
Agents on the Web

Agent Societies
Magnitude and Duration

I f you only need agents to search the Web for
cheap CDs, scalability is not an issue. The Web
can support numerous agents if each acts inde-

pendently. In short order, however, billions of
embedded agents that sense their environment and
interact with us and other agents will fill our world,
making the human environment friendlier and more
efficient. These agents will need not only scalable
infrastructures and communication services, but
also scalable social services encompassing ethics
and laws. Research projects are underway around
the world to develop and deploy such services.

In this installment of “Agents on the Web,” I’ll
take a look at the critical relationship between
scalability and intelligent agents.

On the Horizon
Here are some interesting agent applications where
scalability plays a fundamental role:

� A large HMO is considering deploying agents
to represent its patients and members. Most cur-
rent medical information systems assist either
medical providers, such as physicians and nurs-
es, or medical administrators, such as hospitals
and insurers. Few try to assist patients direct-
ly—there are just too many of them. After all, a
city might have a handful of hospitals and clin-
ics, a few thousand doctors, but millions of
patients. Agents looking out for the welfare of
individuals could generate reminders and alerts
when patients don’t fill their prescriptions,
schedule medical appointments and procedures,
or simply inform people of new treatments rel-
evant to their condition. The basic goal is to
improve people’s medical outcome by helping
them before and after they enter the health-care
system, not just while they are in it.1

� An express-mail service embeds a small
processor with RF capabilities and an agent in
each package it handles. The agent helps track
the package and, more importantly, negotiates

with other agents to make sure its package gets
the service and attention it deserves. The ser-
vice handles millions of packages each month.

� Similarly, agents represent logistics items in
military deployments. Each item has an agent-
based smart card containing a mechanism for
communicating locally and globally; a rea-
soning engine; a knowledge base with infor-
mation about routes, conveyances, and con-
flict-resolution strategies; and the agent’s
objectives, priorities, needs, and relationships
to other items. An agent will complain if its
item is put in a railroad car heading in the
wrong direction or on an unrefrigerated truck
when it is perishable. By negotiating with
other agents, an agent representing a crate of
machine guns will make sure the appropriate
boxes of ammunition get on the same truck
going to the right destination.2

� At online stores, such as Amazon and Barnes &
Noble, and at online auctions, such as eBay,
agents represent customers. They help personal-
ize customer services by comparing notes with
other agents to decide which products a customer
is most likely to want and to make sure that buy-
ing and selling follow proper and efficient pro-
cedures. Along the same lines, Stanford’s LIRA
research system uses collaborative filtering to
find the things liked by people (represented by
their agents) who are similar to you (represented
by your agent);3 Yenta, from the MIT Media Lab,
performs matchmaking by clustering the agents
with similar interests;4 and ReferralWeb at AT&T
locates people with needed expertise. 5

What do the agent systems in all of these scenarios
have in common? Agents represent and act on
behalf of real-world entities, from inanimate objects
to people. Also, the systems are too complicated to
have a centralized architecture, so a distributed-
agent architecture seems to be the only reasonable
approach. Finally, successful implementations

2 JANUARY • FEBRUARY 2002 http://computer.org/internet/ 1089-7801/02/$17.00 ©2002 IEEE IEEE INTERNET COMPUTING

Michael N. Huhns • University of South Carolina • huhns@sc.edu

require that the systems scale up to a
large number of agents and interactions.

Notions of Scalability
Fundamentally, scalability is the ratio
between performance and resources.
We can think about an agent system’s
scalability in terms of its characteris-
tics when applied to a domain that
changes in size, or in terms of how the
agent system achieves scalability.

An agent-based system can cope
with a growing application domain by
increasing the number of agents, each
agent’s capability, the computational
resources available to each agent, or the
infrastructure services needed by the
agents to make them more productive.

Alternatively, an agent-based system
can exhibit scalability one of three ways:

� As the amount of resources available
to a fixed system of agents increases,
system performance should increase.

� As the number of agents in a sys-
tem increases to match increases
in the number of patients, pack-
ages, or entities in a domain, the
system should continue to func-
tion as designed.

� A scalable system should perform
better by taking advantage of the
additional capabilities offered by
the increased number of agents.

Scalability can also be dynamic or sta-
tic. Static systems must be recompiled
and restarted when the number of
agents or the resources available to
them change. Dynamic systems can
accommodate changes in agents and
resources during runtime. Obviously,
dynamic systems are preferable.

