
When you use a computer at work,
chances are you’re engaged in a work-
flow. Even when you’re doing non-
computer work—for example, order-
ing parts for your project or factory
by telephone, or calling an airline or a
government office—you are most
likely participating unwittingly in a
workflow.

A workflow is a composite activity
consisting of tasks involving a number
of humans, databases, and specialized
applications. The component tasks are
related and share various control, data,
and temporal dependencies. A classic
example of a workflow is loan process-
ing: When you apply for a loan, you fill
out a form, a clerk reviews it for com-
pleteness, an auditor verifies the infor-
mation, and a supervisor invokes an
external credit agency or uses a credit

risk assessment tool. Each person in the
loan process receives information con-
cerning your application, modifies or
adds to it, and forwards the results.

Another example, illustrated in
Figure 1, is when you order a service
from a telecommunications provider.
You initiate the order by interacting
with a sales representative from the
provider, who fills out a form on your
behalf. The sales representative checks
with a provisioning database to deter-
mine whether the necessary hardware
is in place. If it is, you receive an esti-
mate of when the service will be ready
for your use. A local service installer is
dispatched to install your service
while the telecommunications
provider checks your credit history.

If all goes well, the installer success-
fully installs the service, the auditors

find your credit history acceptable,
the billing department is notified to
begin charging you, and the workflow
concludes successfully.

Murphy’s Law
However, things don’t always go that
smoothly. For example, in checking
whether you already have an account,
the telecommunications provider
might discover that you have an
unpaid and overdue balance—or that
someone else previously at the same
address has an unpaid balance. Such
discoveries would raise a red flag.

Perhaps the service installer for
your area calls in sick, requiring a
revision in the installation schedule.
Or the installer might discover that
the available hardware is unusable and
must be replaced. Each of these situa-
tions can lead to modified behavior,
as illustrated in Figure 2. Such modi-
fications might lead to an additional
change in schedule or possibly even
cause you to cancel the order alto-
gether because you don’t want to wait
indefinitely.

These occurrences are instances of
exceptions that can arise during work-
flow execution. The number of possi-
ble exceptions is very large; their
scope and the great variety of possible
contexts make it practically impossi-
ble to specify all exceptions statically
and in advance. Unfortunately, the
only sure thing about exceptions is
that they are far from exceptional. As
a consequence, most natural work-
flows are inherently incomplete.

Exceptions differ from a simple
alternative flow of control; indeed, the
two are conceptually distinct.
Attempting to include all exceptions is
not only futile but would also clutter

the workflow so much
as to render it incompre-
hensible. For the same
reasons that program-
ming languages such as
Java treat exceptions
separately, we prefer to
think of exceptions as
parasitic on the main
workflow. Of course, if
some exceptions occur
often enough to become
almost routine, they will
be incorporated as

A
G

EN
TS

 O
N

 T
H

E
W

EB

WORKFLOW
AGENTS

Michael N. Huhns • University of South Carolina • huhns@sc.edu
Munindar P. Singh • North Carolina State University • singh@ncsu.edu

94 JULY • AUGUST 1998 h t tp ://computer.org/ in te rne t/ IEEE INTERNET COMPUTING

Stop&

Take
service
request

Check
hardware
availability

&

Create
billing
record

Schedule
service

installation

Install
service

Check
credit

(Available)

(Ok)

Figure 1. A workflow for processing a telecommunications service order.

explicit alternatives within the work-
flow, as illustrated in Figure 3.

State of the Art
Workflow technology is important to
network computing because workflows
exist naturally wherever distributed
resources are interrelated.1 Currently,
most workflows arise in intranets,
although multienterprise Internet
workflows are emerging in applications
such as electronic commerce.

There are many workflow tools—
at least 100, and by some counts as
many as 250. Each tool provides
some type of process-modeling mech-
anism coupled with an execution
framework. In general, the metamod-
els underlying most workflow tools
are based on a variant of activity net-
works, which show different activities
as nodes and use links to represent
various temporal and exception
dependencies among the nodes.2

Figures 1–3 reflect this general idea.
System analysts design workflows

on the basis of their understanding of
the given organization and the abstrac-
tions the chosen workflow tool sup-
ports. Once designed, the workflow
can be executed automatically by the
tool. This can result in improved effi-
ciency. For example, when workflows
involve human workers, the workers
can be automatically informed of the
tasks they should be performing.

