are easily accommodated by UMLpac. For
example, SecureUML [6] which focuses on representing
authorization and access control in UML can be integrated
into UMLpac through the use of a security package having
a principle security descriptor for SecureUML. The
principles of SecureUML can then be applied to define the
access control for the system in the security tile. Another
example is UMLsec [5] which presents a way to implement
secure-systems in UML. This can be used very effectively
with UMLpac to lay out security features in security tiles.

2. Methodology

In constructing the UML extension UMLpac, 5 basic

steps were followed. First, was the selection of an
appropriate modeling language to extend. UML was
chosen since it is presently the industry standard for
modeling software systems and because it is not
programming language specific. Second, was the
consideration of how to keep a level of abstraction between
the system code and the security features. Multiple concept
ideas were constructed and analyzed. The best of these was
the security package/tile approach because it seemed to
work well when dealing with an object-oriented system.
Third, was the categorization of security descriptors.
Categories were constructed based off previous security
works [1][3]. Fourth, combinations and sets were added to
the extension to improve read and write ability. Finally,
UMLpac was tested on basic systems for functionality.

3. Security Packages

To represent security features in a class diagram,
UMLpac uses a stereotype construct called a security
package. A security package represents each security
aspect of a system. Each security package has three
stereotype attributes:

 Risk Factor
 Security Tile
 Security Descriptor.

3.1 Risk Factor

This attribute estimates the probability of an attack on the
given security package. The primitive type of the value
used is left to the designer. Some examples are using an
exact integer (e.g., 1-10), a string range (e.g., not likely –
very probable) or a numeric probability value (e.g., 0.8).
The goal of this attribute is to make the high and low risk
areas of a system easily visible in the design.

3.2 Security Tile

A security tile defines the security descriptor (described
next) of a security package. This is accomplished through a

combination of: a UML (or UML extension) class diagram
of the internal security system, a catalog entry for the
security feature, UML notes, or more security packages as
in the case of combinations and sets (discussed in Section
3). A catalog entry is a definition of the security aspect
being considered. Barnum and McGraw provide some
guidelines for creating functionally complete catalog
entries in [1]. The security tile is where a security analyst
will specify how a given security package will protect parts
of a system. The goal of this feature is to separate the
specific security details of each security package from the
system UML class diagram.

It is recommended that guidelines be considered when
creating security tiles. First, it is important to limit
information on a security tile so it only represents the
implementation of its corresponding security package.
Limiting information can become difficult when dealing
with a system that is tightly coupled since security tiles
might become intertwined with one another. Second, be
sure to keep order and layout of information on security
tiles consistent throughout your system. Finally, be sure
you are absolutely complete in covering all possible risks
relating to the security descriptor. For example, if you
descriptor is environment variables, be sure to consider
every environment variable, not just a few specific
selections.

By following these guidelines and using security tiles,
people working with a system diagram can choose to see
basic security information by looking at the security
package and gain specific details of how the security is
implemented by looking at the security tiles. By separating
the security details from the class diagram, the diagram
does not lose its coherence by becoming overwhelmed with
security information. (Figure 3 at the end of this paper
shows several example security tiles)

3.3 Security Descriptor

The security descriptor outlines the specific security

categories that protect a given part of the system. It makes
it possible to see which security topics were taken into
consideration for protecting which parts of a system class
diagram. The type of security descriptor identifies what
information is in the security tile. Seven possible
stereotype attributes for the security descriptor are listed
below. These categories are based primarily on some of the
ideas in [1]; others can be added as appropriate.

 Principles
 Guidelines
 Survivability
 Attack Patterns
 Accountability
 Third Party Software
 Rules

3.3.1. Principles. A principle is “a statement of general
security wisdom derived from experience” [1]. The
purpose of this category is to define computer security
principles and show how their implementations are covered
in the UML class diagram. The security tile for a principle
will normally contain a catalog entry defining the principle
and a UML class diagram of how the principle protects
parts of the system.

3.3.2. Guidelines. A guideline is “a recommendation for
things to do or avoid during software development,
described at the semantic level” [1]. The purpose of this
category is to layout the security guidelines that have been
agreed upon by analysts. The security tile then shows how
these guidelines are met for each aspect of the system.

3.3.3. Survivability. Survivability is the ability of a system
to work consistently until failure at which time recovery to
the most recent working state is feasible. This category
focuses on describing how parts of the system are backed
up and recovered. The security tile for this usually is a
class diagram depicting any hardware or software in the
system.

3.3.4. Attack Patterns. An attack pattern is “developed by
reasoning over large sets of software exploits” [1] and
shows the ways a system is attacked. The purpose of an
attack pattern in the security package is to define a set of
system classes that have risks and show (in the security tile)
how to prevent those risks. The security tile for attack
patterns should consist of information on how to prevent
this type of attack either through something as precise as a
class diagram or as simple as providing tips on coding
practices. To make it easier to identify and categorize
various attack patterns, ten possible stereotype sub-
attributes, based on information in [3], are described in
Table 1.