Scalability in Practice
Scalability is not a problem for reac-
tive agents, because they do not use
any system resources until they receive
a message. Increasing the number of a
system’s reactive agents simply caus-
es a storage problem for the agents
and a possible communication bottle-
neck for the messages they exchange.

Proactive, deliberative, agents con-

sume resources as long as they exist.
They evaluate their current circum-
stances and then plan their actions to
achieve both immediate and long-
term goals. They are continuously
active, where even deciding to do
nothing requires active deliberation
and, thus, resources.

Physically, you can achieve scaling
as follows:

� Distribute system components—the
agents and the service providers—
across multiple physical machines,
using distributed computing tech-
nologies such as DCOM, CORBA,
Java RMI, .NET, and JINI. Unfortu-
nately, this approach can introduce
communication latencies.

� Replicate the components on mul-
tiple physical machines, using dis-
tributed computing technologies
similar to those in the distributive
approach. Unfortunately, this tac-
tic introduces consistency problems
among the multiple copies, which
limits its use to applications that
are mostly static (a lot of commu-
nication is required to restore con-
sistency when systems change).

� Schedule the components intelli-
gently to execute only when and
for as long as necessary to optimize
the use of available resources. You
can also arrange the components
into hierarchies or other organiza-
tional structures to make their
interactions more efficient.

Each of these techniques has served
successfully to deploy large systems
of agents.

Scaling Infrastructure
Services for Agents
The services agents require—services
provided by agents to each other and
by the infrastructure—must also scale.6

Agent services include name services,
location services, directories, facilita-
tors, and brokers. Infrastructure ser-
vices include message transports,
human interfaces, and CPU cycles.

The Internet, though DNS, already
has an established means for scalable
name services, which agent-based sys-
tems can use. DNS essentially scales
through replication.

Scaling directory services are more
problematic. A directory service, such
as LDAP, consists of attribute-value
pairs that an agent can search for
matches to its requirements, much as
a person searches through a yellow
pages. In general, an agent might need
to exhaustively search an entire direc-
tory for each look-up. An index can
shorten the search time, but such
indexes are difficult to maintain in a
distributed setting.

Scalability Experiments
In investigating the effect of communi-
cation on scalability, researchers devel-
oping the ZEUS multiagent framework
discovered that the maximum commu-
nication load grows, at worst, linearly
with the number of agents.7

A research team at the University of
Saskatchewan used the DICE frame-
work to investigate the computational
load of creating and executing 1,000
simple agents on a set of 10 remote
hosts.8 The results demonstrated the
feasibility of moving agents to less

IEEE INTERNET COMPUTING http://computer.org/internet/ JANUARY • FEBRUARY 2002 3

Agent Societies

Distributed Interactive Engineering Toolbox:
http://www.ens-lyon.fr/~despres/DIET/index.htm
The Grid: http://coabs.globalinfotek.com
Jess: http://herzberg.ca.sandia.gov/jess/main.html
Yenta: http://foner.www.media.mit.edu/people/foner/yenta-brief.html
Zeus: http://www.labs.bt.com/projects/agents/zeus/index.htm

Resources

busy hosts for load balancing and also
that response times remain reason-
able—a few seconds at most—for agents
that need to respond to people. Other
results with complex rule-based agents
(agents that incorporated the JESS rea-
soning engine) showed that 400 agents
could execute acceptably within the
same computational framework.8

The DIET framework uses light-
weight threads and thread-manage-
ment techniques to enable more than
100,000 simple agents to execute on a
single host machine.9

In a different kind of experiment, a
team at the University of South Car-
olina is investigating the scalability of
a system of medium-complexity, het-
erogeneous agents. The agents form

geometric shapes on a 2D grid by
communicating with nearby agents.
Although only 60 agents are involved,
60 different people constructed them.10

For online reputation assessment
experiments in (human) social net-
works, the team is scaling the system
to more than 500 agents.

In a similar effort for scaling het-
erogeneous agents in a distributed and
dynamic world, the DARPA Control of
Agent-Based Systems (CoABS) pro-
gram has developed an infrastructure
called the Grid (see http://coabs.glob-
alinfotek.com). The Grid has integrat-
ed agents and components from more
than 20 independent projects and has
operated successfully in a series of
naval fleet battle exercises and other
applications, from information
retrieval to military command and
control. Built using Sun’s Jini services,
the Grid can integrate agent-based
systems, object-based applications,
and legacy systems. Agents in the Grid
communicate point-to-point, so com-

munications scalability (to the limit
imposed by network bandwidth) is not
a problem. The Grid relies on a lookup
service for registration and discovery
that is centralized, which is a potential
bottleneck. However, recent experi-
ments with up to 10,000 agents show
that registration and discovery are
essentially independent of the number
of agents registered.11

Long-Lived,Adaptable
Agents
Scalability applies not only to the
number of agents and their interac-
tions, but also to agent lifetimes and
interaction duration. Most agents in
use today are designed for short lives
in relatively static online worlds. For

example, an agent might be pro-
grammed to access the Web pages of
five online stores and find the best
price for a given music CD. While this
is underway, the sites are presumed to
be static and, when finished, the
agent dies.