Challenges Facing Workflow
Technology
Workflow technology is not universal-
ly acclaimed, and many CIOs are not
convinced of its capabilities and bene-
fits. One problem is that current
workflow technology is often too
rigid. Because workflows are con-
structed prior to use and are enforced
by some central authority, this rigidity
is inevitable. However, the lack of
freedom accorded to human partici-
pants causes workflow management
systems to appear unfriendly. As a
result, they are often ignored or cir-
cumvented, and eventually discarded.

This rigidity also causes productivi-
ty losses by making it harder to accom-
modate the flexible, ad hoc reasoning
that is the strong suit of human intelli-
gence. This need for flexibility is most
apparent when an exception occurs

and rigid workflow management tools
behave incorrectly. In our earlier exam-
ple, if the credit bureau is unrespon-
sive, a poorly designed workflow
might just hang, whereas a flexible one
would let a human make a decision
based on available information.

Another challenge is that system
requirements are rarely static. A work-
flow’s design context might not
remain applicable in every detail over
the workflow’s lifetime. Dynamic
requirements can necessitate arbitrary
extensions not recorded in the work-
flow model itself. Suppose our
telecommunications provider makes a
special offer at the start of an academ-
ic year whereby it waives credit-histo-
ry checks of full-time students.
Would this change require the work-
flow to be redesigned and reinstalled?

Agents for Workflow
As natural loci of autonomy and deci-
sion, agents promise to address these
challenges. They perceive, reason
about, and affect their environment.
They can be designed to be adaptive
and communicative.

Agents in an information environ-
ment can play a number of distinct
roles.3 The roles of greatest interest to
a workflow setting are user agents,
resource agents, and brokers.

When a workflow is constituted in
terms of distinct roles that agents can
instantiate, the agents can be set up to
respect the constraints of their users
and resources. Being aware of their
local situation enables agents to adapt
to a workflow. User agents negotiate
with one another and with resource
agents to ensure that global con-
straints are not violated and that glob-
al efficiencies can be achieved.

Agents can include functionality to
identify different kinds of exception
conditions and react appropriately, pos-
sibly by negotiating a special sequence
of actions. More importantly, agents
can learn from repeated instances of the
same kinds of exceptions. With this
learning ability, agents can process the
updated set of constraints when system
requirements change.

Countering ACIDity. Workflow agents
can implement a form of relaxed
transaction processing.4 Relaxed or

extended transactions are activities
consisting of several tasks, or opera-
tions, that do not satisfy one or more
of the ACID properties.5

■ Atomicity means that either all
changes a task causes to a system
state happen or none do.

■ Consistency means that a task
takes the system from one consis-
tent state to another.

■ Isolation means that a task’s inter-
mediate results are not visible to
another task.

■ Durability means that any changes
committed by a task persist.

ACID transactions are the staple of
traditional databases because they

A G E N T S O N T H E W E B

95IEEE INTERNET COMPUTING h t tp ://computer.org/ in te rne t/ JULY • AUGUST 1998

Check
credit

Cancel
service

installation

Notify
customer

Cancel
billing
record

&

(Not ok)

(Ok)

Figure 2. Exceptions—unexpected
occurrences that interrupt and possibly
alter a workflow—can arise during
workflow execution.

Schedule
hardware
installation

Check
hardware
availability

Install
hardware

&

(Not available)

Figure 3. An exception that occurs often
enough to be considered routine can be
incorporated into the workflow as an
alternative flow of control.

guarantee that only consistent data is
stored and that only consistent snap-
shots of a changing database are
viewed. However, implementing
ACID transactions makes stringent
demands that cannot be met in an
open environment, such as the
Internet. For example, if the workflow
in our figures were modeled as an
ACID transaction, we would have to
ensure that the user couldn’t be told
the order was received until after it
had been processed—or worse, that
an order was received only if it was
completed. Of course, these are not
reasonable behaviors. Moreover, they
are impractical, because they require
delaying one task until another task,
which might not occur until much
later, catches up.

So without transactions how can
we ensure consistency? Resource
agents working in conjunction with
user agents can contribute to a solu-
tion. By keeping track of their inter-
actions and how the stored data is
being accessed and updated, these
agents can help maintain overall sys-
tem consistency. They do not do this
in the lockstep manner of an ACID
transaction, but they can ensure con-
sistency at intervals sufficient for the
particular workflow. By describing at
a high level how different compo-
nents of a workflow ought to be treat-
ed, relaxed transactions serve as the
basis for designing the behavior of
such agents. However, additional
functionalities, such as negotiation,
are necessary.