3.3.5. Third Party Software. Third party software
consists of any out of company software that is
encapsulated within the system. The major reason for
including third party software in the security tile is that any
security flaws in the third party software must be taken into
consideration so as to not compromise the larger system.

3.3.6. Accountability. Accountability is the ability of a
system to log events and to assess what or who is
responsible for those events. This descriptor is for any
security that focuses on logging system events.

3.3.7. Rules. A rule is “a recommendation for things to do
or to avoid during software development, described at the
syntactic level” [1]. The major purpose of the rule attribute
is to give security analysts a place to put coding practice
reminders in the class design for developers. The goal is to
make developers aware of common coding mistakes and

Table 1. Attack pattern attributes.

Attribute Description
Environment
Variables

Environment variables are “variables that
encapsulate information that does not change
across executions of a program” [3]. The
goal of this attack pattern is to take
advantage of the fact that when a parent
program executes a child program, it can
control the child’s environment variables.

Buffer
Overflow

A buffer overflow is an attack by which a
memory stack is overflowed so a system will
execute information in memory outside of
the stack. All the varieties of buffer
overflows are represented in this category.

Data/Script
Injections

The goal of this attack is to take advantage of
a system running inputs given to it without
checking the validity of the inputs. By
passing scripts or incorrect information as
input, a user can perform various tasks such
as running remote processes, gaining
sensitive information, or crashing the system.

Numeric
Overflows

This attack focuses on giving a system some
value that exceeds the bounds that the system
can handle, with the intention of causing a
system crash or worse. This is normally
performed on some primitive type that has a
known range (such as an integer).

Race
Conditions

Race condition attacks are performed by
getting a system to execute information out
of order or at the same time; this can result in
such problems as a system crash or data
corruption.

Network
Exposures

This attribute is for anytime there is a
possibility of an attack against network-
based applications.

Operational
Misuse

Operational misuse can occur any place
where the system is easily used incorrectly
resulting in a security breach. One common
example of this is places in the design where
untrained users are present resulting in
misuse.

Default
Settings

This category is compromised of the
collection of default settings that software
products come with “out-of-the-box” that are
insecure if not configured correctly.

Programmer
Backdoors

This is the idea of developers working on the
project intentionally or unintentionally
leaving ways to access the system once it is
complete. This attribute is for any instance
in system design where analysts might try to
take preventive action against this occurring.

Other This attribute allows a designer to define an
attack pattern that might not be as common
as the ones above. It is included for the
(likely) possibility of new attack patterns
arising in the future.

encourage them to remember and avoid these types of
errors. This is extremely important since many software
vulnerabilities are caused from insecure coding practice.

4. Security Package Combinations and Sets

As security packages are added to a class diagram some
areas will have more of a security focus than others. To
make the class diagram easier to read in these areas, it is
good practice to use security package combinations and
sets. A combination is a security package that contains a
collection of different security descriptors that are all
shared by the classes the security package protects. A set is
a security package that contains a collection of the same
security descriptors that are shared by the classes the
security package protects. A root security package is the
concept that makes combinations and sets possible. A root
security package is a security package that has multiple
security descriptors which means that its security tile
contains security details for each descriptor. A good
example of this is the creation of a rule set. A rule set is a
security package set for the rule security descriptor so it
combines a collection of similar rules. A simple example
of this is shown in Figure 1, which shows part of a rule set
for avoiding buffer overflows in C/C++. Note that because
of space this example is not functionally complete and is
shown simply for understanding the concept of a rule set.
A security package combination is shown in the example in
Figures 2 and 3 at the end of the paper. Overall, the goal of
security package combinations and sets is to abstract a
collection of related security ideas into a root security
package to simplify the appearance of the system class
diagram.

5. Connecting Security Packages and Security
Tiles to Classes

Once you have defined a security package, it is necessary
to show what parts of the system class diagram are
protected by the package. To accomplish this, we use a
new type of association with the stereotype <<protects>>.
This shows which specific parts of a system are protected
by each security package. Security packages that connect
to nothing are assumed to protect all aspects of the system.

Another important detail is the difficult task of how
UML diagrams in security tiles connect to the system class
diagram (if needed). There are two basic situations where
this can occur. The first situation is if the class diagram in
the security tile is taking some input from the system
diagram and then producing some output to the system
diagram. The solution is to place the security package’s
<<protects>> stereotype to connect between the classes
giving the input and the ones receiving the output. The
security tile’s class diagram should then depict where the
input is taken in and the output is given out. The second
situation is if the class diagram in the security tile has
multiple connections throughout the system class diagram.
The solution to this is to use the stereotype <<connects>>
with a class name to show what and where the class
diagram needs to connect. Examples of both of these
situations can be seen in Figures 2 and 3.