In contrast, future agents—especial-
ly those who represent users in their
dealings with a ubiquitous computing
world—must live for many years. Such
agents will learn and adapt as they and
their users encounter new situations,
making it impractical for them to be
recreated from scratch. Their needed
infrastructure services must also be
designed to exist for many years. They
will also need new kinds of services:
social services to help them cooperate
in solving larger tasks, and legal ser-
vices to help them meet their obliga-
tions, and ensure their rights.

Acknowledgements
The National Science Foundation supported this

work under grant number IIS-0083362.

References
1. J. Davis, M. Huhns, and R. Bonnell, “Using

Objects and Patterns for Building Compli-
ance Agents in Healthcare,” Proc. OOP-
SLA’98 Midyear Workshop OOT for Insur-
ance and Health Care, 1998, pp. XX-XX

2. R. Staats, L. Glicoes, and M. Huhns, “A Mul-
tiagent Environment for Department of
Defense Distribution,” Adaption and Learn-
ing in Multiagent Systems, G. Weiss and S.
Sen, eds., Springer-Verlag Lecture Notes in
Artificial Intelligence 1042, Berlin, 1996, pp.
53–84.

3. M. Balabanovic and Y. Shoham, “Learning
Information Retrieval Agents: Experiments
with Automated Web Browsing,” Proc.
AAAI Spring Symp. Information Gathering
from Heterogeneous, Distributed Resources,
AAAI Press, Menlo Park, Calif., 1995, pp.
13–18.

4. L. Foner, “Yenta: A Multi-Agent, Referral
Based Matchmaking System,” Proc. First
Int’l Conf. Autonomous Agents (Agents ‘97),
ACM Press, New York, 1997. pp. XX-XX

5. H. Kautz, B. Selman, and M. Shah, “Refer-
ralWeb: Combining Social Networks and
Collaborative Filtering,” Comm. ACM, Vol.
40, No. 3, 1997, pp. 63–65.

6. F. Brazier, M. van Steen, and N. Wijngaards,
“On MAS Scalability,” Agents’01 Workshop
on Infrastructure and Scalability for Agents,
ACM Press, New York, 2001, pp. 121–126.

7. P. De Wilde, H.S. Nwana, and L.C. Lee, “Sta-
bility, Fairness, and Scalability of Multi-
Agent Systems,” International Journal of
Knowledge-Based Intelligent Engineering
Systems, Vol. 3, No. 2, 1999.

8. R. Deters, “Scalability and Multi-Agent Sys-
tems,” Agents’01 Workshop on Infrastruc-
ture and Scalability for Agents, ACM Press,
New York, 2001; www.cs.cf.ac.uk/User/
O.F.Rana/agensts2001/papers/02_deters.pdf.

9. P. Marrow, “Scalability in Multi-Agent Sys-
tems: The DIET Project,” Agents’01 Work-
shop on Infrastructure and Scalability for
Agents, ACM Press, New York, 2001;
www.cs.cf.ac.uk/User/O.F.Rana/agents2001/
papers/18_howden.pdf.

10. V. Holderfield, A Foundational Analysis of
Software Robustness Using Redundant
Agent Decision-Making, tech report, Center
for Information Technology, Univ. of South
Carolina, Columbia, Nov. 2001.

11. M.L. Kahn and C. Della Torre Cicalese,
“CoABS Grid Scalability Experiments,”
Agents’01 Workshop on Infrastructure and
Scalability for Agents, ACM Press, New
York, 2001; www.cs.cf.ac.uk/User/O.F.Rana/
agenst2001/papers/04_kahn_et_al.pdf.

Michael N. Huhns is a professor of computer sci-

ence and engineering at the University of

South Carolina, where he also directs the

Center for Information Technology.

4 JANUARY • FEBRUARY 2002 http://computer.org/internet/ IEEE INTERNET COMPUTING

Column

Future agents—especially those who represent

users in their dealings with a ubiquitous

computing world—must live for many years.

