
Agents on the Web 
 

Mobile Agents 
 

Michael N. Huhns and Munindar P. Singh 
 

May 1, 1997 
 
There are beginning to be a lot of agents executing on the web, and some of them are starting 
to move around.  While most agents are static, in that they exist as a single process or thread on 
one host computer, others can pick up and move their code and data to a new host in the web, 
where they then resume executing. 
 

“Beam me up, Scotty!” 
 
Are such agents mobile, itinerant, dynamic, wandering, roaming, or migrant?  And, are they 
sent, beamed, teleported, transported, moved, relocated, or RPC’d?  These are some of the 
questions swirling around web discussion groups these days.  However, since anything that can 
be done with mobile agents can be done with conventional software techniques, the key 
questions are really 
 

Are mobile agents a useful part of a distributed computing system? 
 
Are there applications that are easier to develop using mobile agents? 
 
Under what circumstances is it useful for an agent to be mobile? 

 
We find that there are very few such circumstances, in spite of all the effort being spent on 
developing techniques for mobility.  And, there is a fundamental reason, historically called the 
procedural-declarative controversy [see sidebar], why this is so.  Nevertheless, there are 
several appropriate uses for mobile agents 
 

Appropriate Applications 
In general, the best applications for mobility might be those that involve the dynamic 
installation of code to extend the functionality of an existing system.  This would address a 
potential limitation of current static systems, which are not easily enhanced.  However, new 
functionality can be installed without requiring a full-blown mobile agent.  All you need is a 
standard message type "install(function_name, version, argument_types, code)".  The receiving 
agent can autonomously decide—based among other things on its level of trust in the sender—
whether to install the corresponding code; if it does, new functionality becomes available.  
And, you never need to ship state information around. 



Disconnected Operation 
A major consideration for personal digital assistants (PDAs) is battery capacity and, therefore, 
connect time.  Because of this, PDAs are forced to spend most of their existence off-line.  
Now, suppose you have constructed an agent that knows your preferences and interests, and 
can filter information sent to you from multiple sources.  Further, suppose your agent can 
provide real-time feedback to the sources that would enable them to improve the precision of 
their information.  This agent can run on your PDA, where you can interact with it and instruct 
it.  However, you do not want your agent to stop functioning when you turn off your PDA—
when this happens, your agent should move to a host that is on-line. 

Testing Distributed Network Hardware (a multihop application) 
Graham Glass (gglass@objectspace.com), from ObjectSpace, Inc., has suggested the following 
application for mobile agents.  A distributed telecommunication switch is built out of 
thousands of different cards, each containing different hardware.  The rules for testing this 
hardware vary from board to board.  There are routines for testing an individual board, groups 
of boards, and entire systems.  The code for thorough testing can be quite large, and can 
improve over time.  Since the bandwidth for performing system tests can be quite large also, 
such tests are often performed off-line. 
 
A traditional approach to network diagnostics is to load the board-level testing code directly 
into the boards and have these boards self-test periodically, sending their results to a main 
testing controller.  The system level tests do not fit into the boards and consume too much 
network bandwidth, so they are loaded remotely when the system is inactive. 
 
A mobile agent approach is to launch testing agents into the active network  These agents roam 
between boards, performing tests in a stochastic way.  Larger system-level testing agents can 
displace smaller board-level tests when necessary.  This allows boards to accommodate many 
testing strategies with a small amount of memory, since the agents can come and go over time.  
Testing agents carry with them both their previous testing history and the means to perform the 
test, a natural set of associated items.  Testing agents can make local decisions, allowing them 
to repeat tests as necessary or test boards around them without having to report back to a 
central controller and consume precious bandwidth. 
 

Customized Searches on Servers 
The most frequently proposed use for mobile agents is to send them to execute on servers, 
particularly when the servers have more information than can be reasonably communicated 
back to a client for processing there and lack the necessary procedures to perform the desired 
processing themselves.  This is a special set of circumstances that does not often hold.  Even 
when it does, you should compare it to a declarative approach, which would be to implement a 
protocol of search primitives that could be invoked via messages between a user agent and the 
server agent.  This approach would mitigate the security worries that the mobile agent would 
run amok, intentionally or otherwise. 
 