6. A Brief Example

Let’s now look at a brief example to show how UMLpac

integrates onto a UML class diagram. Consider an
extremely basic UML representation for an ATM that can

dispense cash and show an account balance to a user. A
third party GUI package provides the interface for the
ATM. A database, used as a backend, provides user
account information. Figure 2 shows an example of a
possible design for this system integrated with UMLpac for
possible security considerations. Figure 3 shows the

security tiles for the given security packages. Note that for
both simplicity and space, the class diagram and security
solutions are tremendously elementary and are not
considered up to industry standard. The goal is to show
how UML is integrated with UMLpac.

Several important features of Figures 2 and 3 should be noted.

First, the idea of a security package combination is in the Secure
DEMOSOFT security package. Second, the Validate Input
security package shows the concept of representing a security tile
that takes input and produces output. Finally, the idea of security
tiles that connect to remote system elements is seen in the Audit
Logger and Data Backup security packages.

7. Conclusions

This paper introduces an approach to improve the

integration of security details into UML class diagrams
using stereotypes and associated packages. The major goal
of the approach, called UMLpac, is to keep a level of
abstraction between the system class diagram and its
security features so that the design continues to have
simplicity. This goal is accomplished through the use of
security packages that aid in separating basic security
information from the in depth security implementation.
This accomplishment was made even more efficient by the
introduction of security package combinations and sets.
UMLpac also succeeds in integrating security into the
design by defining security threats to improve clarity
through catalog descriptions, laying out high and low risk
areas in design through use of a risk factor, and giving
security analysts the ability to remind developers of secure
coding practices through the use of rule security
descriptors. These advantages make UMLpac an extremely
useful approach and an ideal way to design secure software
in the future.

Two additions to UMLpac will help to standardize and
expand its use. The first of these is the creation of rule sets
for various coding practices and the acceptance of these
rule sets by industry. This will make it easy for designers
to simply define standard rule sets in their UML class
diagrams that will in turn remind developers of the secure
coding practices they should follow when implementing a
particular system. The second is the creation of a tool to
help integrate security features into a class diagram using
UMLpac. Along with this, the creation of complete
guideline, rule, and principle catalogs as discussed in [1]
will benefit the creation of security tiles that need a catalog
entry. We expect that the approach taken in UMLpac will
continue to expand as software security grows and develops
in the future

8. Acknowledgement

This work was done at the University of South Carolina
as part of the Research Experiences for Undergraduates in

Multidisciplinary Computing project supported in part by
National Science Foundation Award # 0353637.

9. References

[1] Barnum, S. and McGraw, G. “Knowledge for Software
Security,” IEEE Security & Privacy, IEEE Computer Society
Press, March/April, 2005, 74-78.

[2] Davis, N., Humphrey, W., Redwine, S. T. Jr., Zibulski, G. and
McGraw, G. “Processes for Producing Secure Software: Summary
of US National Cybersecurity Summit Subgroup Report,” IEEE
Security & Privacy, IEEE Computer Society Press, May/June,
2004, 18-25.

[3] Gilliam, D. P., Wolfe, T. L., Sherif, J. S., and Bishop, M.
“Software Security Checklist for the Software Life Cycle,”
Proceedings of the 12th IEEE WETICE, IEEE Computer Society
Press, 2003.

[4] Hoglund, G. and McGraw, G. Exploiting Software: How to
Break Code, Addison-Wesley, 2004.

[5] Jurjens, J. “UMLsec: Extending UML for Secure Systems
Development,” Proc. of the 5th International Conference on the
Unified Modeling Language, 2002.

[6] Lodderstedt, T., Basin, D., and Doser, J. “SecureUML: A
UML-Based Modeling Language for Model-Driven Security,”
Proc. of the 5th International Conference on the Unified Modeling
Language, 2002.

[7] Potter, B. and McGraw, G. “Software Security Testing,” IEEE
Security & Privacy, IEEE Computer Society Press,
September/October, 2004, pp. 81-85.

[8] Saltzer, J. and Schroeder, M. “The Protection of Information in
Computer Systems,” Proceedings of the IEEE, volume 9, number
63, 1975, 1278-1308.

[9] Viega, J. and McGraw, G. Building Secure Software, Addison-
Wesley, 2001.

[10] Whittaker, J. A. and Howard, M. “Building More Secure
Software with Improved Development Processes,” IEEE Security
& Privacy, IEEE Computer Society Press, November/December,
2004, 63-65.

[11] Whittaker, J. A. and Stytz, M. “Why Secure Applications Are
Difficult to Write,” IEEE Security & Privacy, IEEE Computer
Society Press, March/April, 2003, 81-83.