Interoperation. A workflow represents
the interoperation of several applica-
tions and databases. This interopera-
tion can be achieved by implementing

an appropriate workflow from
scratch. However, recent standards
activities, chiefly led by the Workflow
Management Coalition, attempt to
define a reference model for workflow
management. The model describes
how workflow engines ought to be
connected to applications and data-
bases. Agents can contribute to
achieving interoperation among the
different resources while satisfying
their local constraints.

Another, more profound, kind of
interoperation occurs among different
workflows. A workflow represents a
meaningful unit of processing that
affects a number of people and infor-
mation resources. Clearly, multiple
units must interact with each other,
because some people participate in
more than one, and the units
inevitably share resources. Workflow
designers must understand, model,
and manage these interactions proper-
ly. If they don’t, all manner of chaos
may ensue—and indeed often does.
For example, one workflow of our
communications provider might be
upgrading communications wiring
with a view to discarding the old
wiring, while another workflow might
treat the old wiring as freely available
and assign new telephone circuits to it.

We can view a workflow itself as a
resource and then associate workflow
agents, acting as resource agents, with
it. Workflow agents can coordinate
the workflows they manage and
thereby provide for larger, possibly
enterprise-wide, workflows. This
requires an ability to communicate
and negotiate. Such coordination
benefits from standards that enable
workflows modeled and managed by
tools from different vendors to be

related. One example is the recently
announced Simple Workflow Access
Protocol (SWAP).

In the future, much as they enable
databases to interoperate today, agents
will enable Internet-wide workflows
to be coordinated and executed.

Systems of the Bimonth
A number of interesting projects
involve agents in workflow, but many
of them have proprietary details.
However, you should check out the
following projects on the Web.

■ The NIIIP consortium is applying
agents in workflows in the manu-
facturing domain.

■ Agents for bureaucratic assistance,
developed at the Center for
Computing Research, National
Polytechnic Institute, Mexico
City, do not enact a whole work-
flow, but they capture a compo-
nent common to several work-
flows. They essentially help people
in a distributed organization fill
out forms to satisfy various inter-
nal or external needs.

■ ITESM Monterrey’s CORREA
project focuses on agents for col-
laboration.

■ The University of Georgia Large-
Scale Distributed Information
Systems Laboratory is studying
workflow technology. ■

REFERENCES
1. NSF Workshop on Workflow and Process

Automation in Information Systems:
State-of-the-Art and Future Directions,
http://lsdis.cs.uga.edu/activities/NSF-
workflow.

2. M.N. Huhns and M.P. Singh, “Ontologies
for Agents,” IEEE Internet Computing,
Vol. 1, No. 6, Nov./Dec. 1997, pp. 81–83.

3. M.N. Huhns and M.P. Singh, “All Agents
Are Not Created Equal,” IEEE Internet
Computing, Vol. 2, No. 3, May/June
1998, pp.94–96.

4. M.P. Singh and M.N. Huhns,
“Automating Workflows for Service Order
Processing: Integrating AI and Database
Technologies,” IEEE Expert, Vol. 9, No. 5,
Oct. 1994, pp. 19–23.

5. J. Gray and A. Reuter, Transaction
Processing: Concepts and Techniques,
Morgan Kaufmann, San Mateo, Calif.,
1993.

C O L U M N

96 JULY • AUGUST 1998 h t tp ://computer.org/ in te rne t/ IEEE INTERNET COMPUTING

URLs for this column
ITESM Monterrey’s CORREA project (in Spanish)•
www-cia.mty.itesm.mx/~rbrena/CORREA/CORREA.html
NIIIP consortium • www.niiip.org/
Reference model for workflow management • www.aiim.org/wfmc/DOCS/
refmodel/rmv1-16.html
Simple Workflow Access Protocol • www.people.netscape.com/kswenson/SWAP/
University of Georgia Large-Scale Distributed Information Systems Laboratory •
www.lsdis.cs.uga.edu/demos/workflowindex.html
Workflow Management Coalition • www.capv.com/dss/resources/
glossary/2282_13a.htm