This approach would also offer efficiency advantages.  When a mobile agent runs remotely, the 
server gives up control of disk, memory, and processor resources to the agent.  Instead, if the 
server accepted a sequence of declarative search primitives, it could schedule and carry them 
out in a way that is optimized to its current state.  For example, a modern DBMS could use its 
own optimized techniques to compute a join much more efficiently than a remote user could 
program an agent to compute one. 
 

Information Commerce 
There are times when an information consumer would like to apply proprietary algorithms 
from one company to proprietary data from another company.  A solution would be to find a 
trusted third party to whom both the data and the algorithms, encoded in a mobile agent, could 
be sent. 

Mobile Agent Frameworks 
 
There are a number of active efforts underway to develop systems, protocols, and frameworks 
for both the construction and use of mobile agents.  Most of the following frameworks allow 
agents to be started, stopped, and moved, and a few allow them to be monitored. 
 
• Odyssey from General Magic<ODY>—agents are programmed in Java 
  
• ARA "Agents for Remote Action" from the University of Kaiserslautern<ARA>—agents 

are programmed in Tcl, C/C++, or Java 
  
• MOA "Mobile Objects and Agents" from The OpenGroup<MOA>—uses OS process 

migration technology 
  
• Concordia from Mitsubishi Electric Information Technology Center<CON>—agents are 

programmed in Java 
  
• Aglets from IBM<AGL>—agents are programmed in Java 
  
• TKQML from University of Maryland Baltimore County<TKQ>—migrating agents are 

programmed in Tcl and communicate in KQML 
  
• Agent Tcl from Dartmouth<ATC>—transportable agents are programmed in Tcl 
 
There is an effort by the Object Management Group (OMG) to establish industry standards for 
mobile agent technology and interoperability among agent systems, such as Odyssey, Aglets, 
and MOA.  The OMG intends to define a Mobile Agent Facility (MAF) for CORBA.  A draft 
of the MAF specification is available from General Magic at <http://www.genmagic.com/>. 
 



Concerns 

Security 
There are two main aspects to security involving mobile agents.  The first, and most commonly 
considered, is protection of the server against intentionally or accidentally malicious agents.  
The second is protection of a mobile agent against malicious servers.  The former aspect has 
been dealt with extensively in the context of operating systems, which establish and maintain 
protection levels for process execution.  Security in the latter aspect cannot be guaranteed, 
because in order for the mobile agent’s code to be executed, the agent has to expose both its 
code and data to the server.  A detection, but not prevention mechanism, is to have the agent 
return itself with its data, to verify that it has not been altered. 
 
A prevention mechanism might hinge on a determination of legal responsibility:  are you liable 
or not for your agent's deeds?  And, who pays if, e.g., a malicious server causes you to buy 
something on another server? 
 
Authentication, integrity, confidentiality, and nonrepudiation are other important aspects of 
security.  Authentication validates the identity of the person or agent with whom you are 
interacting.  Integrity ensures that what you see has not been tampered with, confidentiality 
ensures that what you intend to be private remains so, and nonrepudiation means you are liable 
and cannot change your mind. 
  

Survivability—Too Short or Too Long! 
Mobility can improve the survivability of an agent—it can move if its execution on a host is 
threatened—but it can also result in the agent continuing to exist long after its usefulness has 
ended.  Once mobile agents are launched, it becomes difficult to monitor and manage them.  
The problem is compounded when agents are given the ability to replicate. 
 
 
BEGIN SIDEBAR 
 

“The Procedural-Declarative Controversy” 
 
We view the mobility of agents as primarily an issue of infrastructure—a matter of how agent 
functionality might be realized.  A client seeking information from a server can either send a 
procedure to execute on the server and find the desired information, or send a message 
requesting the server to find the information using its own procedure.  Our objection to the 
usefulness of mobile agents lies in their being a low-level procedural means to achieve what 
communication techniques can support at a higher declarative level.  Similar objections have 
arisen time and again throughout the history of computing, and higher level techniques have 
always won out.  Examples include high-level programming languages vs. assembly 
languages, SQL vs. navigational queries, conceptual vs. physical data models, and formal 
grammars and compiler generators vs. hard-coded compilers. 



 
Some of the trade-offs were debated in 1975 during what was called the “procedural-
declarative controversy” <Winograd75>.  In this controversy, which was focused on AI 
knowledge representation, declarative approaches were said to describe what; while procedural 
approaches describe how. 
 
In a narrow sense, procedural approaches can be more efficient.  However, when the flexibility 
of solutions and the productivity of programmers are taken into consideration, declarative 
approaches usually pay off.  Declarative approaches offer advantages in 
• Modularity—requirements can be captured independently from each other. 
• Incremental change—it is much easier to add or remove components from a declarative 

specification than to rewrite procedural programs. 
• Semantics—declarative notations can be given a formal semantics directly, whereas 

procedural languages must first be mapped to declarative structures.  Formal semantics is 
crucial for validating tools for building agents and their interaction protocols.  It assures 
predictable behavior, and enables efficiencies in implementation without jeopardizing 
soundness. 

• User interfaces—declarative specifications are easier to generate than procedural code, 
leading to greater productivity for interface developers and, coupled with clean semantics, 
greater predictability for users. 

• Inspectability—being explicit, declarative specifications can be examined to determine (a) 
the current constraints on an agent and its interactions, (b) how far the constraints have 
been satisfied, and (c) the rationales for different actions. 

• Learnability—declarative specifications are easier to learn, enabling an agent to discover 
how other agents behave, and how to participate in an ongoing "discussion" among agents. 

 
Mobility includes procedural encodings in two distinct respects.  One, the behavior of a mobile 
agent is procedurally coded.  This might be reasonable for some static agents as well.  Two, the 
interactions of a mobile agent are implicit in the code that constitutes it.  This is unnecessary 
when the agent is static.  A static agent’s interactions can be explicitly specified in terms of 
protocols involving its communications (see our column in IC, 1(2):73-75).  Static agents can 
then be supplied by different vendors and programmed in different languages as long as they 
communicate properly with each other. 
 
Ultimately, there is no difference between a very complex request language and a very simple 
programming language.  We are, in fact, really talking about a continuum of approaches. 
 
<Winograd75> Terry Winograd, “Frame representations and the declarative/procedural 
controversy,” in D. Bobrow and A. Collins, eds., Representation and Understanding, 
Academic Press, New York, 1975.  Reprinted as Chapter 20, pp. 358-370 in Ronald Brachman 
and Hector Levesque, editors, Readings in Knowledge Representation, Morgan Kaufmann, San 
Francisco, 1985. 
 
END SIDEBAR 
 



Challenges for Mobile Agent Technology 
 
We believe that agent mobility has a useful, albeit limited role to play in distributed 
computing.  For it to be successful in that role, agent languages are needed that  
• can express useful remote computations 
• do not violate the security of the sender or receiver 
• are portable and extensible. 
Furthermore, techniques for managing distributed computations are needed that can 
• disseminate extensions to the programming language interpreter 
• authenticate senders 
• prevent deadlocks and live-locks 
• control agent lifetimes 
• prevent the flooding of communication or storage resources. 
 

System of the Bimonth 
 
To experiment with mobile agents, we suggest you try General Magic’s brand new release of 
Odyssey Version 1.0 Beta.  You can download it for free from <ODY>.  Check it out! 
 
 

References 
 
<AGL> Aglets:  <http://www.trl.ibm.co.jp/aglets> 
<ARA> Agents for Remote Action:  <http://www.uni-kl.de/AG-Nehmer/Ara/> 
<ATC> Agent Tcl:  <http://www.cs.dartmouth.edu/~agent/> 
<CON> Concordia:  <http://www.meitca.com/HSL/Projects/Concordia/> 
<MOA> Mobile Objects and Agents:  <http://www.osf.org/RI/DMO/dmo.htm> 
<ODY> Version 1.0 Beta release of Odyssey:  <http://www.genmagic.com/agents> 
<TKQ> Agent Support for Tcl:  <http://www.cs.umbc.edu/agents/kqml/papers/tkqml.ps> 


